BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The challenges of using modern theoretical and computational tools to model the unique features of the oxygen–organic molecule photosystem are discussed from a historical and pedagogical perspective. This review is written for the novice, but the problems formulated should stimulate the expert.
This work gives an overview of what is currently known about the mechanisms of the photosensitized production of singlet oxygen. Quenching of ππ* excited triplet states by O2 proceeds via internal conversion of excited encounter complexes and exciplexes of sensitizer and O2. Both deactivation channels lead with different efficiencies to singlet oxygen generation. The balance between the deactivation channels depends on the triplet-state energy and oxidation potential of the sensitizer, and on the solvent polarity. A model has been developed that reproduces rate constants and efficiencies of the competing processes quantitatively. Sensitization by excited singlet states is much more complex and hence only qualitative rules could be elaborated, despite serious efforts of many groups. However, the most important deactivation paths of fluorescence quenching by O2 are again directed by excess energies and charge-transfer interactions similar to triplet-state quenching by O2. Finally, two recent developments in photosensitization of singlet oxygen are reviewed: Two-photon sensitizers with particular application potential for photodynamic therapy and fluorescence imaging of biological samples and singlet oxygen sensitization by nanocrystalline porous silicon, a material with very different photophysics compared to molecular sensitizers.
Singlet oxygen (1O2) is unique amongst reactive oxygen species formed in cells in that it is an excited state molecule with an inherent upper lifetime of 4 μs in water. Whether the lifetime of 1O2 in cells is shortened by reactions with cellular molecules or reaches the inherent maximum value is still unclear. However, even with the maximum lifetime, the diffusion radius is only ∼220 nm during three lifetimes (∼5% 1O2 remaining), much shorter than cellular dimensions indicating that the primary reactions of 1O2 will be subcellularly localized near the site of 1O2 formation. This fact has raised the question of whether spatially resolved cellular responses to 1O2 occur, i.e. whether responses can be initiated by generation and reaction of 1O2 at a particular subcellular location that would not have been produced by 1O2 generation at other subcellular sites. In this paper, we discuss examples of spatially resolved responses initiated by 1O2 as a function of distance from the site of generation of 1O2. Three levels are recognized, namely, a molecular level where the primary oxidation product directly modifies the behavior of a cell, an organelle level where the initial photo-oxidation products initiate mechanisms that are unique to the organelle and the cellular level where mediators diffuse from their site of formation to the target molecules that initiate the response. These examples indicate that, indeed, spatially resolved responses to 1O2 occur in cells.
A microscope is described in which singlet molecular oxygen, O2(a1Δg), is produced in a femtoliter focal volume via a nonlinear two-photon photosensitized process, and the 1270 nm phosphorescence from this population of O2(a1Δg) is detected in a photon counting experiment. Although two-photon excitation of a sensitizer is less efficient than excitation by a one-photon process, nonlinear excitation has several distinct advantages with respect to the spatial resolution accessible. Pertinent aspects of this two-photon O2(a1Δg) microscope were characterized using bulk solutions of photosensitizers. These data were compared to those obtained from a single biological cell upon linear one-photon excitation of a sensitizer incorporated in the cell. On the basis of the results obtained, we outline the challenges of using nonlinear optical techniques to create O2(a1Δg) at the single cell level and to then optically detect the O2(a1Δg) thus produced in a time-resolved experiment.
As photodynamic therapy (PDT) continues to develop and find new clinical indications, robust individualized dosimetry is warranted to achieve effective treatments. We posit that the most direct PDT dosimetry is achieved by monitoring singlet oxygen (1O2), the major cytotoxic species generated photochemically during PDT. Its detection and quantification during PDT have been long-term goals for PDT dosimetry and the development of techniques for this, based on detection of its near-infrared luminescence emission (1270 nm), is at a noteworthy stage of development. We begin by discussing the theory behind singlet-oxygen luminescence dosimetry (SOLD) and the seminal contributions that have brought SOLD to its current status. Subsequently, technology developments that could potentially improve SOLD are discussed, together with future areas of research, as well as the potential limitations of this method. We conclude by examining the major thrusts for future SOLD applications: as a tool for quantitative photobiological studies, a point of reference to evaluate other PDT dosimetry techniques, the optimal means to evaluate new photosensitizers and delivery methods and, potentially, a direct and robust clinical dosimetry system.
Direct detection of reactive oxygen species (ROS), especially singlet oxygen, in plants under stress conditions is of special importance, not only to identify primary events of oxidative damage, but also in studies exploring the potential role of ROS as signal molecules. Due to short life-times and diffusion distances of ROS, these tasks require highly reactive and selective indicator reagents, localized at the presumed site of production. In the present study, we compared four double sensors: ROS indicator reagents in which partial fluorescence quenching of a dansyl moiety occurs as a result of nitroxide radical formation from a sterically hindered amine constituent. Our experiments support the idea that shorter donor-acceptor distances within these molecules result in higher reactivity to ROS. The presence of a diethylaminoethyl side chain resulted in better selectivity to singlet oxygen: reagents lacking such substituent had an additional reactivity to superoxide anions, probably as a result of the formation of zwitterionic structures. Fluorescence localization studies of the indicator reagents in tobacco leaves and in Chlamydomonas cells show promising perspectives of their applications to plant stress studies.
This survey focuses on recent aspects of the singlet oxygen oxidation of the guanine moiety of nucleosides, oligonucleotides, isolated and cellular DNA that has been shown to be the exclusive DNA target for this biologically relevant photogenerated oxidant. A large body of mechanistic data is now available from studies performed on nucleosides in both aprotic solvents and aqueous solutions. A common process to both reaction conditions is the formation of 8-oxo-7,8-dihydroguanine by reduction of 8-hydroperoxyguanine that arises from the rearrangement of initially formed endoperoxide across the 4,8-bond of the purine moiety. However, in organic solvent the hydroperoxide is converted as a major degradation pathway into a dioxirane that subsequently decomposes into a complex pattern of oxidation products. A different reaction that involved the formation of a highly reactive quinonoid intermediate consecutively to the loss of a water molecule from the 8-hydroperoxide has been shown to occur in aqueous solution. Subsequent addition of a water molecule at C5 leads to the generation of a spiroiminodihydantoin compound via a rearrangement that involves an acyl shift. However, in both isolated and cellular DNA the latter decomposition pathway is at the best a minor process, because only 8-oxo-7,8-dihydroguanine has been found to be generated. It is interesting to point out that singlet oxygen has been shown to contribute predominantly to the formation of 8-oxo-7,8-dihydroguanine in the DNA of bacterial and human cells upon exposure to UVA radiation. It may be added that the formation of secondary singlet-oxygen oxidation products of 8-oxo-7,8-dihydroguanine, including spiroiminodihydantoin and oxaluric acid that were characterized in nucleosides and oligonucleotide, respectively, have not yet been found in cellular DNA.
The singlet oxygen ene reactions of four allylic alcohols and for comparison an allylic ether have been examined both in solution and in zeolite Y. Brønsted acid sites in the zeolite were shown to induce decomposition of several of the allylic alcohols. Treatment of the zeolites with pyridine removed these acid sites and allowed intrazeolite reactions of the allylic alcohols without interference from decomposition. Control reactions with an allylic alcohol that is inert to decomposition provided evidence that the presence of pyridine in the zeolite labyrinth does not influence the product composition.
The ene reaction of chiral allylic alcohols is applied as a tool for the investigation of intrapolymer effects by means of the stereoselectivity of the singlet-oxygen addition. The diastereo selectivity strongly depends on the structure of the polymer, the substrate loading degree and also on the degree of conversion demonstrating additional supramolecular effects evolving during the reaction. The efficiency and the stability of polymer-bound sensitizers were evaluated by the ene reaction of singlet oxygen with citronellol. The ene reaction with chiral ammonium salts of tiglic acid was conducted under solution phase conditions or in polystyrene beads under chiral contact ion-pair conditions. The products thus obtained precipitate during the photoreaction as ammonium salts. Moderate asymmetric induction was observed for this procedure for the first time.
Tumor eradication by photodynamic therapy (PDT) results from the onset of distinct killing processes. In addition to the well-known necrotic and apoptotic mechanisms, PDT initiates an inflammatory response that will indirectly contribute to tumor clearance. The NF-κB transcription factor is a major regulator of inflammation modulating the expression of cytokines, chemokines, and adhesion molecules in various cell types in response to a large number of stimuli. Besides, NF-κB regulates the expression of antiapoptotic genes, cyclooxygenases (COXs) and metalloproteinases (MMPs) as well, thereby favoring tumor cell proliferation and dissemination. In the present review, we aim to summarize the current knowledge on NF-κB status following photosensitization of cancer cells and endothelial cells. In order to unravel the NF-κB impact in PDT tumorigenicity and recurrences, we will stress the discrepancies of this major transcription factor relative to the signaling cascades underlying its activation and the cellular effects triggered by its translocation into the nucleus and its binding to its target genes.
Blue visible light damage to retinal pigment epithelial cells occurs through a photooxidative mechanism and the resultant damage is hypothesized to induce or exacerbate age-related macular degeneration. The purpose of the present study was to identify changes in the cell growth and the expression of hepatocyte growth factor (HGF) in cultured human retinal pigment epithelium (RPE) cells as a result of both blue and red light irradiation. HGF is a growth factor and neurotrophic factor that stimulates growth of various ocular cells and promotes the survival of RPE and retinal neurons. Early passages of human RPE cells were exposed to blue light (460 nm) and red light (640 nm). Nonirradiated cells were used as controls. After 24 and 48 h, conditioned medium was collected and the amount of HGF was measured by ELISA. Cells were detached from the well and counted. Cell viability was evaluated by trypan-blue exclusion study. Blue light at dosage of 63 J/cm2 significantly inhibited the growth of RPE cells without affecting of cell viability. Amounts of HGF in the culture medium were significantly inhibited by blue-light irradiation at the dosage from 32 to 63 J/cm2. Red light at a dose of 174 J/cm2 causes a nonsignificant inhibition of growth of RPE cells and a slight decrease of secretion of HGF. As HGF promotes survival of RPE cells and retinal neurons, the inhibition of production of HGF by visible light, especially by blue light, may enhance the phototoxic effects of visible light on the RPE and retinal neurons.
It has been reported that the photo-oxidation of A2E, a component of human retinal lipofuscin, leads to products that are toxic to cells via dark reactions. Because these compounds have been implicated in the development of various maculopathies such as age-related macular degeneration (AMD), it is important to determine the structures of those deleterious compounds. Both the photo-oxidation and auto-oxidation of A2E lead to the same complex mixture of products, some of which have lower molecular weights than the staring material. Because A2E is homologous to β-carotene, it was hypothesized that its oxidation would lead to products analogous to those found in oxidized β-carotene, namely, a series of cleavage products along the acyclic chain with the concomitant formation of aldehydes. This was found to be the case based upon 1) the formation of all of the aldehydes predicted from the oxidation of β-carotene, 2) the loss of 28 amu (carbonyl moiety) from the molecular ion, 3) the facile reaction of the aldehydes with nitrophenylhydrazines to form nitrophenylhydrazones and 4) the subsequent MS/MS cleavage of those derivatives at the N-N bond. If formed in vivo, these aldehydes would have toxic effects on any cell. Finally, the similarity in product mixtures from both the photo-oxidation and auto-oxidation strongly suggests that the intermolecular photo-oxidation of A2E results primarily from a radical process without the involvement of singlet oxygen. Any formation of singlet oxygen most likely arises from sensitization by the aldehyde oxidation products, as this process is well known for aldehydes, in general, and retinal, specifically.
Several mechanistic alternatives proposed for the photochemical deprotection of dimethoxybenzoin esters are presented. Both experimental and theoretical evidence suggest the mechanism is heterolysis of the singlet excited state to form a carboxylate and the α-ketocation. The α-ketocation has been observed by transient spectroscopy. We propose the α-ketocation undergoes electrocyclization to an intermediate with extended conjugation, whose deprotonation gives the observed benzofuran product. A Brønsted study of the rates of benzofuran formation with dimethoxybenzoin esters derived from acids of varying pKa shows the rate is independent of the basicity of the leaving group. In this multistep reaction, benzofuran formation by a final deprotonation is slower than α-ketocation generation.
IR absorption spectroscopy is used to examine the binding of the divalent cations Mg(II), Ca(II), Zn(II) and Cu(II) to melanin granules isolated from the ink sacs of Sepia officinalis. The functional groups of the melanin granules interacting with the bound metal ions are deduced by examining the effect of metal concentration on transition frequencies associated with the COOH, NH and OH moieties of the pigment. The coordinating groups vary with metal ion and with concentration. For the experimental conditions used (initial solution pH of 4, ionic strength of 100 mM and a melanin concentration of 1 mg mL−1) Mg(II), Ca(II) and Zn(II) bind to carboxylate groups and Cu(II) binds predominantly to phenolic (catechol) groups However, at a concentration of 10 mM Cu(II) also shows evidence of binding to carboxylate and amine groups, reflecting a secondary binding site that becomes populated as the catechol sites are depleted.
The in vivo fluorescence emission from human prostates was measured before and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). A single side-firing optical fiber was used for both the delivery of 465 nm light-emitting diode excitation light and the collection of emitted fluorescence. It was placed interstitially within the prostate via a closed transparent plastic catheter. Fitting of the collected fluorescence emission spectra using the known fluorescence spectrum of 1 mg/kg MLu in an intralipid phantom yields a quantitative measure of the local MLu concentration. We found that an additional correction factor is needed to account for the reduction of the MLu fluorescence intensity measured in vivo due to strong optical absorption in the prostate. We have adopted an empirical correction formula given by C = (3.1 cm−1/μ′s) exp (μeff·0.97 cm), which ranges from approximately 3 to 16, with a mean of 9.3 ± 4.8. Using a computer-controlled step motor to move the probe incrementally along parallel tracks within the prostate we can determine one-dimensional profiles of the MLu concentration. The absolute MLu concentration and the shape of its distribution are confirmed by ex vivo assay and by diffuse absorption measurements, respectively. We find significant heterogeneity in photosensitizer concentration within and among five patients. These variations occur over large enough spatial scales compared with the sampling volume of the fluorescence emission that mapping the distribution in three dimensions is possible.
Photodynamic therapy (PDT) requires oxygen to cause cellular and vascular tumor damage. Tissue oxygen concentration, in turn, is influenced by blood flow and blood oxygenation. Real-time clinical measurement of these hemodynamic quantities, however, is rare. This paper reports the development and application of a probe, combining diffuse reflectance spectroscopy (DRS) for measurement of tumor blood oxygenation and diffuse correlation spectroscopy (DCS) for measurement of tumor blood flow. The instrument was adapted for clinical use during interstitial prostate PDT. Three patients with locally recurrent prostate cancer received 2 mg/kg motexafin lutetium (MLu) 3 h before illumination and a total light dose of 100 J/cm2 at 150 mW/cm. Prostrate blood oxygen saturation (StO2) decreased only slightly (∼3%) after treatment. On the other hand, prostate blood flow and total hemoglobin concentration over the course of PDT decreased by 50% and 15%, respectively, suggesting MLu-mediated PDT has an anti-vascular effect. While it is certainly impossible to draw definite conclusions from measurements of only three patients, the observed differences in tumor blood flow and blood oxygenation responses during PDT can, in principle, be used to choose among tissue oxygen consumption models and therefore emphasize the potential clinical value for simultaneous monitoring of both parameters.
Susceptibility of the HT-29 human colon adenocarcinoma cell line and human myeloid leukemia cell line U937 to hypericin-mediated photocytotoxicity was investigated and compared in this study. Cellular parameters as viability, cell number, metabolic activity and total protein amount were monitored in screening experiments with subsequent cell-cycle analysis and apoptosis detection to determine the cellular response of the different tumor types to various concentrations of photoactivated hypericin. The results show concentration dependence of the photosensitizer's cytotoxicity on the studied cell lines, with higher sensitivity of U937 cells. Whereas the two extreme hypericin concentrations (1 × 10−9 M and 1 × 10−6 M) resulted in similar changes in all tested cellular parameters on the two studied cell lines, 1 × 10−8 M and 1 × 10−7 M hypericin treatment resulted in different responses of the cell lines in all monitored parameters except for viability. Although leukemic cells proved sensitive to both 1 × 10−8 M and 1 × 10−7 M hypericin, significant changes on HT-29 cells were detected only after the 1 × 10−7 M hypericin concentration. Cell-cycle arrest was related to simultaneously occurring apoptosis in colon cancer. Remarkable is the difference in cell-cycle profile where G2/M arrest in colon cancer cells versus accumulation of leukemic cells in the S phase appears. This suggests that hypericin treatment affecting the cell-cycle machinery of different cancer cells is not universal in effect.
The proinflammatory cytokine interleukin-20 (IL-20) may exert the majority of its activity in the skin. We examined the effect of various treatments including several forms of phototherapy on IL-20 expression using cultured normal human epithelial keratinocytes (NHEK). Broadband UVB light, recombinant (r) IL-1 and rIL-8 increased, while hydrocortisone reduced, NHEK supernatant IL-20 levels. Elevation of NHEK IL-20 mRNA and maximal supernatant IL-20 levels occurred with a UVB light dose (40 mJ cm−2) that reduced cell viability by approximately 50%. While this UVB light dose also elevated supernatant IL-1α and IL-8 levels, antibody neutralization studies indicated that neither of these cytokines was directly responsible for this increase in IL-20 expression. However, the elevation in IL-20 levels was fully inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB-203580, suggesting involvement of this stress signaling pathway in this UVB light response. Photodynamic therapy (PDT) with the photosensitizer lemuteporfin, UVA light, cisplatin, lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) or recombinant interferon-γ (rIFN-γ) either had little effect or decreased NHEK supernatant IL-20 levels. Reduced IL-20 levels paralleled the cytotoxic actions of PDT, UVA light or cisplatin and the antiproliferative effect of rIFN-γ. Neither rIL-20 supplementation nor anti-IL-20 antibody treatments affected cell viability indicating that soluble IL-20 did not affect the short-term survival of UVB light-irradiated NHEK. Stimulation of IL-20 expression in keratinocytes by UVB light suggests that this cytokine might participate in skin responses to this ever-present environmental factor and potentially has a role in UV light-associated dermatoses.
Immunosuppressive effects of the minor component of the terrestrial solar spectrum, UV radiation, have been substantiated over the past several years. This raises the question of what influence the dominant part of the solar spectrum—visible and IR light—would have on the human immune system. In the present randomized, placebo-controlled double-blind study a small area of the body surface of volunteers was irradiated with polychromatic light (480–3400 nm), simulating the significant part of the terrestial sunlight irradiance spectrum and its power density. An average 2.5-fold to three-fold increase in spontaneous and phytohemagglutinin-induced DNA synthesis in peripheral blood lymphocytes (Lym) was revealed at 0.5–24 h after irradiation at a therapeutic dose (12 J/cm2) in subjects with low preirradiation levels of both processes. The in vivo findings were echoed in parallel in vitro experiments, when blood drawn from the same subjects was directly irradiated (2.4 J/cm2), or when the irradiated blood was mixed 1:10 with nonirradiated autologous blood to model events in the circulation following transcutaneous blood photomodification. Our data suggest that exposure of the human body to polychromatic visible IR light may photomodify blood in the dermal vasculature of the irradiated area to lead to an immediate transfer of the light-induced effects to Lym of the entire circulating blood, which can result in modulation of Lym functional state at the systemic level.
We have found that for biological prenyllipids, such as plastoquinol-9, α-tocopherol quinol, and α-tocopherol, the shortest fluorescence lifetimes were found in aprotic solvents (hexane, ethyl acetate) whereas the longest lifetimes were those of ubiquinonol-10 in these solvents. For all the investigated prenyllipids, fluorescence lifetime in alcohols increased along with an increase in solvent viscosity. In a concentrated hexane solution, the lifetimes of prenylquinols considerably decreased. This contrasts with methanol solutions, which is probably due to the self-association of these compounds in aprotic solvents. We have also found a correlation of the Stokes shift of prenyllipids fluorescence with the orientation polarizability of the solvents. Based on data obtained in organic solvents, measurements of the fluorescence lifetimes of prenyllipids in liposomes allowed an estimation of the relative distance of their fluorescent rings from the liposome membrane surface, and was found to be the shortest for α-tocopherol quinol in egg yolk phosphatidylcholine liposomes, and increased in the following order: α-tocopherol in dipalmitoyl phosphatidylcholine liposomes < α-tocopherol < plastoquinol-9 < ubiquinol-10 in egg-yolk phosphatidylcholine liposomes.
The thermodynamics of binding of Me-α-GalNAc, Gal-β-1-3GalNAc-α-O-Me (T-antigen-α), Gal-β-1-3GalNAc and Gal-α-1-6Glc (mellibiose) to Artocarpus hirsuta lectin was studied using fluorescence spectroscopy. The binding affinities of the saccharides are in the order Gal-β-1-3GalNAc-α-O-Me > Me-α-GalNAc > Me-α-Gal > Gal-β-1-3GalNAc > Gal-α-1-6Glc. The binding affinities were comparable to those for jacalin. However, binding of the saccharides to the A. hirsuta lectin was not affected as strongly by temperature as observed in jacalin and the trend was found to be reversed. Values for ΔH and ΔS were found to be positive in A. hirsuta lectin-disaccharide binding despite similar binding affinities. Thus, with 99% structural and 96% sequence homology, with similar sugar specificity and affinity, the energetics of the disaccharide binding of the two lectins seem to be different. Me-α-GalNAc binding to A. hirsuta lectin is enthalpically driven, because the association constant decreases with increasing temperature. However, the binding of the T-antigen disaccharides and mellibiose disaccharides to the lectin is entropically driven. The difference in the molecular associations in the packing and variation of the C-terminal length of the β chain of the A. hirsuta lectin could be reflected in the different disaccharide binding energetics.
Photodynamic therapy (PDT) is being evaluated in clinical trials for treatment of various oncologic and ophthalmic diseases. The main cause for cell inactivation and retardation of tumor growth after photoactivation of sensitizers is very short-lived singlet oxygen molecules that are produced and have limited diffusion distances. In this paper we show that the extent of biological damage can be modulated by using protoporphyrin, which was modified to increase its lipophilicity, and which also places the tetrapyrrole core deeper within the membrane by the carboxylate groups being anchored at the lipid:water interface. The uptake of the parent molecule (PPIX) and its diheptanoic acid analogue (PPIXC6) by WiDR and CT26 cells was investigated by fluorescence microscopy and by fluorescence intensity from the cells. The uptake of PPIXC6 increased almost linearly with incubation length for over 24 h, whereas for PPIX only 1 h was needed to reach maximal intracellular concentration. Fluorescence microscopy of both cell lines indicated that both drugs were distributed diffusely in the plasma membrane and cytoplasm, but remained outside the nucleus. The efficiency of in vitro inactivation of WiDr and CT26 cells increased with the length of the alkylcarboxylic chain. Tumors in mice that were treated with PPIX-PDT grew more slowly than control tumors. However, tumors that were given PPIXC6 followed by light exposure showed a significant delay in their growth.
The photobehavior of five photochromic dipyrrolyl-perfluoro-cyclopentenes was studied by steady state and time-resolved absorption spectroscopy. The quantum yields of the UV-photoinduced ring-closing reaction (coloration) and the visible-stimulated cycloreversion reaction (bleaching) were measured. Kinetic and thermodynamic parameters of thermal bleaching were also determined. Nanosecond time-resolved experiments showed formation of a transient, which was not a precursor of the reaction photoproduct. This transient was tentatively assigned to a radical cation formed by direct photoionization through a short-lived triplet state. The nature of the transient species was supported by photoinduced electron transfer to electron acceptors.
Protoporphyrin IX (PpIX) is produced in cells via the heme synthesis pathway, from the substrate aminolevulinic acid (ALA), and can be used for tumor detection, monitoring or photodynamic therapy. PpIX production varies considerably between tumor cell types, and determining the cell types and methods to optimize production is a central issue in properly utilizing this drug. A panel of eight cancer cell types was examined for PpIX production capacity, including breast, prostate, and brain cancer tumors, and the production varied up to 10-fold among cell types. A positive correlation was seen between mitochondrial content and naturally occurring PpIX prior to ALA administration, but mitochondrial content did not correlate to the yield of PpIX resulting from the addition of ALA. Interestingly, total cell size was positively correlated to the yield of PpIX from ALA administration. Addition of an iron chelator, 1,2-dimethyl-3-hydroxy-4-pyridone (L1) in combination with ALA allows the final step in the heme synthesis pathway, conversion of PpIX to heme, to be delayed, thereby further increasing the yield of PpIX. Those cell types that had the lowest ALA to PpIX production without L1 showed the largest percentage increase in production with L1. The study indicates that use of L1 in tumors with a lower innate production of PpIX with ALA alone may be the most productive approach to this combined delivery.
The transmembrane glycoprotein CD44 is currently thought to be the main cell surface receptor for the glycosaminoglycan hyaluronate. We previously showed that (1) CD44 regulate keratinocyte proliferation; (2) topical retinoids dramatically increase the expression of CD44, hyaluronate and hyaluronate synthase (HAS)s in mouse epidermis; (3) topical retinaldehyde restores the epidermal thickness and CD44 expression which are correlated with clinical improvement in lichen sclerosus et atrophicus lesions; and (4) retinaldehyde-induced proliferative response of keratinocytes is a CD44-dependent phenomenon and requires the presence of HB-EGF, erbB1 and matrix metalloproteinases. In this study, we analyzed the effect of UV irradiation on the levels of epidermal hyaluronate and CD44 in mice, as well as its potential prevention by topical retinoids. UVA (10 J/cm2) or UVB (1 J/cm2) irradiation significantly decreased the expression of CD44 and hyaluronate in the epidermis of hairless mice after 2 h. Expression of both epidermal CD44 and hyaluronate was reconstituted within 24 h. Topical application of retinaldehyde for 3 days prior to UVA or UVB irradiation prevented the decrease of CD44 and hyaluronate expression. Topical retinol and retinoic acid also increased the basal levels of epidermal CD44 and hyaluronate, although their preventive effect on UV-induced decrease of these molecules was less pronounced as compared to topical retinaldehyde. These data confirm the relationships between retinoid and CD44 pathways, although the primary target(s) of UV leading to CD44 and hyaluronate degradation remain to be elucidated.
The parameters that limit supply of photosensitizer to the cancer cells in a solid tumor were systematically analyzed with the use of microvascular transport modeling and histology data from frozen sections. In particular, the vascular permeability transport coefficient and the effective interstitial diffusion coefficient were quantified for Verteporfin-for-Injection delivery of benzoporphyrin derivative (BPD). Orthotopic tumors had higher permeability and diffusion coefficients (Pd = 0.036 μm/s and D = 1.6 μm2/s, respectively) as compared to subcutaneously grown tumors (Pd = 0.025 μm/s and D = 0.9 μm2/s, respectively), likely due to the fact that the vessel patterns are more homogeneous orthotopically. In general, large intersubject and intratumor variability exist in the verteporfin concentration, in the range of 25% in plasma concentration and in the range of 20% for tissue concentrations, predominantly due to these microregional variations in transport. However, the average individual uptake of photosensitizer in tumor tissue was only correlated to the total vascular area within the tumor (R2 = 64.1%, P < 0.001). The data are consistent with a view that microregional variation in the vascular permeability and interstitial diffusion rate contribute the spatial heterogeneity observed in verteporfin uptake, but that average supply to the tissue is limited by the total area of perfused blood vessels. This study presents a method to systematically analyze microheterogeneity as well as possible methods to increase delivery and homogeneity of photosensitizer within tumor tissue.
The photoreceptive extreme tip of the wheat coleoptile exhibits intense green-yellow fluorescence under UV light, suggesting the presence of UV-absorbing materials. Fluorescence spectra of the intact coleoptile tip and tip homogenate showed the presence of the known photoreceptor pigments flavin and carotene, and a preponderance of phenolic compounds. Absorption spectra and fluorescence spectra of various phenolic compounds showed close overlap with the absorption and fluorescence spectra of the wheat coleoptile tip homogenate. Fluorescence spectra of several phenolic compounds showed close overlap with the absorption bands of flavin, carotene and pterine, suggesting possible energy transduction from phenols to these photoreceptors. Excitation of gentisic acid and ferulic acid with 340 nm light in the presence of flavin showed enhancement of flavin fluorescence in a concentration- and viscosity-dependent fashion, indicating fluorescence resonance energy transfer between them and riboflavin. Furthermore, several phenolic compounds tested generated superoxide anion on excitation at 340 nm, suggesting that superoxide-dependent signal cascades could operate in a polyphenol-mediated pathway. Phenolic compounds thus may act as accessory photoreceptors bringing about excitation energy transfer to the reactive photoreceptor molecules, or they may take over the function of the normal photoreceptor in genetic mutations lacking the system, or both processes may occur. The responses of plants to UV-B and UV-A light in mutants may be explained in terms of various phenolics acting as energy transducers in photoreceptor functioning.
Jennifer L. Perry, Michael R. Goldsmith, T. Richard Williams, Kyle P. Radack, Trine Christensen, Justin Gorham, Melissa A. Pasquinelli, Eric J. Toone, David N. Beratan, John D. Simon
Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W−) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 × 105M−1. ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W− is accompanied by uptake of 0.30 ± 0.02 protons from the solvent. This measurement suggests that the binding of W− is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W−.
UVC irradiation of genomic DNA induces two main types of potentially mutagenic base modifications: cyclobutane pyrimidine dimers (CPDs) and the less frequent (15–30% of CPD levels) pyrimidine (6-4) pyrimidone photoproducts (6-4PP). Ligation-mediated PCR (LMPCR), a genomic sequencing technique, allows CPD mapping at nucleotide resolution following irradiation with sublethal doses of UVB or UVC for most cell types. In contrast, a dose of 80 J/m2 of UVC that is lethal for the majority of cell types is necessary to map 6-4PP by the LMPCR technique. This compromises the use of LMPCR to study the repair of 6-4PP. To date, no other techniques have been developed to study 6-4PP repair at nucleotide resolution. We have therefore adapted a recently developed technique for the mapping of 6-4PP: terminal transferase-dependent PCR (TDPCR). TDPCR is in many ways similar to LMPCR. This technique is more sensitive and allows the mapping of 6-4PP at UVC doses as low as 10 J/m2 in genomic DNA and in living cells.
Nitric oxide (NO) is recognized as one of the major players in various biochemical processes, including blood pressure, neurotransmission and immune responses. However, experimental studies involving NO are often limited by difficulties associated with the use of NO gas, including its toxicity and precise control over NO concentration. Moreover, the reactions of NO with biological molecules, which frequently occur on time scales of microseconds or faster, are limited by the millisecond time scale of conventional stopped-flow techniques. Here we present a new approach for studying rapid biological reactions involving NO. The method is based on designed ruthenium and manganese nitrosyls, [Ru(PaPy3)(NO)](BF4)2 and [Mn(PaPy3)(NO)](ClO4) (PaPy3H = N,N–bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide), which upon photolysis produce NO on a fast time scale. The kinetics of the binding of the photogenerated NO to reduced cytochrome c oxidase (CcO) and myoglobin (Mb) was investigated using time-resolved optical absorption spectroscopy. The NO was found to bind to reduced CcO with an apparent lifetime of 77 μs using the [Mn(PaPy3)(NO)] complex; the corresponding rate is 10–20 times faster than can be detected by conventional stopped-flow methods. Second-order rate constants of ∼1 × 108M−1 s−1 and ∼3 × 107M−1 s−1 were determined for NO binding to reduced CcO and Mb, respectively. The generation of NO by photolysis of these complexes circumvents the rate limitation of stopped-flow techniques and offers a novel alternative to study other fast biological reactions involving NO.
To establish a semiartificial device for (bio-)hydrogen production utilizing photosynthetic water oxidation, we report on the immobilization of a Photosystem 2 on electrode surfaces. For this purpose, an isolated Photosystem 2 with a genetically introduced His tag from the cyanobacterium Thermosynechococcus elongatus was attached onto gold electrodes modified with thiolates bearing terminal Ni(II)-nitrilotriacetic acid groups. Surface enhanced infrared absorption spectroscopy showed the binding kinetics of Photosystem 2, whereas surface plasmon resonance measurements allowed the amount of protein adsorbed to be quantified. On the basis of these data, the surface coverage was calculated to be 0.29 pmol protein cm−2, which is in agreement with the formation of a monomolecular film on the electrode surface. Upon illumination, the generation of a photocurrent was observed with current densities of up to 14 μA cm−2. This photocurrent is clearly dependent on light quality showing an action spectrum similar to an isolated Photosystem 2. The achieved current densities are equivalent to the highest reported oxygen evolution activities in solution under comparable conditions.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere