UVC irradiation of genomic DNA induces two main types of potentially mutagenic base modifications: cyclobutane pyrimidine dimers (CPDs) and the less frequent (15–30% of CPD levels) pyrimidine (6-4) pyrimidone photoproducts (6-4PP). Ligation-mediated PCR (LMPCR), a genomic sequencing technique, allows CPD mapping at nucleotide resolution following irradiation with sublethal doses of UVB or UVC for most cell types. In contrast, a dose of 80 J/m2 of UVC that is lethal for the majority of cell types is necessary to map 6-4PP by the LMPCR technique. This compromises the use of LMPCR to study the repair of 6-4PP. To date, no other techniques have been developed to study 6-4PP repair at nucleotide resolution. We have therefore adapted a recently developed technique for the mapping of 6-4PP: terminal transferase-dependent PCR (TDPCR). TDPCR is in many ways similar to LMPCR. This technique is more sensitive and allows the mapping of 6-4PP at UVC doses as low as 10 J/m2 in genomic DNA and in living cells.