Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Bumble bees provide valuable pollination services to many wild and agricultural plants. Populations of some bumble bee species are in decline, prompting the need to better understand bumble bee biology and to develop methodologies for assessing the effects of environmental stressors on these bees. Use of bumble bee microcolonies as an experimental tool is steadily increasing. This review closely examines the microcolony model using peer-reviewed published literature identified by searching three databases through November 2018. Microcolonies have been successfully used for investigating a range of endpoints including behavior, the gut microbiome, nutrition, development, pathogens, chemical biology, and pesticides/xenobiotics. Methods for the initiation and monitoring of microcolonies, as well as the recorded variables were catalogued and described. From this information, we identified a series of recommendations for standardizing core elements of microcolony studies. Standardization is critical to establishing the foundation needed to support use of this model for biological response investigations and particularly for supporting use in pesticide risk assessment.
Knowledge of dispersal and spatial dynamics of pest populations is fundamental for implementation of integrated pest management and integrated resistance management.This study evaluated 1) the effectiveness of egg white albumin protein to mark larvae and adults of two polyphagous and highly mobile pests, Spodoptera frugiperda (J.E. Smith) (fall armyworm) and Helicoverpa zea (Boddie) (corn earworm) (Lepidoptera: Noctuidae), and 2) the sensitivity of polyvinylidene difluoride membrane (dot blot) in detecting albumin on marked insects. Laboratory and field experiments tested egg albumin as a protein marker, which was detected using two enzyme-linked immunosorbent assay (ELISA), microplate, and dot blot. In the laboratory, 100% of the moths sprayed with 20% egg white solution acquired the albumin marker, which was detected through the last time point tested (5 d) after application. Egg albumin was not effective at long-term marking of larvae, detected only prior the molting to the next instar. Albumin application in field cages resulted in a high percentage of moths detected as marked at 24 h and 5 d for both species. Egg albumin applied in the open field resulted in 15% of the recaptured corn earworm moths marked with most of them collected 150 m from the application area, although some were captured as far as 1,600 m within approximately 6 d after adult emergence.The results indicated egg albumin is a suitable marker to study the dispersion of fall armyworm and corn earworm in the agroecosystem and dot blot was as effective to detect egg albumin as was indirect ELISA.
The spotted lanternfly, Lycorma delicatula White (1845) (Hemiptera: Fulgoridae), is an invasive insect that was first reported in North America in Berks County, Pennsylvania, in 2014. It is a polyphagous phloem feeder that attacks over 70 plant species, threatening the agricultural, lumber, and ornamental industries of North America. Infestations of the pest have been reported in several U.S. counties, and a lack of endemic predators and parasitoids feeding on L. delicatula suggests a release from natural enemies in the invaded range. An egg-parasitoid Anastatus orientalis (Hymenoptera: Eupelmidae) was reported attacking L. delicatula at high rates in its native range and may play a key role in reducing its populations there. To better understand the foraging behavior of A. orientalis, a series of behavioral experiments were conducted to determine successful parasitism and behavioral responses to traces left by adult L. delicatula and to the oothecae which cover their eggs. Our results suggest that wasps detected chemical traces left by L. delicatula adults while walking on surfaces and exhibited a strong arrestment response. Moreover, wasps preferred to oviposit in egg masses with intact oothecae. The implications of these findings are herein discussed with regard to the exploitation of host kairomones by foraging wasps, as well as to its ability to overcome host structural defenses.
The recently described oak gall wasp Zapatella davisae Buffington & Melika (Hymenoptera: Cynipidae) has caused extensive damage and mortality to black oak trees, Quercus velutina L. (Fagales: Fagaceae), in coastal parts of New England, United States. Like many newly described and/or newly introduced species, it is unclear how long populations of Z. davisae have existed in this region. However, as this species forms galls on the woody-tissue of its host, it may be possible to obtain historical information about changes in its population size by examining the presence of galls in relation to annual growth nodes. Here, we explore the utility of this approach to determine population size changes in Z. davisae densities on Nantucket, Martha's Vineyard, and Cape Cod, Massachusetts, through dissection of black oak branches. In addition, we calculated parasitism rates during the years of study and obtained morphological and molecular identifications for the parasitoids associated with Z. davisae. Our results show significant changes in population sizes, with higher levels of parasitism at sites on Martha's Vineyard and Cape Cod compared to sites on Nantucket. In addition, morphological examinations, in combination with DNA sequencing, identified the associated parasitoids as five species in the genus Sycophila Walker (Hymenoptera: Eurytomidae). We comment that considerable morphological variation within several of these recovered species was observed, present the first record of males for a species from which only females have been described, and suggest that future work is required to clarify the species boundaries for this important parasitoid group.
Fopius arisanus (Sonan) (Hymenoptera: Braconidae) is a koinobiont solitary parasitoid of various fruit flies, particularly those in the genus Bactrocera. Researchers introduced F. arisanus into Africa for the biological control of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a pest of a wide range of fruit trees and vegetables. However, the suitability of host fruit species as egg-laying substrates for parasitoid development remains poorly investigated in tropical Africa. The present study examines the preference and performance of F. arisanus on B. dorsalis reared on eleven fruit species through laboratory choice-test trials. We assessed the oviposition activity, parasitism rate, developmental time, and offspring fitness of F. arisanus on nine cultivated and two wild host fruits species. Oviposition attempts were higher on Psidium guajava (L.) (Myrtales: Myrtaceae) and Mangifera indica (L.) (Sapindales: Anacardiaceae) than on the other host fruits tested. The wasp parasitized host eggs in P. guajava in no-choice experiments. Psidium guajava, Irvingia wombulu (Vermoesen) (Malpighiales: Irvingiaceae), and Irvingia gabonensis (Aubry_Lecomte) Baill (Malpighiales: Irvingiaceae) were suitable for parasitism in choice tests. Of all host fruits tested, the body and hind tibia lengths of both parasitoid sexes emerging from M. indica were longer than on the others.The female ovipositor was long on Annona squamosa (L.) (Magnoliales: annonaceae) and short on Eribotrya japonica ([Thunb.] Lindl.; Rosales: Rosaceae). We obtained the longest preimaginal developmental time for both sexes on E. japonica and the shortest for females and males on Carica papaya (L.) (Brassicales: Caricaceae). These results demonstrate the ability of some tested fruit species to serve for the permanent establishment of F. arisanus in the field.
Three Diorhabda spp. tamarisk beetles (Coleoptera: Chrysomelidae) were established in Texas from 2003 to 2010 for biological control of tamarisk (Tamarix spp.): Mediterranean tamarisk beetles, D. elongata (Brullé) from Greece, also established in New Mexico; subtropical tamarisk beetles, D. sublineata (Lucas) from Tunisia; and larger tamarisk beetles, D. carinata (Faldermann) from Uzbekistan. More than one million tamarisk beetles were released at 99 sites. Species establishment success ranged from 52 to 83%. All three species now co-occur in New Mexico with the northern tamarisk beetles, D. carinulata (Desbrochers). A phenotypic hybrid scoring system was developed to assess Diorhabda phenotype distributions and character mixing in hybrid zones. Widespread field populations of bispecific hybrid phenotypes for D. carinata/D. elongata and D. sublineata/D. elongata rapidly appeared following contact of parental species. Initial distributions and dispersal of Diorhabda spp. and hybrids are mapped for Texas, New Mexico, Oklahoma, and Kansas, where they produced large-scale tamarisk defoliation and localized dieback for 3–4 yr. However, populations subsequently severely declined, now producing only isolated defoliation and allowing tamarisk to recover. Diorhabda sublineata and D. elongata temporarily produced nontarget spillover defoliation of ornamental athel, Tamarix aphylla (L.) Karst, along the Rio Grande. Hybrid phenotypes were generally bimodally distributed, indicating some degree of reproductive isolation. Additional diagnostic phenotypic characters in males allowed more precise hybrid scoring. Character mixing in some hybrid populations approached or reached that of a hybrid swarm.The significance of hybridization for tamarisk biocontrol is discussed.
Perennial pepperweed, Lepidium latifolium L. (Brassicales: Brassicaceae), is an invasive weed that can form dense stands and displace native species. Bagrada hilaris Burmeister (Hemiptera: Pentatomidae) is a serious economic pest of Brassicaceae vegetable crops. Bagrada bug also feeds on L. latifolium and may interact with the plant fungal pathogen Albugo lepidii S.I. (Peronosporales: Albuginaceae) to affect biological control of L. latifolium. A series of laboratory experiments, including Y-tube olfactometer and host-choice tests, were conducted to investigate B. hilaris host-preference behavior. Adults were attracted to the odor of healthy L. latifolium compared with A. lepidii-infected leaves. Bagrada hilaris consistently preferred to feed on healthy L. latifolium when offered both healthy and A. lepidii-infected plants. Experiments were conducted to determine the effects of A. lepidii-infected L. latifolium on B. hilaris survival and development. Survival of all B. hilaris immature stages and adults was markedly reduced for those reared on A. lepidii-infected leaves. Total development time and stage-specific development were faster on healthy L. latifolium leaves compared with A. lepidii-infected leaves. In addition, the ability of B. hilaris adults to passively transmit the rust was studied. Our data demonstrated that B. hilaris could acquire the rust spores while feeding, but it did not passively transmit the pathogen to healthy plants.
Soil chemistry and microbial diversity can impact the vigor and nutritive qualities of plants, as well as plants' ability to deploy anti-herbivore defenses. Soil qualities often vary dramatically on organic versus conventional farms, reflecting the many differences in soil management practices between these farming systems. We examined soil-mediated effects on herbivore performance by growing potato plants (Solanum tuberosum L.) in soils collected from organic or conventional commercial farm fields, and then exposing these plants to herbivory by green peach aphids (Myzus persicae Sulzer, Hemiptera: Aphididae) and/or Colorado potato beetles (Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae). Responses of the two potato pests varied dramatically. Survivorship of Colorado potato beetles was almost 3× higher on plants grown in organic than in conventional soils, but was unaffected by the presence of aphids. In contrast, aphid colony growth was twice as rapid when aphids were reared alone rather than with Colorado potato beetles, but was unaffected by soil type. We saw no obvious differences in soil nutrients when comparing organic and conventional soils. However, we saw a higher diversity of bacteria in organic soils, and potato plants grown in this soil had a lower carbon concentration in foliar tissue. In summary, the herbivore species differed in their susceptibility to soil- versus competitor-mediated effects, and these differences may be driven by microbe-mediated changes in host plant quality. Our results suggest that soil-mediated effects on pest growth can depend on herbivore species and community composition, and that soil management strategies that promote plant health may also increase host quality for pests.
Marshall S. McMunn, Louie H. Yang, Amy Ansalmo, Keatyn Bucknam, Miles Claret, Cameron Clay, Kyle Cox, Darian R. Dungey, Asia Jones, Ashley Y. Kim, Robert Kubacki, Rachel Le, Deniss Martinez, Brian Reynolds, John Schroder, Emily Wood
Human activity is rapidly increasing the radiance and geographic extent of artificial light at night (ALAN) leading to alterations in the development, behavior, and physiological state of many organisms. A limited number of community-scale studies investigating the effects of ALAN have allowed for spatial aggregation through positive phototaxis, the commonly observed phenomenon of arthropod movement toward light. We performed an open field study (without restricted arthropod access) to determine the effects of ALAN on local arthropod community composition, plant traits, and local herbivory and predation rates. We found strong positive phototaxis in 10 orders of arthropods, with increased (159% higher) overall arthropod abundance under ALAN compared to unlit controls. The arthropod community under ALAN was more diverse and contained a higher proportion of predaceous arthropods (15% vs 8%). Predation of immobilized flies occurred 3.6 times faster under ALAN; this effect was not observed during the day. Contrary to expectations, we also observed a 6% increase in herbivory under ALAN. Our results highlight the importance of open experimental field studies in determining community-level effects of ALAN.
Riparian zones are interesting habitats as they are important transitional zones between terrestrial and aquatic ecosystems, but highly threatened by human disturbances. They support a high arthropod diversity as they experience periodic flooding disturbance and sharp environmental gradients.Their associated arthropod fauna are of high conservation value. Nevertheless, their arthropod diversity remains largely unknown, and its distribution pattern along elevational gradients is poorly understood. Few data are available on the effects of flood regimes and other factors in determining riparian arthropod communities. In this study, we investigated the diversity and distribution of riparian arthropods along an elevational gradient and determined the major factors structuring the arthropod communities in the drawdown zone of the Three Gorges Reservoir, China. Significant compositional and structural changes of riparian arthropod communities were observed along the test elevational gradient.The abundance and richness of riparian arthropods increased with elevation. The relative abundance of predators decreased with elevation, whereas the saprovores and omnivores showed an upward trend along the elevational gradient. Redundancy analysis showed that there were significant interactions between the flood regimes, plant communities, and soil conditions. Among these environmental factors studied, flood duration was the main factor in structuring the riparian arthropod communities. Conservation and restoration strategies should consider flood duration in the operation of large reservoirs because riparian arthropods are particularly sensitive to flood regimes.
The timing and spatial distribution of aquatic insect emergence is linked to the abiotic and biotic environment in streams. Studies of aquatic insect emergence are needed to generate baseline data to identify potential shifts in phenology and habitat-related emergence with global change. The purpose of this study was to 1) compare the timing of Plecoptera (stonefly) species emergence between two streams with different thermal regimes and 2) characterize the distribution of emerging Plecoptera and Trichoptera (caddisflies) from wood, rock, gravel, and sand substrates in five forested, headwater streams. Emergence timing and duration varied among Plecoptera species, with Ostrocerca albidipennis (Walker) (Plecoptera: Nemouridae) emerging only in May and four species in the genus Leuctra (Plecoptera: Leuctridae) collectively emerging throughout the summer (May to September). We observed earlier emergence of Amphinemura nigritta (Provancher) (Plecoptera: Nemouridae) and a longer total emergence period for Leuctra ferruginea (Walker) (Plecoptera: Leuctridae) in the stream with ∼1.5°C warmer temperatures, which suggested that some insects may experience phenological shifts in streams with subtle differences in temperature.The abundance of plecopteran and trichopteran taxa emerging from wood was generally greater than for gravel or sand, and sand was the least preferred emergence substrate. The results suggest that human actions that decrease large wood and increase fine sedimentation may decrease habitat quality for many insect larvae and limit preferred emergence substrates.
Diverse and robust predator communities are important for effective prey suppression in natural and managed communities. Ants are ubiquitous components of terrestrial systems but their contributions to natural prey suppression is relatively understudied in temperate regions. Growing evidence suggests that ants can play a significant role in the removal of insect prey within grasslands, but their impact is difficult to separate from that of nonant predators. To test how ants may contribute to prey suppression in grasslands, we used poison baits (with physical exclosures) to selectively reduce the ant population in common garden settings, then tracked ant and nonant ground predator abundance and diversity, and removal of sentinel egg prey for 7 wk. We found that poison baits reduced ant abundance without a significant negative impact on abundance of nonant ground predators, and that a reduction in ant abundance decreased the proportion of sentinel prey eggs removed. Even a modest decrease (∼20%) in abundance of several ant species, including the numerically dominant Lasius neoniger Emery (Hymenoptera: Formicidae), significantly reduced sentinel prey removal rates. Our results suggest that ants disproportionately contribute to ground-based predation of arthropod prey in grasslands. Changes in the amount of grasslands on the landscape and its management may have important implications for ant prevalence and natural prey suppression services in agricultural landscapes.
Common St. John's wort, Hypericum perforatum L. (Malpighiales: Hypericaceae), is a weed in Maine wild blueberry fields. A survey of its presence and relative density in 55 wild blueberry fields was conducted from 2013 to 2016. The objectives of this study were to determine how widespread it is as a weed in wild blueberry and whether it might indirectly contribute to beneficial ecosystem services for wild blueberry. It was found that St. John's wort occurs in about half (45.5%) of all wild blueberry fields surveyed. The crop cycle (prune vs cropping year) affected its relative abundance, significantly less St. John's wort was found in prune fields. St. John's wort relative abundance in wild blueberry fields was not affected by farming system (conventional vs organic) or landscape surrounding blueberry fields. Geographical distribution modeling was performed using the software Maxent. In Maine, the most likely areas predicted to be infested with St. John's wort were the two major blueberry production regions: Mid-coast and Downeast, Maine. Insects associated with St. John's wort were diverse. This weed appears to be under considerable herbivore pressure, especially hemipterans and Chrysolina spp. (Coleoptera: Chrysomelidae) beetles that have been released for biological control. Insect predators and parasitoids were abundant and may not only reduce herbivory on St. John's wort but may also provide a valuable ecosystem service in terms of predator spillover, resulting in reduction of wild blueberry insect pests. Bumble bees (Bombus spp., Hymenoptera, Apidae) are the most efficient pollinator of blueberry and were the predominant bee taxa found foraging on the flowers.
Inside a long-term agronomic trial aimed at evaluating the effects of organic and low-input conventional management systems on soil fertility and arable crop production, we selected six fields bordered by hedgerows, three under each management system. Here, we analyzed the carabid assemblages and the slug abundance. Samplings took place in five different periods, across 1 yr of observations.The carabid abundances were similar in organic and conventional fields. The Shannon–Wiener diversity index (H′) showed a higher value in the conventional fields, although in the organic fields, a higher number of species were observed. The multivariate analysis described similar carabid communities, but excluding the period factor, it showed a significant influence of the management system. There was no difference between the captures of traps placed along the hedgerow and in the middle, whereas in the conventional fields, the hedgerow traps captured a higher number of specimens, showing a role of the hedgerow as carabid reservoir.The slugs were present mainly while green manure was grown on the organic fields where also Poecilus cupreus Linné, 1758 (Coleoptera: Carabidae) was captured abundantly.
Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is an intracellular symbiont residing in arthropods and filarial nematodes. Sixteen supergroups have been described from different host taxa. Four supergroups A, B, M, and N were found in aphids according to prior studies.The cotton aphid, Aphis gossypii, and the green peach aphid, Myzus persicae, are typical polyphagous species with global distributions. We conducted an extensive and systematic survey of Wolbachia infections in these aphids from China. High incidences of Wolbachia infection were detected. The total infection incidence was 60% in A. gossypii and 88% in M. persicae. Both aphid species were infected with supergroups A, B and M. Different incidences of infection were observed among the seven geographical regions in China, which suggested a positive relationship between Wolbachia infections and the geographical distribution of aphid species. Furthermore, multiple infection patterns (M, B, A&M, B&M, and A&B&M) were observed. Infection patterns M and B&M were detected in almost all populations. Patterns A&B&M and B showed geographical restriction in North China.Three factors can possibly influence the Wolbachia infection incidences and patterns: the geographical distribution, aphid species, and different supergroup types.
Tuta absoluta (Meyrick) is a devastating pest of tomato that has invaded many regions of the world. To date, it has not been detected in North America, but the pest reached Costa Rica in 2014 and seriously threatens the southern, southwestern, and western United States including California. Although the primary host of T. absoluta is tomato, several other species of Solanaceae may serve as alternative hosts. In our study, we aimed to assess the potential risk that other solanaceous crops and wild species that are often present in and around California tomato fields could serve as hosts. To accomplish this, we conducted greenhouse and laboratory studies to determine whether two common cultivars of fresh market tomato, two common cultivars of tomatillo, and the wild plants, Solanum nigrum L., Solanum sarrachoides (Sendtner), and Datura stramonium L., are suitable hosts for reproduction and development of the pest. According to our results, D. stramonium and tomatillo were unable to sustain T. absoluta larval development in either greenhouse studies or laboratory studies, and therefore, they are not likely to contribute to T. absoluta establishment during an invasion. On the contrary, the two other solanaceous weeds, S. nigrum and S. sarrachoides, share a similar potential as tomato to be reproductive and developmental hosts of T. absoluta, and might play an important role in the establishment of the pest in California.
Environmental factors have been associated with the production of aflatoxin in maize, Zea mays L., and it is inconclusive whether transgenic, Bacillus thuringiensis (Bt), maize has an impact on aflatoxin accumulation. Maize hybrids differing in transgenes were planted in two locations from 2014 to 2017. Yield, aflatoxin, and ear injury caused by corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), were measured across three groups of hybrids differing in transgenes including near-isogenic hybrids, and water-stressed conditions. The hybrid groups consisted of non-Bt hybrids with no Bt transgenes, a second group with one or more Cry-Bt transgenes, and the third group with vegetative insecticidal Bt protein and Cry-Bt transgenes (Cry/Vip-Bt). Across the six data sets derived from 11 experiments, the Cry-Bt and Cry/Vip-Bt hybrids had less ear injury and aflatoxin on average than non-Bt hybrids. The effects of ear injury on yield and aflatoxin were more prominent and consistent in Corpus Christi, TX, where hybrids experienced more water-limited conditions than in College Station, TX. The trend of increased aflatoxin among hybrids with increased ear injury was further resolved when looking at Cry-Bt and Cry/Vip-Bt isogenic hybrids in Corpus Christi. The results supported that the maize hybrids with the inclusion of Cry-Bt and Cry/Vip-Bt transgenes warrant further investigation in an integrated approach to insect and aflatoxin management in sub-tropical rain-fed maize production regions. Research outcomes may be improved by focusing on areas prone to water-stress and by using hybrids with similar genetic backgrounds.
Determining the cold tolerance of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is critical for assessing its long-term persistence and eruptive potential in its new habitat, as well as the risk of continued range expansion across Canada's boreal forest. We used supercooling points (SCPs) and mortality assessments with exposure to different temperatures to determine the cold tolerance of pupae. Mountain pine beetle pupae cold tolerance did not increase with chilling and there was little change in the lethal temperature regardless of treatment or sample time. SCPs were reflective of expected mortality due to freezing: the lethal temperature for 50% mortality was –19.3°C and the mean SCP was –18.7°C. However, significant mortality occurred over time at much warmer temperatures (0 and –9°C), indicating that this life stage suffers significant prefreeze mortality. On the basis of our results, it is unlikely that pupae would be able to successfully overwinter in most regions in Canada.This study is part of a larger project aimed at producing a comprehensive assessment of the cold tolerance of all life stages of the mountain pine beetle to feed population models, climatic suitability indices, and spread assessments.
Our purpose is to determine whether extremely low concentrations of imidacloprid (2–8 ppb) typically found in field soil 1–3 yr after a crop is grown using seed with a standard imidacloprid seed-coating could impact the fitness of whiteflies, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Results of our experiments indicate that imidacloprid-resistant whitefly larvae feeding on cotton seedlings growing in soil with 8.0 ppb imidacloprid are conditioned so that when the same individuals feed on plants treated with imidacloprid as adults their fitness, measured as fecundity, increases 30–70% compared with individuals that were not primed as larvae. This conditioning hormesis stimulates resistant whiteflies more than susceptible whiteflies, which may contribute to the selection of resistant populations.
Global change and biotic stress, such as tropospheric contamination and virus infection, can individually modify the quality of host plants, thereby altering the palatability of the plant for herbivorous insects.The bottom-up effects of elevated O3 and tomato yellow leaf curl virus (TYLCV) infection on tomato plants and the associated performance of Bemisia tabaci Mediterranean (MED) were determined in open-top chambers. Elevated O3 decreased eight amino acid levels and increased the salicylic acid (SA) and jasmonic acid (JA) content and the gene expression of pathogenesis-related protein (PR1) and proteinase inhibitor (PI1) in both wild-type (CM) and JA defense-deficient tomato genotype (spr2).TYLCV infection and the combination of elevated O3 and TYLCV infection increased eight amino acids levels, SA content and PR1 expression, and decreased JA content and PI1 expression in both tomato genotypes. In uninfected tomato, elevated O3 increased developmental time and decreased fecundity by 6.1 and 18.8% in the CM, respectively, and by 6.8 and 18.9% in the spr2, respectively. In TYLCV-infected tomato, elevated O3 decreased developmental time and increased fecundity by 4.6 and 14.2%, respectively, in the CM and by 4.3 and 16.8%, respectively, in the spr2. These results showed that the interactive effects of elevated O3 and TYLCV infection partially increased the amino acid content and weakened the JA-dependent defense, resulting in increased population fitness of MED on tomato plants.This study suggests that whiteflies would be more successful at TYLCVinfected plants than at uninfected plants in elevated O3 levels.
Fungus-farming ants cultivate a fungal symbiont inside the nest that serves as a food source. Leaf-cutter ants are distinctive among fungus-farmers because they forage for fresh plant material to nurture the fungus. Here we investigate the foraging ecology of Acromyrmex subterraneus (Forel) in the Brazilian cerrado savanna. We examined the species activity pattern, forage material collected, and the relationship between load mass and forager size. Ant activity peaked at night and was negatively related to temperature but positively related to relative air humidity. The majority of the items collected by ants was plant material: dry and fresh leaves, flowers, and fruits. Trunk trails ranged from 0.7 to 13 m and colony home ranged from 2 to 28 m2, indicating that ants collect material nearby the nest. Total load mass was positively associated with forager size, especially in the case of leaves. The negative relationship between ant size and burden suggests that ants might optimize their delivery rate by collecting lighter substrates more frequently. Given their pest status, most studies on leaf-cutters are undertaken in human-altered environments. Information on A. subterraneus in native cerrado is imperative given the threatened status of this vegetation. Leaf-cutters thrive in disturbed cerrado and severe seedling herbivory may hinder vegetation recovery. Our fieldwork may provide insights for management techniques of Acromyrmex colonies in agroecosystems, as well as for restoration programs of degraded cerrado areas.
The impact of simulated rainfall on diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), larvae depends on their stage-specific feeding behavior, physical characteristics, and host plants. Neonates released at typical oviposition sites on Chinese cabbage (Brassica rapa var. pekinensis L. [Brassicales: Brassicaceae]) plants moved less (3–72 cm) and spend shorter periods (>1 h) than it has been previously reported for common cabbage (Brassica oleracea var. capitata L. [Brassicales: Brassicaceae]) (>80 cm and >3 h, respectively) before establishing feeding sites. On both host plants, larvae spent longer on the abaxial surfaces of leaves and were more likely to establish mines there than on the adaxial surfaces. On Chinese cabbage plants, ≈40% of neonates were removed when exposed to rainfall (5.6 cm/h for 3 min) within 5 min of release. Larval losses decreased rapidly as the interval between release and rainfall exposure increased and exposure to rainfall 2 h after release did not affect survival. On common cabbage plants, ≈65% of neonates were removed when exposed to rainfall within 30 min of release, losses decreased as the interval between release and rainfall exposure increased, but they decreased more slowly than on Chinese cabbage, and rainfall caused significant larval mortality up to 4 h after release. Rainfall also affected later instar larvae (susceptibility: 2nd> 3rd = 4th) but neither the susceptibility of these larvae nor that of pupae was affected by the host plant. Wet leaf surfaces disrupted movement and feeding site establishment by neonates. When dislodged from plants on to the surface of wet soil, most later stage larvae could relocate host plants, but most neonates could not.
Oviposition substrate selection, egg mass characteristics, host preference, and life history of Lycorma delicatula (White) (Hemiptera: Fulgoridae) were studied in Pennsylvania between 2016 and 2017. Twenty-four substrate types (trees, shrubs, and nonliving materials) were selected by females for oviposition. Tree-of-heaven, black cherry, black birch, and sweet cherry were favored at 62.5% of the types and accounted for 68.5% of the egg masses based on survey results 200 cm above ground. Egg mass density ranged between 0.2 and 75.2 egg masses/m2 with no significant difference among substrate types. Egg mass size ranged between 0 and 192 eggs/egg mass, with 91.8% containing <50 eggs. Significantly larger egg masses were found on sweet and black cherry compared with tree-of-heaven, with significantly higher hatch success on black locust. Eggs hatched between May 2 and June 5 and peaked on 18 May 2017. Tree-of-heaven and summer grape were preferred by nymphs and adults, while multiflora rose and black walnut were favored by the first, second, and the fourth instar nymphs, respectively. The first, second, third, fourth instars and adults lasted for 62 (2 May–3 July), 42 (8 June–20 July), 35 (26 June—31 July), 39 (10 July—18 Aug.), and 114 (24 July—15 Nov.) days, with peaks on 25 May, 22 June, 6 July, 31 July, and 22 Aug., respectively. Adult feed for 2 months before laying eggs in early October. Cumulative degree-days were 0–325, 153–652, 340–881, 567–1,020, 738–1,227, and 942–1,795 for the egg, first, second, third, fourth instar, and adult stage, respectively. Oviposition strategies and development patterns were discussed.
Arthropods provide a variety of critical ecosystem services in agricultural landscapes; however, agricultural intensification can reduce insect abundance and diversity. Designing and managing habitats to enhance beneficial insects requires the identification of effective insectary plants that attract natural enemies and provide floral resources. We tested the attractiveness of 54 plant species with tolerance to dry soils, contrasting perennial forbs and shrubs native to the Great Lakes region to selected non-native species in three common garden experiments in Michigan during 2015–2016. Overall, we found 32 species that attracted significantly more natural enemies than associated controls. Among these, Achillea millefolium and Solidago juncea were consistently among the most attractive plants at all three sites, followed by Solidago speciosa, Coreopsis tripteris, Solidago nemoralis, Pycnanthemum pilosum, and Symphyotrichum oolantangiense. Species which attracted significantly more natural enemies at two sites included: Asclepias syriaca, Asclepias tuberosa, Monarda fistulosa, Oligoneuron rigidum, Pycnanthemum virginianum, Dasiphora fruticosa, Ratibida pinnata, Asclepias verticillata, Monarda punctata, Echinacea purpurea, Helianthus occidentalis, Silphium integrifolium, Silphium terebinthinaceum, Helianthus strumosus, and Symphyotrichum sericeum. Two non-native species, Lotus corniculatus, and Centaurea stoebe, were also attractive at multiple sites but less so than co-blooming native species. Parasitic Hymenoptera were the most abundant natural enemies, followed by predatory Coleoptera and Hemiptera, while Hemiptera (Aphidae, Miridae, and Tingidae) were the most abundant herbivores. Collectively, these plant species can provide floral resources over the entire growing season and should be considered as potential insectary plants in future habitat management efforts.
Ips subelongatus is a species of bark beetle experiencing population outbreaks in Korea. In this study, a predictive model and empirical prediction were used to forecast the spring flight of these beetles in Japanese larch forests.The number of beetles caught in pheromone traps was investigated in larch forests thinned in 2009, 2010, 2012, or 2013. Data from the sites thinned in 2009, 2010, or 2012 were used in the predictive model based on a degree-day model that was validated using data from the site thinned in 2013.The lower threshold temperature for flight (LTF) and a thermal sum for the spring flight of I. subelongatus were estimated.The empirical prediction that beetles initiate their flight when daily maximum temperatures reach 16 or 20°C was tested using daily maximum temperature and the beetles caught.The LTF was estimated as 5.97°C, with 42.95 degree-days required for initiation of spring flight.The median flight dates were estimated with a discrepancy from 1 to 3 d by the predictive model. Using the empirical prediction, differences between the day when daily maximum temperature reached 16 or 20°C and flight peak days ranged from 4 to 45 d. These results demonstrate that the predictive model is more suitable than the empirical prediction for predicting the spring flight of I. subelongatus. Overwintering I. subelongatus adults seem to need to gain a determined thermal sum before initiating spring flight rather than merely waiting for the daily maximum temperature to exceed a critical temperature.
Managing agricultural pests that use multiple host plant species is a challenge when individuals move between host plants in natural vegetation and agricultural environments. The green mirid (Creontiades dilutus) Stål (Hemiptera: Miridae) is endemic to Australia and routinely invades cotton from local uncultivated vegetation, but may also originate from remote locations in the arid continental interior. This bug is polyphagous and highly mobile, which contributes to its pest status in cotton L. (Malvaceae) systems as well as its persistence in arid environments with sparsely distributed ephemeral host plants. The aim of this study was to evaluate how C. dilutus individuals use a variety of host species across remote arid regions and highly managed agricultural landscapes. Structured field surveys spanning vast areas across the Simpson Desert in the arid heart of Australia, as well as subcoastal cotton production systems, were designed to evaluate host use across environments that share few plant species. High numbers of C. dilutus were collected from Cullen australasicum (Schltdl.) J.W.Grimes (Fabaceae) (perennial hosts) and Goodenia cycloptera R.Br. (Goodeniaceae) (ephemeral hosts) in the desert following rain. In agricultural environments, C. dilutus bugs were mostly found on irrigated Medicago sativa L. (Fabaceae) (lucerne), and to a lesser extent Melilotus indicus (L.) All. (Fabaceae) near rivers. Significantly, bugs were on these plants prior to the planting of cotton across all environments surveyed. These data allow inferences relating host use, host abundance, and insect migration to one another to understand the connection that C. dilutus bugs have between arid and agricultural environments.
Scolia hirta (Schrank) and Scolia sexmaculata (O.F. Müller) are Palearctic, parasitic Aculeata inhabiting forests and forest steppes. At present, the abundance and dispersal of these species are increasing considerably in Poland and other European countries, allowing observation of their possible habitat preferences. The analysis of the preferences of S. hirta and S. sexmaculata was conducted in Northern and North-Eastern Poland based on the evaluation of their occurrence in six types of habitats: (A) psammophilous and xerothermic grasslands, (B) old fields, (C) city outskirts, (D) sites in housing/industrial zones, (E) sand quarries, (F) post-industrial wastelands, and in a total of three types of landscape: 1) semi-natural, 2) urban, and 3) industrial. We demonstrated that the habitat most frequently colonized by S. hirta is post-industrial wastelands, while S. sexmaculata were most often sampled in old fields, with the frequency of 100% and 94.11%, respectively. At the same time, the abundance of the species in these habitats was also the highest, with a mean of 8.00 and 10.88 individuals, respectively. Moreover, S. hirta was relatively frequently found in the urban landscape (67% in city outskirts and 88.23% in the housing/industrial zones), while S. sexmaculata colonized these areas to a considerably low degree (25% in city outskirts and 29.41% in the housing/industrial zones). We also established that the occurrence of the species was affected by the forest cover in the closest vicinity of the study sites, which significantly modified the habitat preference of the species analyzed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere