Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Two definition errors have been found in our published paper (Niu et al. 2014): (1) lx should be the fraction of individuals surviving from birth (egg hatch) to age x for all stages through the oldest adult [and not “… for adults, the survival rate from birth to age x”]; and (2) T should be defined as mean age of parenthood in the cohort [and not “… the development time from egg to adult emergence”]. The formulae, computations, and results are correct. We apologize for these mistakes.
Most predator—prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator—prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous withinplant predator—prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator—silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithmcan be used in simulation models that explore the effect of local heterogeneity on whitefly—predator dynamics.
Soybean aphids, Aphis glycines Matsumura, depend on long-distance, wind-aided dispersal to complete their life cycle. Despite our general understanding of soybean aphid biology, little is explicitly known about dispersal of soybean aphids between winter and summer hosts in North America. This study compared genotypic diversity of soybean aphids sampled from several overwintering locations in the Midwest and soybean fields in Ohio and Wisconsin to test the hypothesis that these overwintering locations are sources of the soybean colonists. In addition, air parcel trajectory analyses were used to demonstrate the potential for long-distance dispersal events to occur to or from these overwintering locations. Results suggest that soybean aphids from overwintering locations along the Illinois—Iowa border and northern Indiana—Ohio are potential colonists of soybean in Ohio and Wisconsin, but that Ohio is also colonized by soybean aphids from other unknown overwintering locations. Soybean aphids in Ohio and Wisconsin exhibit a small degree of population structure that is not associated with the locations of soybean fields in which they occur, but that may be related to specific overwintering environments, multiple introductions to North America, or spatial variation in aphid phenology. There may be a limited range of suitable habitat for soybean aphid overwintering, in which case management of soybean aphids may be more effective at their overwintering sites. Further research efforts should focus on discovering more overwintering locations of soybean aphid in North America, and the relative impact of short- and long-distance dispersal events on soybean aphid population dynamics.
A longitudinal study to identify the species of Liriomyza leafminer, their distribution, relative abundance, and seasonal variation, including their host range, was conducted in vegetable fields at three altitudes in Kenya from November 2011 to November 2012. Three main species were identified: Liriomyza huidobrensis (Blanchard), Liriomyza sativae Blanchard, and Liriomyza trifolii (Burgess), of which L. huidobrensis was the most abundant across all altitudes irrespective of the cropping season and accounting for over 90% of the total Liriomyza specimens collected. Liriomyza species were collected from all infested incubated leaves of 20 crops surveyed belonging to seven families: Fabaceae, Solanaceae, Cucurbitaceae, Malvaceae, Brassicaceae, Amaranthaceae, and Amaryllidaceae. However, more than 87.5% of the Liriomyza species were obtained from only four of these crops: Pisum sativum L., Phaseolus vulgaris L., Solanum lycopersicum L., and Solanum tuberosum, thereby demonstrating that Fabaceae and Solonaceae crops are the most important hosts with regard to Liriomyza species richness and relative abundance. L. huidobrensis had the widest host range (20 crops), followed by L. sativae (18 crops) and L. trifolii (12 crops). Although L. trifolii has been considered the dominant Liriomyza leafminer in Kenya, this study suggests that this may not be the case anymore, as L. huidobrensis dominates at all altitudes.
In response to concerns of increasing significance of stink bugs (Hemiptera: Heteroptera: Pentatomidae) in northern states, a survey was conducted over 2 yr in Minnesota to characterize the Pentatomidae associated with field corn, Zea mays L. Halyomorpha halys (Stål), an exotic species, was not detected in this survey, despite continued detection of this species as an invader of human-made structures in Minnesota. Five species of Pentatomidae (four herbivorous; one predatory) were collected from corn. Across years, Euschistus variolarius (Palisot de Beauvois) and Euschistus servus euschistoides (Vollenhoven) had the greatest relative abundances and frequencies of detection. In 2012, the abundance of herbivorous species exceeded 25 nymphs and adults per 100 plants (i.e., an economic threshold) in 0.48% of fields. However, the abundance of herbivorous species did not reach economic levels in any fields sampled in 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults was highest during reproductive growth stages of corn. The predator species, Podisus maculiventris (Say), was detected in 0 to 0.32% of fields. These results provide baseline information on the species composition and abundance of Pentatomidae in Minnesota field corn, which will be necessary for documentation of changes to this fauna as a result of the invasion of H. halys and to determine if some native species continue to increase in abundance in field crops.
Praying mantids have been shown to exert strong influences on arthropod community composition. However, they may not occupy the same trophic level throughout their lives. Trophic shifting over a life cycle could explain the documented variation in results from field studies, but specific interactions of predators within food webs have been difficult to determine simply by comparing control and treatment assemblages in field experiments. We examined the trophic position of the Chinese praying mantid, Tenodera aridifolia sinensis (Saussure), using stable isotope analysis (SIA). We measured the δ13C and δ15N of field-collected arthropods, and of laboratory groups of mantids fed known diets of these arthropods chosen from the most abundant trophic guilds: herbivores (sap feeders and plant chewers), and carnivores.We also collected mantids from the field over a growing season and compared their SIA values to those of the laboratory groups. Both δ13C and δ15N of mantids fed carnivorous prey (spiders or other mantids) were higher than those fed herbivores (grasshoppers). SIA values from fieldcollected mantids were highly variable, and indicated that they did not take prey from trophic guilds in proportion to their abundances, i.e., were not frequency-dependent predators. Further, δ15N decreased from a high at egg hatch to a low at the third instar as early nymphs fed mainly on lower trophic levels, and increased steadily thereafter as they shifted to feeding on higher levels.We suggest that the community impact of generalist predators can be strongly influenced by ontogenetic shifts in diet.
The functional response and predation parameters of three species of predatory pirate bugs Amphiareus constrictus (Stal), Blaptostethus pallescens Poppius, and Orius tristicolor (White) (Hemiptera: Anthocoridae) were evaluated at four different densities of eggs of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Experiments were conducted in Petri dishes containing a tomato leaf disk infested with the pest eggs, and maintained inside growth chamber with environmental conditions of 25±2°C, 70±10% relative humidity, and a photoperiod of 12:12 (L:D) h. A. constrictus and B. pallescens showed a type III functional response where predation increased at a decreasing rate after egg density was higher than 12 per leaf disk, reaching an upper plateau of 18.86 and 25.42 eggs per 24 hours, respectively. By contrast, O. tristicolor showed a type II functional response where the number of eggs preyed upon increased at a decreasing rate as egg density increased, reaching an upper limit of 15.20 eggs per 24 hours. The predator equations used in this study estimated handling time of 1.25, 0.87, 0.96 h for A. constrictus, B. pallescens, and O. tristicolor, respectively. The lower handling time and possible higher attack rate of B. pallescens suggests a higher efficiency and probably greater impact on the pest population. If conservation or classical biological control of T. absoluta is to be implemented, then prioritizing which natural enemy species is the most efficient is an important first step.
Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGValone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGValone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGVor CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities.
Cape-ivy (Delairea odorata Lemaire) is an ornamental vine native to South Africa that has escaped into natural areas in coastal California and Oregon, displacing native vegetation. Surveys in South Africa led to the discovery of the leaf- and stem-mining moth Digitivalva delaireae Gaedike and Kruger (Lepidoptera: Glyphipterigidae: Acrolepiinae) as one of several common and damaging native herbivores on Cape-ivy. In greenhouse studies, adult female life span averaged 16 d (46 d maximum). Most (72%) mated females began laying eggs within 72 h of emergence. Females had an average lifetime fecundity of 52 eggs, with >70% laid on leaf laminae, and 89% of eggs were laid by the 15th day postemergence. Lifetime fertility (adult production) averaged three to four offspring per female. At 25°C, egg hatch required 10 d, pupal formation 26 d, and adult emergence 41 d, while under variable greenhouse and laboratory conditions development to adult required 54–60 d. In four-way choice tests, involving 100 plant species other than Cape-ivy, including 11 genera and 37 species in the Asteraceae, subtribe Senecioninae from both native and invaded ranges, D. delaireae inflicted damage and produced pupae only on Cape-ivy. Leaf mining damage occurred on 30% of leaves of native Senecio hydrophilus in no-choice tests and on 2% of leaves in dual-choice tests, but no pupation occurred. If approved for field release in the continental United States, the moth D. delaireae is expected to produce multiple generations per year on Cape-ivy, and to pose little risk of damage to native plants.
Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant—insect and insect—insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated.
Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) has killed millions of Fraxinus spp. trees in North America. While all Fraxinus species assessed to date can be colonized, A. planipennis attraction to host trees varies among species and with tree health.We established a plantation of 105 trees (21 trees each of four North American species Fraxinus americana L., Fraxinus nigra Marshall, Fraxinus pennsylvanica Marshall, Fraxinus quadrangulata Michaux, and the Asian species, Fraxinus mandshurica Ruprecht), and determined whether resistance to A. planipennis could be enhanced by fertilizer or paclobutrazol applications. Differences among species overshadowed most treatment effects. In 2010, A. planipennis survival over 14 d was 53% when beetles were caged with F. nigra, 30–32% when beetles were caged with F. americana, F. pennsylvanica, or F. mandshurica, and only 14% for beetles caged with F. quadrangulata. In 2011, beetle survival was lower for beetles caged with F. quadrangulata (33%) than F. americana (72%) or F. mandshurica (80%). In 2010 and 2011, leaf weight consumed by beetles was the same among Fraxinus species. However, beetles caged on F. quadrangulata consumed less leaf area than that by beetles caged with other ash species. In 2011, when trees were exposed to wild A. planipennis, larval density (per m2) was highest on F. nigra (235.9±36.41) and F. pennsylvanica (220.1±39.77), intermediate on F. americana (40.7±11.61), and lowest on F. quadrangulata and F. mandshurica (2.0±0.98 and 1.5±0.67, respectively). Results indicate F. quadrangulata and F. mandshurica were relatively resistant to A. planipennis, F. nigra and F. pennsylvanica were highly vulnerable, and F. americana was intermediate.
Potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a serious pest of solanaceous crops in North and Central America and New Zealand. This insect vectors the bacterium that causes zebra chip disease of potato (Solanum tuberosum L.). Four distinct genetic populations, or haplotypes, of B. cockerelli have been identified. Three of the haplotypes may co-occur in potato fields in the Pacific Northwest of United States. Solanaceous weeds, including the perennial Solanum dulcamara (bittersweet nightshade), may provide refuge for psyllid populations which then migrate to potato crops. This study tested whether fecundity, fertility (% egg hatch), and adult longevity of potato psyllid were affected by host plant (S. dulcamara or potato) and whether these reproductive traits were similar among the three haplotypes that are most common in the Pacfic Northwest: Northwestern, Central, and Western. We hypothesized that the locally resident haplotype (Northwestern), which is known to overwinter extensively on S. dulcamara, would show relatively higher fitness on nightshade than the other two haplotypes. Fecundity differed significantly among haplotypes, with an average lifetime fecundity of 1050, 877, and 629 eggs for Northwestern, Western, and Central females, respectively. Egg hatch was significantly reduced in psyllids reared on bittersweet nightshade (61.9%) versus potato (81.3%). Adult psyllids lived longer on nightshade than on potato, averaging 113.9 and 108.4 d on nightshade and 79.0 and 85.5 d on potato for males and females, respectively. However, the longer life span of psyllids on nightshade than potato failed to lead to higher fecundity, because females on nightshade often ended egglaying well before death, unlike those on potato. There was no evidence for any of the fitness traits to suggest that the locally resident haplotype (Northwestern) performed relatively better on nightshade than the other two haplotypes. Lastly, we examined whether mating between psyllids of different haplotypes affected sperm transfer and egg hatch rates. Females of the Northwestern haplotype failed to produce viable eggs when mated by males of either theWestern or Central haplotypes.
The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering.We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits.
Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants.We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots.We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.
Recently, several papers were published dealing with host plant identification for selected species of insects, including beetles. These studies took advantage of the DNA barcoding approach and generally showed that it is possible to identify diet composition from plant DNA present in insect guts. However, none of these studies considered how the impact of environmental conditions affected the likelihood of insect feeding and, therefore, the presence of host plant DNA that could be amplified and sequenced. In the present study, individuals of the polyphagous weevil Centricnemus leucogrammus (Germar, 1824) (Curculionidae: Entiminae) were used to test the hypothesis that harsh environmental conditions limited its feeding activity. The diet of 50 specimens collected during favourable conditions in the middle of the species reproductive period was compared against the diet of 50 specimens collected during harsh environmental conditions. Results clearly showed that almost no weevils fed during rainy and cold conditions and only a minority of individuals (20%) fed during the drought condition (on drought-resistant plants). It is important to consider such factors in any studies dealing with host plant identification and feeding behaviour. Results of ecological studies could lead to erroneous conclusions, e.g., underestimation of number and composition of host plants in the diet of studies species.
The pupal parasitoids, Spalangia cameroni Perkins and Muscidifurax raptor Girault and Sanders, can be purchased for biological control of house flies Musca domestica L. and stable flies Stomoxys calcitrans (L.) (Diptera: Muscidae). Little is known about the odors involved in host-seeking behavior of these two species, so odors associated with house flies were investigated in the laboratory using a Y-tube olfactometer. Odor stimuli from house fly host puparia, larvae, pine-shavings bedding with horse manure, and developing flies in the pine-shavings-manure substrate were evaluated in bioassays using the two pteromalid species. In choice tests, naïve female S. cameroni were strongly attracted to odor from the substrate containing house fly larvae and secondarily from the uninfested substrate and substrate with puparia versus humidified and purified air. This species also selected the substrate with larvae versus the substrate with the house fly puparia or uninfested substrate. Muscidifurax raptor was attracted to odor from the substrate containing puparia, washed puparia, and substrate with puparia removed. The data suggest that coexistence between the two pteromalid parasitoids, S. cameroni and M. raptor, might be promoted by different host-seeking behavior.
The responses of adult plum curculios, Conotrachelus nenuphar (Herbst), to visual stimuli were assessed in field and laboratory conditions to evaluate the hypothesis that adult captures should increase when traps visually contrast with a lighter horizon, such as the sky. Release—recapture field studies tested whether adult responses to traps were influenced by the trap's visual contrast with background on the horizon. Results at four sites showed that significantly more adults were captured in traps with woodlots behind them, refuting the hypothesis. Laboratory tests in environmental conditions of 315 lux or less observed the movement of adults between intervals. These showed that significantly more females and males relocated in areas marked with black. This effect occurred when adults were presented with black surfaces, stripes, or lines. The black shade used correlated with lower reflected lux (<110), and when in conditions of ≤10 lux, significant adult relocation on black was not observed. These results suggest that adults arrest in or move toward areas with low reflected lux. The laboratory and field results combined suggest that higher adult captures in traps correlated with the largest areas of low lux on the horizon. The results imply that trap placement should take reflected lux from all nearby objects into account and that even in small patterns on traps, variance in shade or reflected lux may permit manipulation of plum curculio movement.
Predators can affect prey indirectly when prey respond to cues indicating a risk of predation by altering activity levels. Changes in prey behavior may cascade through the food web to influence ecosystem function. The response of the collembolan Sinella curviseta Brook (Collembola: Entomobryidae) to cues indicating predation risk (necromones and cues from the wolf spider Pardosa milvina (Hentz) (Araneae: Lycosidae)) was tested. Additionally, necromones and predator cues were paired in a conditioning experiment to determine whether the collembolan could form learned associations. Although collembolans did not alter activity levels in response to predator cues, numerous aspects of behavior differed in the presence of necromones. There was no detectable conditioned response to predator cues after pairing with necromones. These results provide insight into how collembolans perceive and respond to predation threats that vary in information content. Previously detected indirect impacts of predator cues on ecosystem function are likely due to changes in prey other than activity level.
Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based volatile blends attractive to this fly have been identified. This is particularly important because females are able to cut into the epicarp of ripening fruit for oviposition. Thus, we conducted studies to: 1) investigate the behavioral responses of adult D. suzukii to volatiles from blueberry, cherry, raspberry, and strawberry fruit extracts; 2) identify the antennally active compounds from the most attractive among the tested extracts (raspberry) using gas chromatography (GC)—mass spectrometry and coupled gas chromatography —electroantennographic detection (GC-EAD); and 3) test a synthetic blend containing the EAD-active compounds identified from raspberry extract on adult attraction. In olfactometer studies, both female and male D. suzukii were attracted to all four fruit extracts. The attractiveness of the fruit extracts ranks as: raspberry ≥ strawberry > blueberry ≥ cherry. GC analyses showed that the fruit extracts emit distinct volatile compounds. In GC-EAD experiments, 11 raspberry extract volatiles consistently elicited antennal responses in D. suzukii. In choice test bioassays, a synthetic EAD-active blend attracted more D. suzukii than a blank control, but was not as attractive as the raspberry extract. To our knowledge, this is the first report of a behaviorally and antennally active blend of host fruit volatiles attractive to D. suzukii, offering promising opportunities for the development of improved monitoring and behaviourally based management tools.
The influence of different temperatures on biological parameters of native strains of Trichogramma zahiri Polaszek (Hymenoptera: Trichogrammatidae), an egg parasitoid of rice hispa, Dicladispa armigera (Olivier) (Chrysomelidae: Coleoptera), was evaluated in the laboratory on its host. The key biological parameters of the parasitoid T. zahiri in relation to temperature were investigated to find out its candidature as a potential biological control agent of rice hispa. The highest number of eggs parasitized by T. zahiri was 15.7 eggs per female at 26°C, which differed significantly from those at 18, 22, 30, and 34°C (P<0.05). Development duration and longevity of T. zahiri decreased as temperature increased. Fecundity differed significantly at all constant temperatures. Emergence rates decreased at both high (34°C) and low (<26°C) temperatures. Female-biased sex ratio ranged from 54 to 70% at all constant temperatures. The lower temperature threshold for T. zahiri was 6.2°C for males and 6.95°C for females. The upper threshold temperatures were 35.82 and 35.87°C for males and females, respectively. Net reproductive rate (R0) was highest at 26°C compared with other temperatures. Mean cohort generation time (tG) and population doubling time (tD) decreased as temperature increased from 18 to 30°C. The daily intrinsic rate of increase (rm) and finite rate of increase (λ) were positively correlated with temperatures ranging from 18 to 30°C and then decreased at 34°C. The relevance of our results is discussed in the context of climatic adaptation and biological control.
Local adaptation, an important phenomenon in ecological speciation, occurs in Myzus persicae (Sulzer), with the tobacco-adapted line proposed as a subspecies. Recent studies showed that temperature could alter the selection strength and direction in host—herbivore interactions. To understand the formation of host-adapted speciation and the effects of temperature on host adaptation, the parthenogenetic progeny of an M. persicae egg were conditioned on two hosts for >10 generations. Then, their life table parameters were studied after reciprocal transfer under a temperature gradient. The results showed that aphids habituated on tobacco (Nicotiana tabacum L.) and rape (Brassica napus L.) had different optimal temperatures, including different upper thresholds of development and reproduction on original and alternative hosts. After habituation for >10 generations, local adaptation of aphids on the host of origin was formed, which was observed as the better performance of the native aphids compared with the foreign ones. The M. persicae that habituated on rape appeared more generalized to the host plants than the aphids that habituated on tobacco. The adaptation patterns of green peach aphids on two hosts varied differentially according to temperature, which verified the temperature-mediated effects of host selection on herbivores, implying the presence of a demographic basis of aphid seasonal migration.
China is the largest producer, consumer, and exporter of mushrooms in the world. The storage mite, Tyrophagus putrescentiae Schrank, is one of the most important arthropod pests in mushroom cultivation. This study investigated the development and reproductive traits of this mite reared on four mushroom species: Agaricus bisporus Lange, Pleurotus ostreatus Kumm, Auricularia polytricha (Mont.) Sacc., and Flammulina velutipes (Fr.) Sing., at seven constant temperatures ranging from 16 to 34°C at 80% relative humidity. Development time for the immature stages decreased with increasing temperature, and was also significantly affected by mushroom species. The shortest immature developmental period (7.0±0.2 d) was observed at 31°C when reared on F. velutipes, while the longest development was at 16°C (36.0±0.3 d) reared on P. ostreatus. The effects of temperature and mushroom hosts on the development, female longevity, and reproduction were also significant. The lower threshold temperatures from egg-to-adult for the four mushroom species were 11.97, 12.02, 10.80, and 11.57°C, for A. bisporus, P. ostreatus, Au. polytricha, and F. velutipes, and the thermal constants were 133.3, 136.8, 165.2, and 135.9 degree days (°C d), for the same mushroom species, respectively. Life table parameters at 25°C were estimated as follows: net reproductive rates (R0), 59.16, 28.94, 42.62, and 62.93, and intrinsic rate of natural increase (rm), 0.24, 0.13, 0.17, and 0.24, respectively. These results suggest that these mushrooms are suitable hosts for T. putrescentiae, and the storage mite may be able to adapt to higher temperatures.
Larvae of Sparganothis sulfureana Clemens frequently attack cranberries, often resulting in economic damage to the crop. Because temperature dictates insect growth rate, development can be accurately estimated based on daily temperature measurements. To better predict S. sulfureana development across the growing season, we investigated the temperature range within which S. sulfureana larvae can feed and grow. Larvae were reared at 13 constant temperatures ranging from 6.5–38.6°C. Larval growth rate was determined by the rate of change of larval weight across time. The respective growth rates among these temperatures were modeled using simple linear, cubic, and Lactin nonlinear development functions. These models isolated the lower temperature threshold at which growth became nonzero and the upper temperature at which growth was maximized. All three models were significantly predictive of S. sulfureana growth, but the cubic model best represented the observed growth rates, effectively isolating lower and upper thresholds of 9.97 and 29.89°C, respectively. We propose that these thresholds be used to create a degree-day model of temperature-mediated S. sulfureana development.
Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue.
Prewinter copulation, sperm storage, and oocyte development in overwintering adult Megacopta cribraria (F.) was examined in Alabama (Lee Co.). Microscopic examinations of the spermathecae and ovaries were made in females and of the testes in males that were collected approximately weekly from September 2013 through March 2014. The results indicated that approximately 15% of females mated before entering winter dormancy and sperm was stored in their spermatheca for up to seven months, oocytes in mated overwintering females proceeded to postblastoderm stage before the onset of spring feeding and mating in March, all of the overwintering males had sperm in their testes, and the ratio of females gradually increased in populations during overwintering. This study indicates that both males and females are capable of reproductive dormancy. The biological significance of these life cycle aspects is discussed from the viewpoints of invasiveness and adaptation.
Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) has become a widely used technique to quantify gene expression. It is necessary to select appropriate reference genes for normalization. In the present study, we assessed the expression stability of seven candidate genes in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) irradiated by ultraviolet B (UVB) at different developmental stages for various irradiation time periods. The algorithms of geNorm, NormFinder, and BestKeeper were applied to determine the stability of these candidate genes. Ribosomal protein genes RpS3, RpL13A, and β-actin gene (ActB) showed the highest stability across all UVB irradiation time points, whereas expression of other normally used reference genes, such as those encoding the β-tubulin gene TUBB and the E-cadherin gene CAD, varied at different developmental stages. This study will potentially provide more suitable reference gene candidates for RT-qPCR analysis in T. castaneum subjected to environmental stresses, particularly UV irradiation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere