BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Edwina F. Lawson, Arnab Ghosh, Victoria Blanch, Christopher G. Grupen, Robert John Aitken, Rebecca Lim, Hannah R. Drury, Mark A. Baker, Zamira Gibb, Pradeep S. Tanwar
Organoid technology has provided a unique opportunity to study early human development and decipher various steps involved in the pathogenesis of disease. The technology is already used in clinics to improve human patient outcomes. However, limited knowledge of the methodologies required to establish organoid culture systems in domestic animals has slowed the advancement and application of organoid technology in veterinary medicine. This is particularly true for the field of reproduction and the application of assisted reproductive technologies (ART). Here, we have developed a platform to grow oviductal organoids from five domestic species—bovine, porcine, equine, feline, and canine. The organoids were grown progressively from single cells derived from the enzymatic digestion of freshly collected infundibular/fimbrial samples. The addition of WNT, TGFβ, BMP, ROCK, and Notch signaling pathway activators or inhibitors to the organoid culture medium suggested remarkable conservation of the molecular signals involved in oviductal epithelial development and differentiation across species. The gross morphology of organoids from all the domestic species was initially similar. However, some differences in size, complexity, and growth rate were subsequently observed and described. After 21 days, well-defined and synchronized motile ciliated cells were observed in organoids. Histopathologically, oviductal organoids mimicked their respective native tissue. In summary, we have carried out a detailed cross-species comparison of oviductal organoids, which would be valuable in advancing our knowledge of oviduct physiology and, potentially, help in increasing the success of ART.
Summary Sentence
Organoids can be derived from the oviductal epithelium of bovine, feline, canine, equine, and porcine to advance assisted reproductive technologies in animals.
Sertoli cells, first identified in the adult testis by Enrico Sertoli in the mid-nineteenth century, are known for their role in fostering male germ cell differentiation and production of mature sperm. It was not until the late twentieth century with the discovery of the testis-determining gene SRY that Sertoli cells' new function as the master regulator of testis formation and maleness was unveiled. Fetal Sertoli cells facilitate the establishment of seminiferous cords, induce appearance of androgen-producing Leydig cells, and cause regression of the female reproductive tracts. Originally thought be a terminally differentiated cell type, adult Sertoli cells, at least in the mouse, retain their plasticity and ability to transdifferentiate into the ovarian counterpart, granulosa cells. In this review, we capture the many phases of Sertoli cell differentiation from their fate specification in fetal life to fate maintenance in adulthood. We also introduce the discovery of a new phase of fetal Sertoli cell differentiation via autocrine/paracrine factors with the freemartin characteristics. There remains much to learn about this intriguing cell type that lay the foundation for the maleness.
The regulation of mammalian early-embryonic development is a complex, coordinated process that involves widespread transcriptomic and epigenetic remodeling. The main cause of developmental failure in preimplantation embryos after in vitro fertilization is the irreversible arrested-at-cleavage stage. To deepen our understanding of this embryonic block, we profiled a single-cell multi-omics map of copy number variations (CNVs), the transcriptome, the DNA methylome, and the chromatin state of bovine eight-cell embryos with a two-cell fate that either arrested or developed into blastocysts. To do this, we sequenced a biopsied blastomere and tracked the developmental potential of the remaining cells. Aneuploid embryos inferred by CNVs from DNA- and RNA-library data tended to lose their developmental potency. Analysis of distinct genomic regions of DNA methylation and chromatin accessibility revealed that enrichment of gene function and signaling pathways, such as the MAPK signaling pathway, was altered in arrested euploid eight-cell embryos compared with blastocyst-developed euploid eight-cell embryos. Moreover, the RNA expression and chromatin accessibility of embryonic genome activation-associated genes were lower in arrested euploid embryos than in blastocyst-developed embryos. Taken together, our results indicate that the developmental block of eight-cell embryos can be caused by multiple molecular layers, including CNVs, abnormality of DNA methylation and chromatin accessibility, and insufficient expression of embryonic genome activation-associated genes. Our integrated and comprehensive data set provides a valuable resource to further dissect the exact mechanisms underlying the arrest of bovine eight-cell embryos in vitro.
Summary Sentence
Single-cell biopsy and omics technology reveal that the arrest of bovine eight-cell embryos in vitro involves multi-faceted challenges, including CNVs, abnormal DNA methylation and chromatin accessibility, and insufficient expression of EGA genes.
The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of “heterosis” and perhaps is more significant to study hybrid gamete formation.
Summary Sentence
We found that mule adult fibroblasts have significant advantages in reprogramming efficiency compared with donkey and horse adult fibroblasts, and the establishment of mule iPSCs provides an accessible in vitro model to study hybrid gamete formation.
N6-methyladenosine (m6A), an epigenetic modification on RNAs, plays an important role in many physiological and pathological processes. However, the involvement of m6A in goat uterus during early pregnancy remains largely unknown. In this study, we found that the total m6A level was increasing in goat uterus as early pregnancy progressed. Methyltransferase-like 3 (METTL3) is a core catalytic subunit of the m6A methyltransferase. We thus determined the expression and regulation of METTL3 in goat uterus. METTL3 was highly expressed in the luminal and glandular epithelia from day 16 (D16) to D25 of pregnancy, and it could be up-regulated by estrogen and progesterone in goat uterus and primary endometrial epithelial cells (EECs). In EECs, knockdown or overexpression of METTL3 resulted in a significant decrease or increase of cell proliferation, respectively. METTL3 knockdown reduced the m6A level of not only total RNA but also connective tissue growth factor (CTGF) mRNA. Luciferase assay suggested that METTL3 might target the potential m6A sites in the 3'untranslated region (3'UTR) of CTGF mRNA. Moreover, METTL3 positively regulated CTGF expression, and CTGF knockdown significantly counteracted the promoting effect of METTL3 overexpression on EEC proliferation. Collectively, METTL3 is dynamically expressed in goat uterus and can affect EEC proliferation by regulating CTGF in an m6A-dependent manner. Our results will lay a foundation for further studying the crucial mechanism of METTL3-mediated m6A modification in goat uterus during early pregnancy.
Despite stringent quality control checks, some bulls with apparently normal semen quality yield lower than expected pregnancy rates. This study profiled the transcriptome and performed histological analysis of the bovine uterus in response to sperm from high-fertility (HF) and low-fertility (LF) bulls. Postmortem uterine biopsies and uterine explants were collected from heifers 12 h after a fixed time artificial insemination (AI) to a synchronized estrus with frozen–thawed semen from five HF (fertility rate 4.01% ± 0.25) and five LF (fertility rate - 11.29% ± 1.11; mean ± SEM) bulls. Uterine biopsies were also collected from control (CTRL) heifers, which were not inseminated. RNA-sequencing and histological analysis were performed for differential gene expression and neutrophil quantification. In the HF treatment relative to CTRL heifers, there were 376 genes significantly differentially expressed in the endometrium with just one gene differentially expressed in the LF treatment relative to CTRL heifers. Comparing the HF and LF treatments directly, there were 40 significantly differentially expressed genes (P < 0.05). Transcriptomic analysis shows a predominant role for the inflammatory marker Interleukin-1 alpha, which was further confirmed by immunohistochemistry. Quantification of neutrophils in the endometrium showed a significant effect of sperm; however, there was no difference in neutrophil numbers between HF and LF groups. In conclusion, this novel study clearly shows a distinct inflammatory response to sperm in the endometrium and a divergent transcriptomic response to semen from HF and LF bulls.
Summary Sentence
The concept that sperm from high fertility bulls are priming the endometrium for implantation and a subsequent pregnancy merits further investigation.
Sex steroid concentrations modulate endometrial function and fertility in cattle. Our objective was to compare the post-estrus luminal transcriptome of cows that were exposed to contrasting concentrations of progesterone (P4) before luteolysis that displayed estrus and ovulated spontaneously. Cross-bred beef cows received either (1) a new CIDR and GnRH (day -9; high progesterone treatment; HP4; n = 16) or (2) a previously used CIDR, PGF2α, and GnRH (low progesterone treatment; LP4; n = 24). All cows received PGF2α at CIDR removal (day -2). Ovarian ultrasonography and blood collections were performed on days -9, -2, -0.5, and 0 (day of observed estrus), and days 4, 7, and 14 for measurement of ovarian structures, P4, and estradiol (E2). Luminal epithelial cells were collected using a cytology brush on days 4, 7, and 14 for RNAseq. On day -2, CL area and concentrations of P4 were greater, while on day -0.5, concentrations of E2 were decreased in HP4. Ovarian structures and hormonal concentrations were similar on days 4, 7, or 14 (P > 0.05). There were enriched pathways in HP4 related to activation and signaling of the innate immune system at day 4, downregulation in the network involved in the extracellular matrix remodeling at day 7, and exacerbated inflammatory response as well as differentiation and activation of macrophages at day 14 (Benjamini–Hochberg P-value ≤ 0.05). In conclusion, manipulation of pre-luteolysis sex steroid concentrations altered the post-estrus luminal transcriptome even though all cows showed estrus and ovulated spontaneously.
Summary Sentence
The pre-luteolysis hormonal profile altered the luminal transcriptome on days 4, 7, and 14 post-estrus in beef cross-bred cows.
Superovulation (SOV) treatment of cows results in unovulated follicles and inconsistent quality of the recovered embryos. It has been demonstrated that luteinizing hormone (LH) secretion is suppressed during SOV treatment of cows, which may cause insufficient follicle development and variation in the development of recovered embryos and unovulated follicles. Pulsatile gonadotropin-releasing hormone/LH secretion is controlled by the activity of kisspeptin, neurokinin B and dynorphin (KNDy) neurons in the arcuate nucleus in many mammals. As neurokinin B promotes the activity of KNDy neurons, we hypothesized that senktide, a neurokinin B receptor agonist, has the potential as a therapeutic drug to improve the ovulation rate and quality of recovered embryos in SOV-treated cows via stimulation of LH secretion. Senktide was administered intravenously (30 or 300 nmol/min) for 2 h, beginning from 72 h after the start of SOV treatment. LH secretion was examined before and after administration, and embryos were collected 7 d after estrus. Senktide administration increased LH secretion in SOV-treated cows. The ratios of code 1, code 1 and 2, and blastocyst stage embryos to recovered embryos were increased by senktide (300 nmol/min) administration. Moreover, the mRNA levels of MTCO1, COX7C, and MTATP6 were upregulated in recovered embryos of senktide (300 nmol/min)-administered animals. These results indicate that the administration of senktide to SOV-treated cows enhances LH secretion and upregulates the expression of genes involved in mitochondrial metabolism in embryos, thereby improving embryo development and embryo quality.
Summary Sentence
Intravenous administration of senktide to SOV-treated cows enhances LH secretion and upregulates the expression of genes involved in embryo metabolism, thereby improving embryo development and embryo quality.
Polycystic ovary syndrome is a complicated hormonal and metabolic disorder. The exact pathogenesis of polycystic ovary syndrome is not clear thus far. Inflammation is involved in the progression of polycystic ovary syndrome. In addition, brown adipose tissue activity is impaired in polycystic ovary syndrome. Interestingly, glucagon-like peptide-1 receptor agonists have been reported to alleviate inflammation and promote browning of white adipose tissue. In this study, the effects of glucagon-like peptide-1 receptor agonists on polycystic ovary syndrome mice were explored. Mice were randomly assigned into four groups: control, dehydroepiandrosterone, dehydroepiandrosterone + liraglutide, and dehydroepiandrosterone + semaglutide. Relative indexes were measured after glucagon-like peptide-1 receptor agonist intervention. Glucose metabolism in polycystic ovary syndrome mice was ameliorated by glucagon-like peptide-1 receptor agonists, while the reproductive endocrine disorder of polycystic ovary syndrome mice was partially reversed. The messenger ribonucleic acid levels of steroidogenic enzymes and the expression of inflammatory mediators in serum and ovaries of polycystic ovary syndrome mice were improved. Furthermore, toll-like receptor 4 and phosphorylation of nuclear factor-kappa B protein levels were decreased by glucagon-like peptide-1 receptor agonists in ovary. Notably, after glucagon-like peptide-1 receptor agonist intervention, the expression of brown adipose tissue marker levels was considerably raised in the white adipose tissue of polycystic ovary syndrome mice. In conclusion, the hyperinsulinemia and hyperandrogenemia of polycystic ovary syndrome mice were alleviated by glucagon-like peptide-1 receptor agonist intervention, which was associated with mitigating inflammation and stimulating adipose tissue browning.
Summary Sentence
GLP-1RAs could improve the symptoms of polycystic ovary mice.
Sea urchins are usually gonochoristic, with all of their five gonads either testes or ovaries. Here, we report an unusual case of hermaphroditism in the purple sea urchin, Strongylocentrotus purpuratus. The hermaphrodite is self-fertile, and one of the gonads is an ovotestis; it is largely an ovary with a small segment containing fully mature sperm. Molecular analysis demonstrated that each gonad producedviable gametes, and we identified for the first time a somatic sex-specific marker in this phylum: Doublesex and mab-3 related transcription factor 1 (DMRT1). This finding also enabled us to analyze the somatic tissues of the hermaphrodite, and we found that the oral tissues (including gut) were out of register with the aboral tissues (including tube feet) enabling a genetic lineage analysis. Results from this study support a genetic basis of sex determination in sea urchins, the viability of hermaphroditism, and distinguish gonad determination from somatic tissue organization in the adult.
Summary Sentence
A self-fertile hermaphroditic S. purpuratus sea urchin containing four testes and one ovary/ovotestis is described; the results support a hypothesis of genetic sex determination in this species.
Graphical Abstract
Highlights
A hermaphrodite sea urchin is described containing four testes and one ovary/ovotestis
The hermaphrodite is self-fertile
The ovotestis is largely an ovary with a small segment containing sperm
The Doublesex ortholog, DMRT1, was found to be a sex-specific marker in Strongylocentrotus purpuratus
These results support a genetic basis of sex determination in sea urchins
We find that gonad determination is distinguishable from other somatic tissue organization in the adult
Recurrent implantation failure severely impairs fertility in females of childbearing age, which poses a great challenge to assisted reproductive technology, and its etiology is still unclear. Several studies have demonstrated that endometrial autophagy takes an important part in human endometrial receptivity, but its role in recurrent implantation failure remains largely unknown. Here, we collected mid-secretory endometrial tissue from recurrent implantation failure patients and fertile controls during menstruation and early pregnancy. Immunohistochemistry, western blotting, and quantitative real-time PCR were performed to compare the expression of microtubule-associated protein 1 light chain 3B, sequestosome 1, NOTCH1 signaling pathway members, and endometrial receptivity markers between recurrent implantation failure and control groups. In addition, to assess endometrial autophagy, transmission electron microscopy was used to observe autophagosomes. By RNA interference, we further investigated the effects of NOTCH1 on autophagy in Ishikawa cells. We found that endometrial autophagy was upregulated in the mid-secretory and decidual phases than in the early-proliferative phase. Compared to the control group, more autophagosomes were observed in the mid-secretory endometrium of recurrent implantation failure patients, which was accompanied by the downregulation of NOTCH1 signaling pathway members and endometrial receptivity markers. Moreover, knockdown of NOTCH1 impaired the receptivity of Ishikawa cells via protein kinase B/mammalian target of rapamycin pathway-mediated autophagy activation. Our data suggested that abnormally elevated autophagy and decreased NOTCH1 signaling pathway activity were observed in the mid-secretory endometrium of patients with recurrent implantation failure, perhaps due to decreased NOTCH1 pathway-mediated autophagy activation in endometrial cells impairing receptivity.
Summary Sentence
Elevated autophagy and decreased NOTCH1 signaling pathway activity were displayed in the mid-secretory endometrium of patients with recurrent implantation failure, perhaps due to decreased NOTCH1 pathway-mediated autophagy activation in endometrial cells impairing receptivity.
SOX8, which belongs to SOXE transcription factor subfamily together with SOX9, participates in sex differentiation and testicular development by enhancing the function of SOX9 in mammals. However, the functional role of SOX8 in sex differentiation has not yet been identified in any non-mammalian vertebrates. Here, we found in the Chinese soft-shelled turtle Pelodiscus sinensis that SOX8 exhibited male-specific higher expression from stage 14 to 18, the critical period of sex determination, prior to the onset of gonadal differentiation. In addition, SOX8 was rapidly down-regulated during male-to-female sex reversal induced by estradiol. Moreover, knockdown of SOX8 led to complete feminization of ZZ P. sinensis, determined by gonadal morphology and distribution of germ cells, as well as the down-regulation of testicular marker DMRT1 and the up-regulation of ovarian regulator FOXL2. In conclusion, this study provides evidence that SOX8 is a key regulator of early male differentiation in P. sinensis, highlighting the significance of the SOX family in reptile sex determination.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere