Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Cyclostomata consists of the two orders Myxiniformes (hagfishes) and Petromyzoniformes (lampreys), and its monophyly has been unequivocally supported by recent molecular phylogenetic studies. Under this updated vertebrate phylogeny, we performed in silico evolutionary analyses using currently available cDNA sequences of cyclostomes. We first calculated the GC-content at four-fold degenerate sites (GC4), which revealed that an extremely high GC-content is shared by all the lamprey species we surveyed, whereas no striking pattern in GC-content was observed in any of the hagfish species surveyed. We then estimated the timing of diversification in cyclostome evolution using nucleotide and amino acid sequences. We obtained divergence times of 470–390 million years ago (Mya) in the Ordovician–Silurian–Devonian Periods for the interordinal split between Myxiniformes and Petromyzoniformes; 90–60 Mya in the Cretaceous–Tertiary Periods for the split between the two hagfish subfamilies, Myxininae and Eptatretinae; 280–220 Mya in the Permian–Triassic Periods for the split between the two lamprey subfamilies, Geotriinae and Petromyzoninae; and 30–10 Mya in the Tertiary Period for the split between the two lamprey genera, Petromyzon and Lethenteron. This evolutionary configuration indicates that Myxiniformes and Petromyzoniformes diverged shortly after the common ancestor of cyclostomes split from the future gnathostome lineage. Our results also suggest that intra-subfamilial diversification in hagfish and lamprey lineages (especially those distributed in the northern hemisphere) occurred in the Cretaceous or Tertiary Periods.
Previous studies have detected activity-independent fish thermoregulation or conservation mechanisms by applying a mathematical model to body temperature data collected with electronic tags. This model is inadequate, due to its inability to separate quantitatively the effects of physiological thermoregulation from those of physical thermal inertia (the low thermal conductance of the body). In this paper, we have developed an alternative mathematical model that separates these effects. We have then applied it to published electronic tagging data from a large, free-swimming blue shark, Prinoca glauca, to demonstrate physiological thermoregulation. Resultant estimated body-temperature curves indicate that the fish could adjust its whole-body heat-transfer coefficient by changes in arterial blood flow over a range of one order of magnitude. To look at the physical effect on thermoregulation, body temperature for a smaller hypothetical fish was calculated. The estimated temperature was significantly lower than the actual value, indicating that an ectothermic fish like the blue shark cannot achieve physiological thermoregulation without assistance from thermal inertia. In addition, the blue shark returns to cooler depths without recovering its body temperature to the normal surface-temperature level, indicating that this behavior contributes to maximization of the rate of body-temperature recovery. Furthermore, the model indicated that the time for body-temperature recovery is irrelevant to the initial body temperature. Thus, the model made it possible to quantify thermophysiological manipulation. In addition, it was also useful in the comparison of thermoregulatory mechanisms between fishes of different sizes or species.
If there is a cost to producing a dark color patch, the size of a patch may not correspond with its pigment concentration. The plumage of male house sparrows represents a case of dark, melanin-based ornamentation, but also a case of neglecting the composite nature of dark signals in birds. Here, I investigated what kind of associations exist between the brightness, chroma, and hue of dark integumentary patches and the size of a secondary sexual trait, the bib, in male house sparrows. I found that males with a larger bib also had a darker bib and bill, and a more saturated bib, bill, epaulets, head crown, and breast than small-bibbed males. Male bib coloration in terms of brightness and chroma was more strongly related to bib size than the coloration of other integumentary patches. However, with respect to hue, only the hue of the bill and cheeks was related to bib size. My results indicate that size, brightness, and chroma of the bib, but also chroma of other deeply colored patches, convey redundant information about the signaler's quality in male house sparrows.
The digastric muscle is one of the suprahyoid muscles and consists of the anterior and posterior bellies. Because muscle fiber alignments in these two bellies are different, the functional roles are said to be different. Since the digastric muscle relates to mastication, its functions may change markedly before and after weaning, but many details remain unknown. The aim of this study was to clarify changes in muscle fiber properties of the anterior and posterior bellies of the digastric muscle in mice before and after weaning. Expressions of myosin heavy chain (MyHC) isoforms were assessed at the protein and transcriptional levels. Expression of the MyHC-2b isoform, an isoform displaying fast, strong contraction, was greater in the anterior belly than in the posterior belly after weaning. This suggests that, in mice, the anterior belly of the digastric muscle needs to move rapidly anteroposteriorly for mastication, compared with the posterior belly.
We previously demonstrated that two ecdysteroid-regulated genes, Mblk-1/E93 and E74, are expressed selectively in Kenyon cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.) brain. To further examine the possible involvement of ecdysteroid-regulated genes in brain function as well as in oogenesis in the honeybee, we isolated cDNAs for two other ecdysteroid-regulated genes, Broad-Complex (BR-C) and E75, and analyzed their expression in the worker brain as well as in the queen abdomen. In situ hybridization revealed that BR-C, like Mblk-1/E93, is expressed selectively in the large-type Kenyon cells of the mushroom bodies in the worker brain, whereas E75 is expressed in all mushroom body neuron subtypes, suggesting a difference in the mode of response to ecdysteroid among Kenyon cell subtypes. In the queen ovary, both BR-C and E75 are expressed preferentially in the follicle cells that surround egg cells at the late stage, suggesting their role in oogenesis. These results suggest that BR-C and E75 are involved in the regulation of brain function as well as in reproductive physiology in the adult honeybee.
The rejection of allografts in mammals is mainly mediated by cytotoxic T-lymphocytes, whereas no comparable immunoreactive cells have been described in invertebrates. The present study was undertaken to determine whether similar cytotoxic effector cells are present when allograft rejection occurs in the terrestrial slug Incilaria fruhstorferi. A piece of dorsal skin from a donor animal was orthotopically transplanted to a recipient. Immunohistochemistry for perforin, detection of apoptosis by the TUNEL (TdT-mediated dUTP-biotin nick-end labeling) method, and electron microscopy were performed using both donor and recipient tissues. Cellular changes in the rejection process continued over for 40 days. Two functional types of “effector” cells were recognized at the rejection site, but they were observed to be macrophages possessing perforin granules and phagocytosing damaged cells of the allograft. Three days after transplantation, the perforin-positive cells were recognized only in the recipient tissue surrounding the allograft. Five days after transplantation, these cells started to appear in the graft, while they disappeared from the host tissue. However, TUNEL-positive cells were not observed throughout the graft-rejection process. Electron microscopic examination of the graft tissue revealed autophagic degeneration of epithelial cells, mucous cells, pigment cells, fibroblasts, and muscle cells. These observations suggest that the molluscan slug has the capability to recognize differences in cell-surface molecules between the allogeneic and recipient tissues, and that an allograft is chronically rejected due to a type of immunocyte that can induce perforin-dependent cell death.
Myriapods play a pivotal position in the arthropod phylogenetic tree. The monophyly of Myriapoda and its internal relationships have been difficult to resolve. This study combined nearly complete 28S and 18S ribosomal RNA gene sequences (3,826 nt in total) to estimate the phylogenetic position of Myriapoda and phylogenetic relationships among four myriapod classes. Our data set consists of six new myriapod sequences and homologous sequences for 18 additional species available in GenBank. Among the six new myriapod sequences, those of the one pauropod and two symphylans are very important additions because they were such difficult taxa to classify in past molecular-phylogenetic studies. Phylogenetic trees were constructed with maximum parsimony, maximum likelihood, and Bayesian analyses. All methods yielded moderate to strong support for the monophyly of Myriapoda. Symphyla grouped strongly with Pauropoda under all analytical conditions. The KH test rejected the traditional view of Dignatha and Progoneata, and the topology obtained here, though not significantly supported, was Diplopoda versus ((Symphyla Pauropoda) Chilopoda).
Cross-fertilization was evident in a gonochoric population of the notostracan Triops numidicus, in which a thick, hard eggshell had been suspected of preventing the sperm from reaching the egg. Most of the eggs from copulated females hatched into larvae, but the eggs from virgin females did not develop. In the larvae, paternal DNA fragments were detected by AFLP. In histological sections, several spermatozoa were found in the shell of newly oviposited eggs in the brood pouches of copulated females, suggesting that the shell was still soft enough to be penetrated by spermatozoa. These results showed that copulation and subsequent fertilization achieved by penetration of sperm through the newly deposited eggshell were indispensable for the normal development of the eggs.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere