Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
To infer the differentiation of Japanese Davidius dragonflies, we investigated the genealogies of the mitochondrial cytochrome oxidase subunit I gene (COI) and the nuclear ribosomal RNA gene region encompassing 18S, ITS1, 5.8S, and ITS2 sequences for three species endemic to Japan—Davidius nanus, D. fujiama, and D. moiwanus—as well as D. lunatus from the Korean Peninsula. According to the mitochondrial and nuclear gene genealogies, D. nanus and D. moiwanus are closely related and are sister to the continental species D. lunatus, whereas D. fujiama differentiated from an ancestor of the other three species. Although the mitochondrial DNA data did not resolve the relationships between D. nanus and three D. moiwanus subspecies, the nuclear DNA data indicate the monophyly of D. moiwanus and its subspecies. The nuclear gene genealogy suggests that isolated wetlands used by larval D. moiwanus derive from the ancestral riverine habitats of D. nanus and other Davidius species. The COI sequence divergence among local populations was much greater in D. moiwanus than in D. nanus, which may be the result of differences in the dispersal ranges associated with the habitat types of these species.
Eukaryotic genomic DNA is organized into loop structures by attachments to the nuclear matrix. These attachments to the nuclear matrix have been supposed to form the boundaries of chromosomal DNA. Insulators or boundary elements are defined by two characteristics: they interrupt promoter-enhancer communications when inserted between them, and they suppress the silencing of transgenes stably integrated into inactive chromosomal domains. We recently identified an insulator element in the upstream region of the sea urchin arylsulfatase (HpArs) gene that shows both enhancer blocking and suppression of position effects. Here, we report that Unichrom, originally identified by its G-stretch DNA binding capability, is a nuclear matrix protein that binds to the Ars insulator and canonical nuclear matrix attachment regions (MARs). We also show that Unichrom recognizes the minor groove of the AT-rich region within the Ars insulator, which may have a base-unpairing property, as well as the G-stretch DNA. Furthermore, Unichrom selectively interacts with poly(dG)•poly(dC), poly(dA)•poly(dT) and poly(dAT)•poly(dAT), but not with poly(dGC)•poly(dGC). Unichrom also shows high affinity for single-stranded G- and C-stretches. We discuss the DNA binding motif of Unichrom and the function of Unichrom in the nuclear matrix.
In teleosts, the distribution of neurons in the preoptic-hypothalamic region and their associated neurohypophysial hormones, such as vasotocin (VT), appears to be different among species. This differential distribution is thought to reflect the social and/or sexual status of individuals within a species. In the present study, we analyzed the number, size and the distribution of vasotocin/iso-tocin (VT/IT) neurons in the brains of both male and female medaka (Oryzias latipes) using immu-nohistochemistry. VT/IT neurons were similarly located in an inverted L-shape in the nucleus preopticus in both gender, as has been already reported in salmonids. However, computer-assisted image analysis revealed sexual dimorphism in the number of VT/IT-immunoreactive (ir) neurons, with greater numbers found in males as compared to females. Further, in the female brain, the number of VT/IT-ir neurons decreased significantly after spawning. In pre-spawning compared to post-spawning females, the small-sized VT/IT-ir neurons dominated. Sexual differentiation of the medaka is fully dependent upon the steroid status during the early developmental stages and steroids are also known to trigger gender-specific behavior in the adult medaka. Our findings strongly suggest that VT and/or IT neurons may be functionally related to ovulation and/or the reproductive axes through connections to their steroidal status.
For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudotestcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis.
Avian eggs possess a shell membrane in the shape of an asymmetrical ellipsoid and with a limiting membrane that is a smooth layer of homogeneous, dense materials. We describe the role of the magnumisthmus junction (MIJ) of the oviduct in the formation of the avian-type shell membrane in the domestic fowl Gallus domesticus. The narrow width of the lumen at the MIJ indirectly participates in the determination of the asymmetrical ellipsoid shape of eggs that are encased by the egg-white layer and subsequently by the perialbumen layer (PL) and the shell membrane. The PL reacts with Alcian blue and exists between the egg white and the limiting membrane. It is added to the ovulating egg at the MIJ and covers the outermost surface of the egg-white layer. The function of the PL is to provide a smooth surface by covering the irregular surface of the egg-white layer. The materials of the PL consist of an Alcian blue-positive polysaccharide (or glycoprotein) of 240 kDa and five proteins of 135, 116, 72, 49, and 46 kDa. The isolated materials have an affinity to bind with the egg-white mass. An antiserum against quail PL materials stains the domestic fowl PL and secretory cells of the luminal epithelium at the MIJ, and cross-reacts with the molecules of 240, 135, and 116 kDa.
By using published experimental values of the standard oxygen (O2) equilibrium curve and the in vivo arterial and venous O2 pressure (PO2) of fetal and maternal blood in five mammalian species (human, cow, pig, sheep, and horse), we investigated the relationship between the efficiency of O2 delivery and the effectiveness of the Bohr shift, and discussed the significance of cooperativity for mammalian Hb. The O2 delivery of fetal blood was more efficient than that of maternal blood, and the effectiveness of the Bohr shift at both O2 loading and release sites of fetal blood was high. A linear relationship was observed between the efficiency of O2 delivery and the effectiveness of the Bohr shift at O2 loading sites of the five mammalian species. In both fetal and maternal blood, the theoretically obtained optimal P50 value for O2 delivery (optP50(OD)) was nearly equal to the optimal P50 value for the effectiveness of the Bohr shift at the O2 loading site (optP50(BS)(loading)). This phenomenon was favorable for fetal blood to uptake O2 from maternal blood with the aid of the Bohr shift and to deliver a large amount of O2 to the tissues. The optP50s for the effectiveness of the Bohr shift at given arterial PO2 (PaO2) and venous PO2 (PvMO2) were derived as follows: optP50(BS)(loading) = PaO2((n 1)/(n-1))1/n, and optP50(BS)(release) = PvO2((n 1)/(n-1))1/n. The relationship between in vivo PO2s and n, PaO2/PvO2 = ((n 1)/(n-1))2/n, was derived by letting optP50 for the efficiency of O2 delivery be equal to that for the effectiveness of the Bohr shift.
Didemnum molle is a colonial ascidian that harbors the prokaryotic photosymbiont Prochloron in its cloacal cavity. Colonies occur over a relatively wide bathymetric range (approximately 0–30 m), and colony color is widely variable, partly depending on depth. Colonies in shallow sites are bright white, with densely distributed spicules, and often with brown or dark gray pigmentation, while colonies in deeper sites are less pigmented, with sparsely distributed spicules. Didemnum molle colonies contain mycosporine-like amino acids (MAAs) as UV-absorbing substances. These include mycosporine-glycine, shinorine, and porphyra-334. Among colonies from 5, 10, 15, and 20-m depths, the concentration of total MAAs was significantly high at 10 m and low at 20 m. Colonies at 10 m need to maintain low spicule densities to have enough photosynthetically active radiation (PAR) to maintain the photosymbionts, and they probably concentrate MAAs to block UV radiation without attenuating PAR. Because high levels of PAR cause photoinhibition of photosynthesis, spicules and pigment cells would be more effective for photoprotection in shallow water. Colonies of D. molle may adjust the light conditions for photosymbionts by combining MAAs, spicules, and pigment cells in varying amounts.
The honeycomb grouper, Epinephelus merra, is a protogynous hermaphrodite fish. Sex steroid hormones play key roles in sex change of this species. A significant drop in endogenous estradiol- 17β (E2) levels alone triggers female-to–male sex change, and the subsequent elevation of 11-ketotestosterone (11KT) levels correlates with the progression of spermatogenesis. To elucidate the role of an androgen in sex change, we attempted to induce female-to–male sex change by exogenous 11KT treatments. The 75-day 11KT treatment caused 100% masculinization of pre-spawning females. Ovaries of the control (vehicle-treated) fish had oocytes at various stages of oogenesis, while the gonads of the 11KT-treated fish had transformed into testes; these contained spermatogenic germ cells at various stages, including an accumulation of spermatozoa in the sperm duct. In the sex-changed fish, plasma levels of E2 were significantly low, while both testosterone (T) and 11KT were significantly increased. Our results suggest that 11KT plays an important role in sex change in the honeycomb grouper. Whether the mechanism of 11KT-induced female-to–male sex change acts through direct stimulation of spermatogenesis in the ovary or via the inhibition of estrogen synthesis remains to be clarified.
The markless trout (iwame, Oncorhynchus iwame) has long been suspected not to be an independent species, but rather a markless mutant form of the red-spotted masu salmon (amago, O. masou ishikawae). Nevertheless, no field study has examined this issue. Here we report a field study on the reproductive ecology of iwame and amago coexisting in the upper stream of the Inabe River. We found that iwame and amago mate sympatrically, simultaneously, and randomly, and observed five cases of heterogeneous oviposition between the two. Our results suggest that no pre-mating reproductive isolation exists between iwame and amago. Because previous studies have shown the absence of post-mating isolation, we propose that iwame and amago are the same species. Iwame should be considered as a markless form of the red-spotted masu salmon, and O. iwame as a junior synonym of O. masou ishikawae.
Sex is determined genetically in amphibians, but is reversed occasionally by steroid hormones. The phenotypic sex of some amphibian species can be reversed from male to female by estrogens. Estrogens, which are synthesized from testosterone irreversibly by the enzyme P450 aromatase (CYP19), are essential for ovarian development in vertebrates. CYP19 expression is reportedly regulated by steroidogenic factor-1 (SF-1), also designated as Ad4BP, in fish and mammals. However, it is unknown if this is also the case in amphibians. Thus, to elucidate the role of SF-1 in CYP19 gene expression in the gonad of amphibians, it is necessary to isolate and characterize the promoter region of the CYP19 gene of amphibians. For this purpose, we first cloned the promoter region of CYP19 from genomic DNA fragments of the frog Rana rugosa. As a result, a potential binding site of SF-1 was found in the region. When a luciferase promoter assay in HEK 293 cells was carried out to examine the ability of SF-1 as a transcriptional regulator, we found that R. rugosa SF-1 stimulated the expression of the CYP19 gene of the tilapia Oreochromis niloticus, but not that of the frogs R. rugosa and Xenopus laevis. RT-PCR analysis revealed that CYP19 mRNA was expressed at a higher level in the indifferent gonads of females than in those of males. This was also true to SF-1 mRNA In addition, FISH analysis showed that the CYP19 gene was located on chromosome 3 of R. rugosa. Taken together, our data suggest that CYP19, an autosomal gene, is expressed in the undifferentiated gonads to an extent greater in females than in males, but its expression probably is not regulated by SF-1 alone. Another factor(s) may be required if SF-1 promotes the expression of the CYP19 gene in R. rugosa as it does in fish and mammals.
Taxonomic status of the zoanthid genera Palythoa and Protopalythoa has been in question for almost a century. Separation of the two genera has been based on traditional morphological methods (colony and polyp form, nematocyst size and form, and number of septa), with Palythoa polyps embedded in a well developed coenenchyme and Protopalythoa polyps standing free and clear of the coenenchyme. Here we sequenced two mitochondrial regions, the cytochrome oxidase I (COI) gene and 16S ribosomal DNA (16S rDNA) genes, from Palythoa and Protopalythoa samples from various parts of the world and performed phylogenetic analyses of the sequence data. The phylogenetic trees for both COI and 16S rDNA from Palythoa and Protopalythoa show four monophyletic groups (designated Palythoa tuberculosa, Palythoa heliodiscus, Palythoa mutuki 1, and Palythoa mutuki 2), with levels of sequence divergence (COI and 16S rDNA divergence approximately 0.0~1.1%) similar to or lower than that previously found among congeneric species within the closely related genus Zoanthus. Surprisingly, sequence differences among Palythoa tuberculosa, Palythoa mutuki 1, and Palythoa mutuki 2 were negligible (0.0~0.2% for both COI and 16S rDNA), potentially indicating relationships below the species level. Our sequences align well with the few Palythoa and Protopalythoa sequences reported to date. These findings strongly indicate that our samples represent a minimum of two and possibly up to four species (the Palythoa tuberculosa -P. mutuki 1 - P. mutuki 2 group, and P. heliodiscus) within the genus Palythoa, and that the genus Protopalythoa is erroneous nomenclature.
The taxonomy of the Vietnamese species of the social wasp subfamily Vespinae is revised. Vespa aurariaSmith, 1852, is synonymized under V. velutina Lepeletier, 1836. Vespula koreensis (Radosz-kowski, 1887) is recorded as new for Viet Nam, and its color characters are described. A key to vespine species of Viet Nam based on morphological characters is provided.
Three new species of dicyemid mesozoans are described from the renal appendages of Amphioctopus fangsiao, collected off Akashi, in Harima Nada, and from Osaka Bay. Dicyema akashiense n. sp. is a small species that reaches about 900 μm in length. The vermiform stages are characterized as having 15–17 peripheral cells, a conical calotte, and an axial cell that extends to the base of the metapolar cells. Infusoriform embryos consist of 37 cells; two nuclei are present in each urn cell, and the refringent bodies are solid. Dicyema helocephalum n. sp. is a small species that reaches about 800 μm in length. The vermiform stages are characterized as having 22 peripheral cells, a disc-shaped calotte, and an axial cell that extends to the base of the propolar cells. Infusoriform embryos consist of 37 cells; a single nucleus is present in each urn cell, and the refringent bodies are solid. Dicyema awajiense n. sp. is a small species that reaches about 300 μm in length. The vermiform stages are characterized as having 22 peripheral cells, a conical calotte, and an axial cell that extends to the middle of the propolar cells. Infusoriform embryos consist of 37 cells; a single nucleus is present in each urn cell, and the refringent bodies are solid.
In A. fangsiao various occurrence patterns of dicyemid species were observed, including instances where different dicyemid species were found in the renal appendage on each side. This suggests that dicyemids infect each renal appendage independently. The prevalence, reproductive traits, calotte shapes, and co-occurrence patterns of dicyemids are briefly discussed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere