Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Context. Little is known about wildlife harvesting by licensed recreational hunters in Australia, where both native and introduced species are hunted. It is important to understand harvest trends to assess sustainability for native species and implications for population control of introduced species.
Aim. The aim of this study was to analyse trends in hunter participation, activity and efficiency, and wildlife harvest, including effects of climate, in Victoria, Australia, for three game species groups: introduced deer, native waterfowl (ducks) and one native grassland species, stubble quail (Coturnix pectoralis).
Methods. Telephone surveys of a random sample of licenced Victorian hunters were performed annually from 2009 to 2019. Hunters were asked to quantify their hunting effort and the number of animals harvested. The respondents’ answers were analysed to estimate measures of hunter success, activity and efficiency. Bayesian modelling was applied to these data, accounting for changes over time, differences between survey periods for all licence types, and random effects for over-dispersion. The effect of climate on game bird hunter activity and harvest was estimated, as measured by the El Niño-Southern Oscillation (ENSO).
Results. Over 11 years, annual deer harvest (all species) increased exponentially, at a mean annual rate of 17% (95% credible interval: 14–21%), and the number of deer hunters increased at 8% (5–11%). In contrast, for ducks and stubble quail, hunter numbers remained relatively unchanged, with no evidence of consistent change to total harvests over time, unrelated to changes in environmental conditions or regulations. The annual duck harvest was influenced by ENSO and hunting regulations. The annual stubble quail harvest exhibited ‘boom-and-bust’ dynamics, with an exceptionally large harvest immediately after a La Niña season.
Conclusions. Long-term monitoring of harvest trends in south-eastern Australia revealed stark differences between introduced deer and native birds: harvest of deer increased rapidly whereas equivalent rates for game birds were either stable or declining. Seasonal effects had a strong influence on game bird harvest. Environmental and regulatory conditions were influential for harvest outcomes for ducks and stubble quail.
Implications. This study filled a key knowledge gap around managing harvesting of game species, but increased scrutiny is warranted in this field.
Context. Monitoring spatial and temporal change in relative abundance using statistically powerful designs is a critical aspect of wildlife management. Many indices of relative abundance are available, but information regarding their influence on statistical power is limited.
Aims. We compared the statistical power associated with occurrence-based and frequency-based indices derived from faecal pellet counts and camera trapping to detect changes in the activity of five mammalian herbivores.
Methods. We deployed camera traps and counted faecal pellets in native vegetation subjected to four management treatments in south-eastern Australia. We used simulation coupled with generalised linear mixed models to investigate the statistical power associated with a range of effect sizes for each combination of species, survey method and data type.
Key results. The index derived from camera frequency data provided the greatest statistical power to detect species’ responses and was the only index capable of detecting small effect sizes with high power. The occurrence index from camera trapping did not provide the same level of statistical power. Indices derived from faecal pellet frequency data also detected spatial and temporal changes in activity levels for some species, but large numbers of plots were required to detect medium to large effect sizes. High power to detect medium to large effects could be achieved using occurrence indices derived from pellet presence–absence data, but required larger sample sizes compared to the camera frequency index.
Conclusions. Both camera trapping and pellet counts can be applied to simultaneously monitor the activity of multiple mammalian herbivore species with differing activity patterns, behaviour, body size and densities, in open and closed habitat. However, using frequency indices derived from camera trapping may improve management outcomes by maximising the statistical power of monitoring programs to detect changes in abundance and habitat use.
Implications. Frequency indices derived from camera trapping are expected to provide the most efficient method to detect changes in abundance. Where the use of cameras is cost prohibitive, occurrence indices derived from pellet presence–absence data can be used to detect medium to large effect sizes with high power. Nonetheless, the cost-effectiveness of camera trapping will improve as equipment costs are reduced and advances in automated image recognition and processing software are made.
Context. Vector-borne diseases have caused global pandemics and were responsible for more human deaths than all other causes combined in prior centuries. In the past 60 years, prevention and control programs have helped reduce human mortality from vector-borne diseases, but impacts of those control programs on wildlife populations are not well documented. Insecticides are used to reduce vector-borne diseases in several critically endangered animal populations. Although insecticides are often effective at controlling targeted vectors, their effects on non-target species have rarely been examined.
Aims. To evaluate the impact of deltamethrin (an insecticide) on sympatric non-target species in areas affected by sylvatic plague, a lethal flea-borne zoonosis.
Methods. We compared flea control and the effect of deltamethrin application on survival of non-target small mammals (Peromyscus maniculatus, Chaetodipus hispidus, Microtus spp., and Reithrodontomys megalotis) at three study locations in South Dakota, Colorado, and Idaho, USA.
Key results. Deltamethrin treatments were more effective in reducing fleas on P. maniculatus and Microtus spp. than C. hispidus. Following burrow, nest, and bait-station applications of deltamethrin dust, apparent small mammal survival was greater for non-treatment animals than for flea-reduction animals. However, the magnitude of the difference between treated and non-treated animals differed among host species, study location, time interval, and treatment application method.
Conclusions. Our results suggest that considering the impact of deltamethrin on co-occurring non-target species before widespread application in future insecticide applications is warranted.
Context. Fire severity and frequency is predicted to increase over the remainder of the 21st century in Australia’s temperate forests; therefore, the effects of fire severity on forest-dependant species is of major conservation concern.
Aims. Determining the short-term (<1 year) effect of fire severity on a forest-dependant species, the greater glider, Petauroides volans, in Monga National Park, south-eastern New South Wales.
Methods. Three fire-severity classes were investigated, namely, low (canopy unburnt), moderate (partial canopy burn) and high (complete canopy consumption). Fifteen randomly allocated sites were visited in total, with five sites in each fire-severity class being visited on three separate occasions. Spotlighting of two off-track transects per site was completed over a 4-week period by using multi-covariate distance sampling (MCDS) to estimate greater glider densities at each fire-severity class.
Key results. An overall mean greater glider density estimate of 0.456 ha−1 (95% confidence interval (CI) 0.256–0.654 ha−1) was calculated across all sites in Monga National Park. Density estimates varied among fire-severity classes; low 0.779 ha−1 (95% CI 0.358–1.692 ha−1), moderate 0.472 ha−1 (95% CI 0.262–0.848 ha−1), and high 0.077 ha−1 (95% CI 0.0142–0.414 ha−1).
Conclusions. Distance sampling estimates suggested that areas affected by high-severity fire have lower densities of greater gliders.
Implications. The importance of areas experiencing low fire severity as a source of greater glider refugia during wildfire events is evident. Under a changing climate, frequent major wildfire events may significantly affect population viability of greater gliders if insufficient time between fires allow for population recovery.
Context. Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims. The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons.
Methods. In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation.
Key results. Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks.
Conclusions and implications. We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond.
Context. Management of wild horses (Equus caballus) on public lands in the western United States by gathering and removing surplus animals has historically failed to keep up with annual population growth. Research has yielded several effective contraceptive agents but these agents have not been widely applied, especially on difficult-to-access horses occupying expansive ranges.
Aims. This study examined wild horse population growth reduction associated with controlled-release PZP-22 immunocontraceptive vaccine treatments in two challenging herd management areas (HMA) in the western United States.
Methods. Populations of wild horse herds at Cedar Mountain HMA, Utah (CM), and Sand Wash Basin HMA, Colorado (SWB), USA, were primed with PZP-22 in gathers conducted in 2008 and 2012 (CM only) and boosted with PZP-22 or native PZP administered by dart (SWB in 2010) or by hand (CM in 2012). The two herds were intensively observed between 2008 and 2015. Population size, mortality, reproductive rates and growth rates were calculated from exhaustive inventories of known individuals.
Key results. Adult and foal mortality were low at both sites. Consequently, both reproductive rates and population growth rates were strongly predicted by a fertility control index, the product of proportion of mares treated and vaccine efficacy. Following the 2012 CM gather, at which 69% of the mares present were treated, only 20% of mares in the herd foaled, and population growth rate decreased by 74% relative to baseline levels, emphasising the importance of treating a large majority of mares.
Conclusions. Contraception can significantly reduce rates of population growth in wild horse herds that occupy large areas and are challenging to access. Multiple-year efforts and recruitment of new mares into the treatment population beyond the initial application are needed to achieve a biologically significant impact.
Implications. The strong quantitative relationship between proportion of mares treated and vaccine efficacy and population growth rates should allow managers to better forecast the effort and number of removals (if any) needed to cost-effectively regulate wild horse population numbers and protect the range ecosystem.
Context. Among processes involved in colour polymorphism, geographic variation in morph composition and frequency has been attracting interest since it reflects morph local adaptation. A recent study in the Pyrenees associated the pattern of geographic variation in morph frequency of the common wall lizard with the divergence in climatic niches, supporting the hypothesis that morphs represent alternative local climatic adaptations. However, the Pyrenees represent only a small portion of the species range.
Aims. We modelled the ecological niches of Italian morphs using the same procedure adopted for the Pyrenees to check whether the effects detected at local scales (i.e. the Pyrenees) were repeatable at regional scales (i.e. Italy). This generalisation is needed to investigate how natural selection maintains locally adapted polymorphisms.
Methods. We classified each locality (120 populations) according to the presence/absence of morphs, and independent Ecological Niche Models (ENMs) against the same background were fitted. Receiver Operating Curves accounting for sampling biases, equivalency and similarity tests were used to check and compare models accounting for spatial distribution of data.
Key results. Morph-specific ENMs did not reproduce any of the patterns detected in the Pyrenees. Any difference among morphs disappeared after controlling for morph spatial distribution. Since occurrence points of the rarest morphs were a subsample of the occurrence points of the most common morph, it is not possible to separate the effects of true ecological differences among morphs from the effects of the spatial distribution patterns of morph occurrence.
Conclusions. Using presence data not specifically collected for ENM comparisons does not allow reliable assessments of morph niche segregation. Our analysis points out the need to be very cautious in ecological interpretations of ENMs built on presence/background or presence-only data when occurrences are spatially nested.
Implications. When dealing with data not specifically collected according to a targeted design, it is not legitimate to compare ENMs with completely nested occurrence points, because this approach can not exclude the possibility that ENM differences were the result of a spatial subsampling. This type of bias is probably largely underestimated, and it may lead to serious misinterpretations as shown in this study.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere