Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Amit J. Jhala, Vipan Kumar, Ramawatar Yadav, Prashant Jha, Mithila Jugulam, Martin M. Williams II, Nicholas E. Hausman, Franck E. Dayan, Paul M. Burton, Richard P. Dale, Jason K. Norsworthy
The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields in the United States. The objectives of this review were to summarize 1) the history of HPPD-inhibitor herbicides and their use in the United States; 2) HPPD-inhibitor resistant weeds, their mechanism of resistance, and management; 3) interaction of HPPD-inhibitor herbicides with other herbicides; and 4) the future of HPPD-inhibitor-resistant crops. As of 2022, three broadleaf weeds (Palmer amaranth, waterhemp, and wild radish) have evolved resistance to the HPPD inhibitor. The predominance of metabolic resistance to HPPD inhibitor was found in aforementioned three weed species. Management of HPPD-inhibitor-resistant weeds can be accomplished using alternate herbicides such as glyphosate, glufosinate, 2,4-D, or dicamba; however, metabolic resistance poses a serious challenge, because the weeds may be cross-resistant to other herbicide sites of action, leading to limited herbicide options. An HPPD-inhibitor herbicide is commonly applied with a photosystem II (PS II) inhibitor to increase efficacy and weed control spectrum. The synergism with an HPPD inhibitor arises from depletion of plastoquinones, which allows increased binding of a PS II inhibitor to the D1 protein. New HPPD inhibitors from the azole carboxamides class are in development and expected to be available in the near future. HPPD-inhibitor-resistant crops have been developed through overexpression of a resistant bacterial HPPD enzyme in plants and the overexpression of transgenes for HPPD and a microbial gene that enhances the production of the HPPD substrate. Isoxaflutole-resistant soybean is commercially available, and it is expected that soybean resistant to other HPPD inhibitor herbicides such as mesotrione, stacked with resistance to other herbicides, will be available in the near future.
“Weedy” red rice is a problematic weed with phenotypic similarities to cultivated rice. Limited herbicide availability has driven a need for nonchemical control options for managing this pest. One preplanting strategy that is being explored is the stale seedbed methodology, which aims to maximize soil seedbank withdrawals via germination. This technique is adapted in rice by flooding a field, waiting for germination and emergence of weed seedlings, and completing the method with a mechanical or chemical control application. Optimization of this process is dependent on maximizing weed seed germination, which is primarily influenced by both temperature and moisture availability. Germinability across a range of these factors is not well understood in California red rice. Thus, this study aimed to determine germinability of California red rice accessions under various temperature and water potential treatments. Previously described red rice accessions 1, 2, 3, and 5, along with ‘M206’, a common California rice cultivar, were exposed to temperatures from 10 to 40 C in 5 C increments in combination with water potentials of 0, –0.2, –0.4, or –0.8 MPa until either germination or weed seed decay occurred. Statistical analysis indicated a three-way interaction between accession, temperature, and water potential. Germination reached 95% or greater when seeds were exposed to temperatures from 20 to 35 C in combination with 0 or –0.2 MPa. Germination was lowest when seeds were water stressed (–0.8 MPa) and when temperatures were colder than 20 C or warmer than 35 C. The ‘M206’ cultivar was utilized for comparison and demonstrated cold tolerance by germinating at 10 C, whereas weedy accessions 1, 2, and 3 did not. When temperatures were at or above 15 C, however, ‘M206’ germinated less often compared with all weedy accessions. Historical preplant temperatures in this region align with those required for weedy rice germination. Thus, the stale seedbed methodology is a viable strategy in years when ample floodwater is available.
Nomenclature: red rice; Oryza spp.; rice; Oryza sativa L.
Potato is the third most important staple food crop globally following rice and wheat. In the United States, potato is grown on approximately 410,000 ha with a farm-gate value of US$1,032 million. In Canada, potato is grown on approximately 134,000 ha with a farm-gate value of US$235 million. The objective of this manuscript, compiled by the Weed Science Society of America Weed Loss Committee, was to estimate potato yield loss caused by weed interference. Potato yield data from weedy and weed-free plots (or plots with >95% weed control) was obtained from researchers working on weed management in potato in the United States and Canada or from published manuscripts from 2000 to 2018. Potato yield loss from weed interference was 12% to 61% when no weed management tactics were implemented. The average yield loss for all states/provinces (where data was obtained) due to weed interference was 44%. Weed interference would cause a farm-gate loss of approximately US$465 million and US$61 in the United States and Canada, respectively, if weeds are not controlled. These results indicate that weed management is critical for successful potato production, and that an ongoing need for research exists on weed management in this crop.
Nomenclature: Barnyardgrass; Echinochloa crus-galli (L.) Beauv.; common lambsquarters; Chenopodium album L.; green foxtail; Setaria viridis (L.) Beauv.; hairy nightshade; Solanum physalifolium Rusby; kochia; Bassia scoparia (L.) A.J. Scott; quackgrass; Elytriga repensL.; redroot pigweed; Amaranthus retroflexus L.; potato; Solanum tuberosum L.
KEYWORDS: Critical timing for weed removal (CTWR), critical weed-free period (CWFP), critical period for weed control (CPWC), Cover crop, Relative yield
Soybean is the world's most widely grown leguminous crop and is an important source of oil and protein for food and feed in addition to other industrial uses. However, herbicide-resistant and troublesome weed control challenges limit yield potential and threaten conservation tillage (CT) systems. Cover crops have been widely adopted as an integrated pest management component in CT systems to suppress weeds and maintain soybean yield potential. A 3-yr field experiment was conducted to estimate the influence of a cereal rye cover crop following CT on the critical period for weed control (CPWC) in soybean. The experiment was implemented in a split-plot design in which main plots as CT following cover crop (CT + CC), CT following winter fallow (CT + WF), and conventional tillage (CVT), and subplots were multiple durations of weed-free and weed interference. Results showed that the estimated CPWC of CT + CC and CT + WF treatments was 0 wk and >7 wk, respectively, in 2018. In 2019, the estimated CPWC was 0 wk, 5.0 wk, and 1.3 wk under CT + CC, CT + WF, and CVT treatments, respectively. In 2020, the estimated CPWC was 3.5 wk, >6.2 wk, and 0 wk under CT + CC, CT + WF, and CVT treatments, respectively. The presence of a cover crop delayed the CTWR and caused an early beginning of the CWFP compared with CT + WF treatment, and hence shortened the CPWC in 2018 and 2019. In conclusion, the CT + WF system did not reduce the weed competition and subsequent yield loss in soybean compared to the CT + CC system.
Waterhemp control in Ontario has increased in complexity due to the evolution of biotypes that are resistant to five herbicide modes of action (Groups 2, 5, 9, 14, and 27 as categorized by the Weed Science Society of America). Four field trials were carried out over a 2-yr period in 2021 and 2022 to assess the control of multiple-herbicide-resistant (MHR) waterhemp biotypes in glyphosate/glufosinate/2,4-D-resistant (GG2R) soybean using one- and two-pass herbicide programs. S-metolachlor/metribuzin, pyroxasulfone/sulfentrazone, pyroxasulfone/flumioxazin, and pyroxasulfone + metribuzin applied preemergence (PRE) controlled MHR waterhemp similarly by 46%, 63%, 60%, and 69%, respectively, at 8 wk after postemergence (POST) application (WAA-B). A one-pass application of 2,4-D choline/glyphosate DMA POST provided greater control of MHR waterhemp than glufosinate. Two-pass herbicide programs of a PRE herbicide followed by (fb) a POST-applied herbicide resulted in greater MHR waterhemp control compared to a single PRE or POST herbicide application. PRE herbicides fb glufosinate or 2,4-D choline/glyphosate DMA POST controlled MHR waterhemp by 74% to 91% and by 84% to 96%, respectively, at 8 WAA-B. Two-pass herbicide applications of an effective PRE residual herbicide fb 2,4-D choline/glyphosate DMA POST in GG2R soybean can effectively manage waterhemp that is resistant to herbicides in Groups 2, 5, 9, 14, and 27.
Glyphosate-resistant (GR) biotypes of horseweed were first confirmed in southern Ontario in 2010 and have spread across southern Ontario. A total of four field experiments were conducted between 2021 and 2022 to determine GR horseweed control with one- and two-pass herbicide programs in glyphosate/glufosinate/2,4-D-resistant (GG2R) soybean. 2,4-D choline/glyphosate DMA, halauxifen-methyl, and saflufenacil applied preplant (PP) controlled GR horseweed by 59%, 72%, and 78% 8 wk after postemergence (POST) application (WAA-POST); there was no improvement of GR horseweed control when 2,4-D choline/glyphosate DMA was added to saflufenacil; in contrast, there was improved GR horseweed control when saflufenacil was added to 2,4-D choline/glyphosate DMA. Glufosinate and 2,4-D choline/glyphosate DMA applied POST controlled glyphosate-resistant horseweed by 71% and 86%, respectively, 8 WAA-POST. Two-pass herbicide programs of a PP followed by POST application provided greater GR horseweed control than a PP or POST herbicide applied alone. Glufosinate or 2,4-D choline/glyphosate DMA applied POST following 2,4-D choline/glyphosate DMA or halauxifen-methyl applied PP improved GR horseweed control by 29% to 38% and 24%, respectively at 8 WAA-POST. The application of 2,4-D choline/glyphosate DMA applied POST following saflufenacil applied PP improved control by 20% 8 WAA-POST; there was no improvement of GR horseweed control when glufosinate was applied POST following saflufenacil applied PP or when either POST herbicide was applied following saflufenacil + 2,4-D choline/glyphosate DMA applied PP. When used in a two-pass program, 2,4-D choline/glyphosate DMA POST provided 2% to 3% greater control of GR horseweed than glufosinate.
Nomenclature: 2,4-D choline/glyphosate DMA; dicamba; glyphosate; glufosinate; halauxifen-methyl; saflufenacil; soybean, Glycine max (L.) Merr.; horseweed, Erigeron canadensis L.
The commercialization of crops that are resistant to 2,4-D plus glyphosate provided an opportunity to growers to apply the herbicide postemergence. However, the potential drift injury of these herbicides to peanuts grown near crops that are resistant to 2,4-D plus glyphosate is concerning. Field experiments were conducted in 2019 and 2020 to evaluate peanut response when exposed at 25, 50, and 75 d after planting (DAP) corresponding to vegetative, flowering, and pod development stages, respectively, to reduced rates of 1/512×, 1/128×, 1/32×, and 1/8× of the labeled rate of 2,4-D plus glyphosate (i.e., 1,077 + 1,132 g ae ha–1, respectively). 2,4-D plus glyphosate was more injurious to peanuts when exposed at 25 DAP compared with 50 and 75 DAP. Similarly, greater canopy height (12%) and canopy width (16%) reductions were observed at 25 DAP compared with 50 and 75 DAP exposure timings (3% to 9%). This result indicates that peanut is more sensitive to 2,4-D plus glyphosate exposure at the vegetative growth stage than at the flowering and pod development stages. However, yield reductions (13% to 16%) were not different between 25, 50, or 75 DAT exposure timings. Regression analysis indicated a linear response for peanut injury, canopy height, width, and yield reduction with an increasing rate of 2,4-D plus glyphosate. The highest rate of 2,4-D plus glyphosate (1/8× of the label rate) resulted in 38%, 22%, and 23% peanut injury, canopy height, and width reduction at 4 wk after treatment, and 33% yield reduction. There was a correlation between peanut injury and yield reduction, with Pearson's rho values ranging from 0.70 to 0.73. The findings suggest that peanut injury rating data after 2,4-D plus glyphosate drift can be useful for estimating potential yield losses.
Nomenclature: 2; 4-D; glyphosate; peanut, Arachis hypogaea L.
Levi D. Moore, Katherine M. Jennings, David W. Monks, Michael D. Boyette, Ramon G. Leon, David L. Jordan, Stephen J. Ippolito, Colton D. Blankenship, Patrick Chang
Field studies were conducted to assess the efficacy of physical weed management of Palmer amaranth management in cucumber, peanut, and sweetpotato. Treatments were arranged in a 3 × 4 factorial in which the first factor included a treatment method of electrical, mechanical, or hand-roguing Palmer amaranth control and the second factor consisted of treatments applied when Palmer amaranth was approximately 0.3, 0.6, 0.9, or 1.2 m above the crop canopy. Four wk after treatment (WAT), the electrical applications controlled Palmer amaranth at least 27 percentage points more than the mechanical applications when applied at the 0.3- and 0.6-m timings. At the 0.9- and 1.2-m application timings 4 WAT, electrical and mechanical applications controlled Palmer amaranth by at most 87%. Though hand removal generally resulted in the greatest peanut pod count and total sweetpotato yield, mechanical and electrical control resulted in similar yield to the hand-rogued plots, depending on the treatment timing. With additional research to provide insight into the optimal applications, there is potential for electrical control and mechanical control to be used as alternatives to hand removal. Additional studies were conducted to determine the effects of electrical treatments on Palmer amaranth seed production and viability. Treatments consisted of electricity applied to Palmer amaranth at first visible inflorescence, 2 wk after first visible inflorescence (WAI) or 4 WAI. Treatments at varying reproductive maturities did not reduce the seed production immediately after treatment. However, after treatment, plants primarily died and ceased maturation, reducing seed production assessed at 4 WAI by 93% and 70% when treated at 0 and 2 WAI, respectively. Treatments did not have a negative effect on germination or seedling length.
Nomenclature: Palmer amaranth; Amaranthus palmeri S. Watson; cucumber; Cucumis sativus L. ‘Maxi pick’; peanut; Arachis hypogaea L. ‘Walton’; sweetpotato; Ipomoea batatas (L.) Lam. ‘Covington'
Weed management is consistently ranked among the top priorities of the United States sweetpotato industry. To provide additional weed and insect management strategies for sweetpotato, we initiated development of insect-resistant germplasm that also has weed tolerance by breeding and selecting for sweetpotato clones that are fast growing and have semi-erect to erect canopy architecture. Field studies were conducted in 2018 and 2019 in Charleston, South Carolina, to quantify the effects of weed-free interval and sweetpotato clone on weed counts for naturally occurring weed species, storage root yield, and insect resistance to the major pests of sweetpotato. Weed-free intervals included plots that were weedy all season and weed-free for 2, 3, and 4 wk after transplanting. Sweetpotato clones evaluated included ‘Beauregard’, ‘Covington’, ‘Monaco’, and six advanced selections with semi-erect to erect plant habit. Significant weed-free interval and sweetpotato clone main effects were observed for all variables measured, but not for their interaction. Two sweetpotato clones, USDA-17-037 and USDA-17-077, were consistent across both years and had the lowest weed counts, exhibited enhanced insect resistance, and were the highest yielding entries. These results demonstrate the potential for development of insect-resistant sweetpotato germplasm with a vigorous, erect plant habit that may be less susceptible to weed interference than cultivars with spreading shoot growth. The combination of germplasm that is both resistant to insect pests and competitive with weeds can provide organic and subsistence sweetpotato growers solutions to these critical issues related to sweetpotato production.
Preemergence (PRE) herbicides are often banded over the entire top of raised beds for broadleaf and grass control in plasticulture vegetable production systems. However, broadleaf and grass weeds may emerge from the planting holes and tears in the plastic mulch. Banded application results in herbicides applied where no holes occur, and therefore, where they are not needed. Our objective is to identify herbicides that do not harm transplanted crops when directed at transplant holes after transplant (POST) with the aim to reduce off-target applications. Therefore, we evaluated tomato and pepper tolerance to PRE herbicides applied to transplant holes 2 wk after transplant and the subsequent effects on crop tolerance and weed density. Halosulfuron, S-metolachlor, metribuzin, and pendimethalin did not injure tomato transplants, reduce height, or reduce yield. Fomesafen caused some tomato injury (7%) but had no effect on other measured parameters in Trial I. All PRE herbicides injured peppers by ≥19%, although no effect on yield was observed. Overall, halosulfuron, S-metolachlor, metribuzin, and pendimethalin can be safely applied to tomato transplant holes 2 wk after transplant with no significant crop injury nor effects on final yield, but none of the evaluated herbicides are safe for use on pepper crops.
Nomenclature: Fomesafen; halosufuron; metribuzin; pendimethalin; S-metolachlor; bell pepper, Capsicum annuum; tomato, Solanum lycopersicum L.
Cole crops including broccoli and collard contribute more than $119 million to Georgia's farm gate value yearly. To ensure maximum profitability, these crops must be planted into weed-free fields. Glyphosate is a tool often used to help achieve this goal because of its broad-spectrum activity on weeds coupled with the knowledge that it poses no threat to the succeeding crop when used as directed. However, recent research suggests that with certain soil textures and production systems, the residual soil activity of glyphosate may damage some crops. Therefore, field experiments were conducted in fall 2019 and 2020 to evaluate transplanted broccoli and collard response to glyphosate applied preplant onto bare soil and what practical mitigation measures could be implemented to reduce crop injury. Herbicide treatments consisted oGf 0, 2.5, or 5 kg ae ha–1 glyphosate applied preplant followed by 1) no mitigation measure, 2) tillage, 3) irrigation, or 4) tillage and irrigation prior to transplanting broccoli and collard by hand. When no mitigation was implemented, the residual activity of glyphosate at 2.5 and 5.0 kg ae ha–1 resulted in 43% to 71% and 79% to 93% injury to broccoli and collard transplants, respectively. This resulted in a 35% to 50% reduction in broccoli marketable head weights and 63% to 71% reduction in collard leaf weights. Irrigation reduced visible damage by 28% to 48%, whereas tillage reduced injury by 43% to 76%, for both crops. Irrigation alleviated yield losses for broccoli but only tillage eliminated yield loss for both crops. Care must be taken when transplanting broccoli and collard into a field recently treated with glyphosate at rates ≥2.5 kg ae ha–1. Its residual activity can damage transplants with injury levels influenced by glyphosate rate, and tillage or irrigation after application and prior to planting.
Nomenclature: Glyphosate; broccoli; Brassica oleracea L. var. italica; collard; Brassica oleracea L. var. viridis
Fall panicum is the most prevalent and problematic weed in rice in Florida. Outdoor studies were conducted in 2021 to determine the effect of flooding on fall panicum growth and its ability to produce and develop panicles. Fall panicum at the two- to four-leaf and four- to six-leaf stages of development were flooded in stock tanks maintained at flooding depths of 0, 10, 15, 20, and 30 cm for 56 d. Plant height, number of tillers and leaves, leaf area, shoot biomass, root biomass, and panicle branches for both fall panicum leaf stages of development decreased with increasing flooding depth. Fall panicum flooded at the two- to four-leaf stage survived flood depth of 15 cm, whereas plants flooded at the four- to six-leaf stage survived and emerged from a flood depth of up to 20 cm. The 10-cm flood depth resulted in the tallest plants with more leaves, tillers, and leaf area for both growth stages. The probability of fall panicum survival and ability to produce panicles decreased as flood depth increased. Flood depth required for 50% survival for four- to six-leaf-stage plants was estimated to occur at 14 cm, whereas that for plants at the two- to four-leaf stage occurred at 12 cm. The flood depth required to reduce panicle branch production by 50% was estimated to be 15 and 20 cm for two- to four-leaf, and four- to six-leaf-stage plants, respectively. These results show that flooding >10 cm is required to significantly reduce fall panicum survival and ability to produce panicles. Since flood level in rice is usually maintained at an average of 10 cm, chemical weed control will be important to supplement flooding for effective control of fall panicum in rice.
Nomenclature: Fall panicum, Panicum dichotomiflorum Michx., PANDI; rice, Oryza sativa L.
If available for use on snap bean, pyroxasulfone would provide valuable preemergence control of troublesome weed species that currently contaminate the crop postharvest. The extent to which snap bean tolerates pyroxasulfone is poorly documented. The objective of this research was to quantify the extent to which pyroxasulfone tolerance exists in a large collection of snap bean cultivars. A snap bean diversity panel of 277 entries was screened for tolerance to sulfentrazone at a rate of 420 g ai ha–1 in a field trial in 2019 and 2020 near Urbana, IL. Snap bean cultivars exhibited variation in tolerance to pyroxasulfone. While a handful of cultivars were tolerant across variable environments, most cultivars were sensitive in the year that had 30% more water supply (rainfall plus sprinkler irrigation) within 3 wk of planting. Low estimates of broad-sense heritability reflect a large influence of the environment on seedling emergence and growth. With a few exceptions, currently, the margin of crop safety across diverse germplasm is insufficient for registration of pyroxasulfone use on snap bean crops.
Nomenclature: Pyroxasulfone; sulfentrazone; snap bean; Phaseolus vulgaris L.
Field studies were conducted in commercial muscadine vineyards in western North Carolina in 2018 and eastern North Carolina in 2019, 2020, and 2021 to determine tolerance of younger (< 9 yr) and older (≥ 9 yr) bearing muscadine grapevines to 2,4-D directed beneath the crop postemergence (POST). Treatments included 2,4-D choline at 0, 0.53, 1.06, 1.60, and 2.13 kg ae ha–1 applied as a single treatment in May or June (spring) at immediate pre-bloom, and sequential treatments at 0.53 followed by (fb) 0.53, 1.06 fb 1.06, 1.6 fb 1.6, or 2.13 fb 2.13 kg ha–1. The first sequential treatment was applied in spring fb another application of the same amount in July (summer) at pre-veraison. No differences in injury on muscadine grapevines were observed from 2,4-D treatments. Differences among treatments were not observed for yield of younger vines. However, for older vines, a difference due to 2,4-D rate was observed in 2018, when yield was higher when 2,4-D was applied at 1.6 kg ha–1 compared with nontreated grapevines, and when 2,4-D was applied at 0.53 and 2.13 kg ha–1. A rate-by-timing interaction was observed in 2019 when yield was lower from 0.53 kg ha–1 2,4-D summer application compared with all other summer treatments but similar to the nontreated. However, no biological pattern was observed from either of these differences. No differences among treatments were observed for fruit pH, titratable acidity, or soluble solid content of either younger or older vines.
Australian grain growers are showing interest in winter-planted sorghum to avoid heat and water stress during the grain-filling stage. Winter-planted sorghum may face competition from winter weeds, including sterile oats, and no herbicides are registered for controlling winter weeds in winter-planted sorghum. The objectives of this study were to (1) identify alternate herbicide options for sterile oats control in winter-sown imidazolinone (IMI)-resistant sorghum and (2) assess the crop injury levels due to herbicides. Sterile oats control with pendimethalin at 0.59 kg ai ha–1, trifluralin at 0.38 kg ai ha–1, and prosulfocarb + S-metolachlor at 2.3 kg ai ha–1 was poor (<30%). Atrazine at 2.7 kg ai ha–1, imazamox + imazapyr at 0.048 kg ai ha–1, and atrazine at 2.7 kg ai ha–1 followed by imazamox + imazapyr at 0.048 kg ai ha–1 reduced the sterile oats biomass by 93%, 96%, and 100% and increased yields by 116%, 136%, and 140%, respectively, compared with nontreated control. Pendimethalin at 0.59 kg ai ha–1 and trifluralin at 0.38 kg ai ha–1 caused phytotoxicity to the crop and gave similar yields to nontreated control. Triallate at 0.8 kg ai ha–1, pyroxasulfone at 0.1 kg ai ha–1, and terbuthylazine at 1.0 kg ai ha–1 provided moderate weed control (44% to 65%) and increased yields by 68%, 108%, and 80%, respectively, compared with nontreated control. This research identified herbicide treatments for the effective control of sterile oats in winter-sown IMI-resistant sorghum that could be used in rotations to reduce the reliance on single herbicide treatments.
Drill-interseeding cover crops into standing corn (V3 to V5 growth stage) provides opportunities for increasing functional diversity in cropping systems by facilitating use of cover crop mixtures that include grass, legume, and brassica species. Designing herbicide-based weed control programs that negotiate tradeoffs between crop protection and environmental goals when interseeding mixtures remains a major challenge. The objective of this study was to use greenhouse-based dose-response assays to describe the relative sensitivity of 12 cover crop species that differ in traits, including taxonomic group and seed mass, to chloroacetamide (acetochlor, dimethenamid, S-metolachlor; Group 15 herbicides as categorized by the Weed Science Society of America) and pyrazole (pyroxasulfone; Group 15) herbicides. Nonlinear models were fit, and effective doses were estimated (ED50) to compare relative sensitivities of cover crop species to each herbicide. Brassica species (winter canola, Dwarf Essex rape, daikon radish) were less sensitive than small-seeded legumes (medium red clover, crimson clover) and grasses (annual ryegrass) in response to each chloroacetamide, but similar in response to pyroxasulfone. Austrian winter pea, a large-seeded legume, was less sensitive to each herbicide compared to other legumes (crimson clover, medium red clover, hairy vetch). Cereal rye and triticale were less sensitive to dimethenamid, S-metolachlor, and pyroxasulfone compared to annual ryegrass, but similar sensitivities were observed for acetochlor. These results suggest that relative differences in sensitivity to chloroacetamide and pyrazole herbicides could be exploited when designing cover crop mixtures for interseeding. It is imperative, however, to use these findings in conjunction with field-based observations of cover crop injury potential in interseeded systems.
The development of an integrated weed management (IWM) strategy for control of multiple herbicide-resistant (MHR) waterhemp can provide field crop producers with a strategy to deplete the number of waterhemp seeds in the soil seedbank. Field experiments were established on two commercial farms in Ontario, Canada, with MHR waterhemp in 2017. The number of waterhemp seeds in the seedbank at the Cottam and Walpole Island sites prior to establishing the experiments was 413 and 40 million seeds ha–1, respectively. The goal of this 9-yr study is to document the depletion in the number of waterhemp seeds in the seedbank after Years 3, 6, and 9 (spring 2020, 2023, and 2026) and to identify management practices that can reduce the number of waterhemp seeds by 95% or more. Relative to the number of seeds in the soil seedbank when the experiment was initiated, at the Cottam site after 3 yr of this experiment, in the “control” treatment (continuous soybean seeded in rows spaced 75 apart, and sprayed with glyphosate) there was a numeric 31% increase in the number of waterhemp seeds in the seedbank; in contrast, in the three-crop rotation of corn/soybean/winter wheat (with or without a cover crop after winter wheat harvest), soybean seeded in rows spaced 37.5 cm apart, with herbicide applications using a total of eight different herbicide modes of action resulted in a 65% to 66% decrease in the number of waterhemp seeds in the soil seedbank. At the Walpole Island site after 3 yr of this experiment, the number of waterhemp seeds in the seedbank was not affected by the IWM programs evaluated. Results indicate that a diversified integrated waterhemp management program dramatically decreased the number of waterhemp seeds in the seedbank at one of two sites.
Nomenclature: Waterhemp, Amaranthus tuberculatus (Moq.) Sauer.; corn; Zea mays L.; soybean; Glycine max L. Merr.; wheat, Triticum aestivum L.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere