Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Biotypes of Palmer amaranth that are resistant to acetolactate synthase (ALS) inhibitor are becoming widespread in western Nebraska. There are limited effective postemergence (POST) herbicides labeled for ALS-inhibitor-resistant Palmer amaranth control in dry edible bean. The objective of this study was to evaluate the efficacy of dimethenamid-P in a sequential preemergence (PRE) fb followed by (fb) POST program at two POST application timings, the first and third trifoliate stages (V1 and V3, respectively), for controlling ALS-inhibitor-resistant Palmer amaranth in dry edible bean. A field study was conducted in 2019, 2020, and 2021 in Scottsbluff, NE. PRE-alone applications of pendimethalin + dimethenamid-P provided inconsistent Palmer amaranth control. Dimethenamid-P applied POST following a PRE application of pendimethalin + dimethenamid-P provided effective (>90%) Palmer amaranth control at 4 wk after V3 only at the V1 application timing in 2019. In 2020 and 2021 dimethenamid-P applied POST at V1 and V3 following a PRE application of pendimethalin + dimethenamid-P provided 99% and 98% Palmer amaranth control at 4 wk after V3, and 98% and 94% Palmer amaranth control at harvest, respectively. Palmer amaranth biomass was reduced by 95% to 99% and by 96% to 98% compared with the -nontreated control when dimethenamid-P was applied POST at V1 and V3, respectively, following a PRE application of pendimethalin + dimethenamid-P in 2020 and 2021. Application of a mixture of dimethenamid-P with imazamox + bentazon POST provided similar results to those of the fomesafen-containing treatments and dimethenamid-P alone POST. Dimethenamid-P applied POST following a PRE application of pendimethalin + dimethenamid-P resulted in similar yield as the fomesafen-containing treatments. If fomesafen is not an option due to the crop rotation interval restriction, using dimethenamid-P in a sequential PRE fb POST program is the only effective alternative to control ALS-inhibitor–resistant Palmer amaranth in Nebraska. The use of dimethenamid-P in a sequential PRE fb POST program, alone or mixed with foliar-active herbicides should be considered by dry edible bean growers who are dealing with ALS-inhibitor-resistant Palmer amaranth.
Nomenclature: Bentazon; dimethenamid-P; fomesafen; imazamox; pendimethalin; Palmer amaranth; Amaranthus palmeri S. Watson; dry edible bean; Phaseolus vulgaris L.
Field and pot experiments were conducted in Greece to study the occurrence of resistance in silky windgrass to acetolactate synthase (ALS)- and acetyl-CoA synthase (ACCase)-inhibiting herbicides. Twenty-four populations of silky windgrass were examined in whole-plant response experiments. High levels of field-evolved resistance to chlorsulfuron (0% to 28% control in terms of fresh weight reduction) with the recommended field rates were confirmed in most silky windgrass populations. However, other ALS inhibitors, such as pyroxsulam and a premix of mesosulfuron-methyl and iodosulfuron, provided adequate control (76% to 100% in terms of fresh weight reduction) of most populations, except eight silky windgrass populations that were found to be cross-resistant to all ALS-inhibiting herbicides tested (i.e., chlorsulfuron, commercial mixture of mesosulfuron-methyl plus iodosulfuron, and pyroxsulam). Conversely, most silky windgrass populations were controlled effectively (90% to 100% in terms of fresh weight reduction) with the recommended field rates of ACCase inhibitors cycloxydim, clethodim, and pinoxaden, but five populations were also found to be resistant to clodinafop-propargyl (10% to 68% control in terms of fresh weight reduction). The ALS gene sequencing of the eight silky windgrass populations, with cross-resistance to ALS inhibitors, revealed a point mutation at the Pro-197 position, causing amino acid substitution by Ser or Thr in the ALS enzyme. Overall, chlorsulfuron and clodinafop-propargyl were selecting agents of field-evolved multiple resistance to ALS- and ACCase-inhibiting herbicides in five silky windgrass populations. As the available postemergence-applied chemistries/modes of action registered for grass weed control in cereals are rather limited, adopting integrated management practices and implementing proactive and reactive measures to delay the evolution of resistant populations is essential.
Nomenclature: chlorsulfuron; pyroxsulam; mesosulfuron-methyl; iodosulfuron; cycloxydim; clethodim; pinoxaden; clodinafop-propargyl; Silky windgrass, Apera spica-venti (L.) P. Beauv.; wheat, Triticum aestivum L.
The continued dispersal of Palmer amaranth can impose detrimental impacts on cropping systems in Wisconsin. Our objective was to characterize the response of a recently introduced Palmer amaranth accession in southern Wisconsin to postemergence (POST) and preemergence (PRE) herbicides commonly used in corn and soybean. Greenhouse experiments were conducted with the Wisconsin putative herbicide-resistant accession (BRO) and two additional control accessions from Nebraska, a glyphosate-resistant (KEI2) and a glyphosate-susceptible (KEI3) accession. POST treatments were 2,4-D, atrazine, dicamba, glufosinate, glyphosate, imazethapyr, lactofen, and mesotrione at 1X and 3X label rates. PRE treatments were atrazine, mesotrione, metribuzin, S-metolachlor, and sulfentrazone at 0.5X, 1X, and 3X label rates. Plant survival of each accession was ≥63% after exposure to imazethapyr POST 3X rate. Survival of BRO and KEI2 was 44% (±13) and 50% (±13), respectively, after exposure to atrazine POST 3X rate. Survival of BRO was 69% (±12) after exposure to glyphosate POST 1X rate, whereas survival of KEI2 was 44% (±13) after exposure to glyphosate POST 3X rate. After exposure to 2,4-D POST 1X rate, KEI2 and KEI3 survival was 38% (±13) and 50% (±13), respectively. Survival of all accessions was ≤31% after exposure to 2,4-D POST 3X rate or dicamba, glufosinate, lactofen, and mesotrione POST at either rate. Plant density reduction of KEI2 was 77% (±13) after exposure to atrazine PRE 1X rate, whereas density reduction of BRO was 56% (±13) after exposure to atrazine PRE 3X rate. Plant density reduction of all accessions was ≥94% after exposure to mesotrione PRE 1X and 3X rates or metribuzin, S-metolachlor, and sulfentrazone PRE at either rate. Our results suggest that each accession is resistant (≥50% survival) to imazethapyr POST, that BRO and KEI2 are resistant to atrazine and glyphosate POST, and that KEI2 and KEI3 are resistant to 2,4-D POST. The recently introduced BRO accession exhibited multiple resistance to imazethapyr, atrazine, and glyphosate POST. In addition, atrazine PRE was ineffective for BRO control, suggesting that diversified resistance management strategies will be critical for its effective management.
Field studies in strawberry grown on polyethylene-mulched raised beds were conducted from 2018 to 2019 and 2019 to 2020 in Clayton, NC, to determine ‘Camarosa’ and ‘Chandler’ strawberry tolerance to 2,4-D directed to the row middle between beds. Treatments included 2,4-D at 0, 0.53, 1.06, 1.60, and 2.13 kg ae ha–1 applied alone and sequential treatments (0.53 followed by [fb] 0.53 or 1.06 fb 1.06 kg ae ha–1). Initial treatments were applied in winter (December 2018 or January 2020) during vegetative growth, and sequential applications were applied in spring (April 2019 or March 2020) during reproductive growth. No differences among treatments were observed for visual foliage injury, strawberry crop canopy, fruit yield, and fruit quality (pH, titratable acidity, and soluble solid content).
Recent research reported synergism between glufosinate plus very low rates of protoporphyrinogen oxidase (PPO)–inhibiting herbicides on select broadleaf weeds. Two field studies, each consisting of four trials, were conducted in 2020 and 2021 in commercial fields with glyphosate-resistant (GR) horseweed in Ontario, Canada. Study 1 evaluated GR horseweed control with glufosinate plus five PPO inhibitors at 5% of the label rate; study 2 evaluated what dose of saflufenacil is needed when co-applied with glufosinate to improve GR horseweed control. In study 1, glufosinate plus very low rates of PPO-inhibiting herbicides provided low GR horseweed control. At site 1, despite the synergistic increase in GR horseweed control with saflufenacil (1.25 g ai ha–1) plus glufosinate (300 g ai ha–1), the level of control did not exceed 42% at 2 and 4 wk after application (WAA); the interaction was additive at 8 WAA. The co-application of glufosinate (300 g ai ha–1) with pyraflufen-ethyl (0.34 g ai ha–1), pyraflufen-ethyl/2,4-D (26.4 g ai ha–1), flumioxazin (5.35 g ai ha–1), fomesafen (12 g ai ha–1), or sulfentrazone (7 g ai ha–1) resulted in an additive interaction for GR horseweed control at 2, 4, and 8 WAA. However, glufosinate plus pyraflufen-ethyl or sulfentrazone was antagonistic at 8 WAA. In study 2, similar doses of saflufenacil were required for 50%, 80%, and 95% GR horseweed control whether glufosinate was included in the mixture or not. Interactions between glufosinate (300 g ai ha–1) plus saflufenacil at 1.56, 3.13, 6.25, and 12.5 g ai ha–1 were antagonistic at 2, 4, and 8 WAA at sites 1, 2, and 3; all other interactions were additive. The results of this research indicate there was little to no benefit of adding very low rates of PPO-inhibiting herbicides to glufosinate to improve GR horseweed control under field conditions.
The ability of weed populations to evolve resistance to herbicides affects management strategies and the profitability of crop production. The objective of this research was to screen Palmer amaranth accessions from Arkansas for glufosinate resistance. Additional efforts focused on the effectiveness of various herbicides, across multiple sites of action (SOAs), on each putative-resistant accession. The three putative accessions were selected from 60 Palmer amaranth accessions collected in 2019 and 2020 and screened with to 0.5× and 1× rates of glufosinate. A dose-response experiment was conducted for glufosinate on accessions A2019, A2020, and B2020. The effectiveness of various preemergence- and postemergence-applied herbicides were evaluated on each accession. Resistance ratios of A2019, A2020, and B2020 to glufosinate ranged from 5.1 to 27.4 when comparing LD50 values to two susceptible accessions, thus all three accessions were resistant to glufosinate. All three accessions (A2019, A2020, and B2020) were found to have a reduction equal to or greater than 20 percentage points in mortality to at least one herbicide from five different SOAs equal to or greater than five sites of action. Herbicides from nine different SOAs controlled A2019 at least 20 percentage points less than the susceptible accessions, which points to a need for additional research to characterize the response of this accession.
This study was undertaken to investigate the integration effects of pretilachlor, oxadiazon, and dimethenamid with or without glyphosate in a stale seedbed method to control weedy rice in wet-seeded rice. The study, conducted in 2018 and 2019, comprised two seedbed treatments in main plots, with and without glyphosate (850 g ae ha–1), and four subplot treatments: pretilachlor, oxadiazon, dimethenamid, and unsprayed check. Fifteen days after glyphosate spray, each subplot was treated with preemergence herbicides at 500 g ai ha–1 under standing water conditions (2 to 3 in.), and the water level was maintained for 7 d. Pregerminated rice seeds (var. MR297) were hand-broadcasted in the moist soil at 120 kg ha–1 seeding rate. In 2019, the density and dry weight of weedy rice were 30% and 118% higher Gthan those observed in 2018, respectively. A stale seedbed with glyphosate reduced weedy rice dry weight by 12% as compared to what was observed in a stale seedbed without glyphosate. Addition of oxadiazon and pretilachlor to the stale seedbed drastically reduced weedy rice dry weight by 70% to 88% and 53% to 60% in both years. Dimethenamid contributed to a significant reduction of weedy rice dry weight of 19% in 2019 only but failed to provide a positive economic return. Integration of pretilachlor and oxadiazon in a stale seedbed with glyphosate gave profitable returns of $84.00 to 311.4 ha–1 and $175.70 to 483.8 ha–1, respectively. Without the presence of glyphosate, pretilachlor and oxadiazon contributed a positive return of $318.90 and $469.40, respectively, in 2018, but the economic returns were negative in 2019. These results suggest that integration of pretilachlor or oxadiazon in a stale seedbed with glyphosate is more crucial when weedy rice infestation is high, but glyphosate can be excluded from the management regime when the weedy rice populations are low.
Field studies were conducted to determine the effects of synthetic auxin herbicides at simulated exposure rates applied to ‘Covington’ sweetpotato propagation beds on the quality of nonrooted stem cuttings (slips). Treatments included diglycolamine salt of dicamba, 2,4-D choline plus nonionic surfactant (NIS), and 2,4-D choline plus glyphosate at 1/10, 1/33, or 1/66 of a 1X application rate (560 g ae ha–1 dicamba, 1,065 g ae ha–1 2,4-D choline, 1,130 g ae ha–1 glyphosate) applied at 2 or 4 wk after first slip harvest (WASH). Injury to sweetpotato 2 wk after treatment was greatest when herbicides were applied 2 WASH (21%) compared to 4 WASH (16%). More slip injury was caused by 2,4-D choline than by dicamba, and the addition of glyphosate did not increase injury over 2,4-D choline alone. Two weeks after the second application, sweetpotato slips were cut 2 cm above the soil surface and transplanted into production fields. In 2019, sweetpotato ground coverage 8 wk after transplanting was reduced 37% and 26% by the 1/ 10X rates of dicamba and 2,4-D choline plus NIS, respectively. Though dicamba caused less injury to propagation beds than 2,4-D choline with or without glyphosate, after transplanting, slips treated with 1/10X dicamba did not recover as quickly as those treated with 2,4-D choline. In 2020, sweetpotato ground coverage was 90% or greater for all treatments. Dicamba applied 2 WASH decreased marketable sweetpotato storage root yield by 59% compared to the nontreated check, whereas treatments including 2,4-D choline reduced marketable yield 22% to 29%. All herbicides applied at 4 WASH reduced marketable yield 31% to 36%. The addition of glyphosate to 2,4-D choline did not increase sweetpotato yield. Results indicate that caution should be taken when deciding whether to transplant sweetpotato slips that are suspected to have been exposed to dicamba or 2,4-D choline.
Julio A. Scursoni, Daniel Tuesca, Federico Balassone, Juan P. Morello, Daniela Medina Herrera, María C. Lescano, Nicolás Montero Bulacio, Roberto J. Crespo, Mara B. Depetris, Martin M. Vila-Aiub
Smooth pigweed is one of the most troublesome weeds in Argentina. The objective of this study was to evaluate the sensitivity of 50 smooth pigweed accessions to fomesafen, topramezone, glyphosate, 2,4-D, and dicamba. Accessions were collected from soybean fields in various cropping areas in Argentina. The herbicide treatments included 2,4-D (1,140 g ae ha–1), dicamba (560 g ae ha–1), fomesafen (250 g ai ha–1), topramezone (34 g ai ha–1), and glyphosate (1,080 g ae ha–1). Plant survival was evaluated 30 d after each treatment application. Of the smooth pigweed accessions tested, 84% and 76% were susceptible (0% survival) to 2,4-D and dicamba, respectively. More than 90% of the accessions showed high (>60%) survival to glyphosate. While none of the accessions showed total sensitivity (0% survival) to the other herbicides evaluated, 43% and 72% of the accessions showed greater than 60% survival to fomesafen and topramezone, respectively. The differences in survival among accessions confirm the existence of genetic variability in Argentinian smooth pigweed and suggest that weed management practices should be prioritized to preserve the efficacy of these commonly used herbicides.
The influence of weeds on cranberry yield and quality is not well known and cannot be extrapolated from other cropping systems given the unique nature of both cranberry production and the weed species spectrum. The work presented here addresses this need with four common weed species across multiple production seasons and systems in Wisconsin, Massachusetts, and New Jersey: Carolina redroot, earth loosestrife, bristly dewberry, and polytrichum moss. The objectives were to use these representative species to quantify the impact of weed density, groundcover, and biomass on several cranberry yield components and related interactions with other cranberry pests, and to determine whether these relationships were consistent enough across seasons to be reliably used in weed management decision-making. The relationships between Carolina redroot and bristly dewberry growth measures and marketable cranberry yield were highly significant (P ≤ 0.001 in 12 of 13 regressions) and consistent across growing seasons, but not significant for similar regressions with earth loosestrife. In particular, the strong relationship between Carolina redroot and bristly dewberry visual groundcover observations and cranberry yield suggests a simple way for growers and crop scouts to reliably estimate yield loss. The relationship between polytrichum moss biomass and cranberry yield was also significant in both years, but not consistent between years. Weed competition also affected cranberry quality, in that Carolina redroot density was strongly related to the percentage of insect-damaged fruit and bristly dewberry growth reduced cranberry color development. On a practical level, this information can be used to educate growers, consultants, agrichemical registrants, and regulators about the impacts of weeds on cranberry yield and quality, and to economically prioritize management efforts based on the weed species and extent of infestation.
Navua sedge is a creeping perennial sedge commonly found in tropical environments and is currently threatening many agroecosystems and ecosystems in Pacific Island countries and northern Queensland, Australia. Pasture and crop productions have been significantly impacted by this weed. The efficacy of halosulfuron-methyl on Navua sedge plants with and without well-established rhizomes was evaluated under glasshouse conditions. Halosulfuron-methyl was applied to plants with established rhizomes at three stages; mowed, pre-flowering, and flowering growth stages, whereas plants without established rhizomes were treated at seedling, pre-flowering and flowering growth stages. At each application time, halosulfuron-methyl was applied at four dose rates of 0, 38, 75, and 150 g ai ha–1. Mortality of 27.5%, 0%, and 5% was recorded in rhizomatous Navua sedge when treated with 75 g ai ha–1 of halosulfuron-methyl at the mowed, pre-flowering stage and flowering stages, respectively. At 10 wk after treatment (WAT), there were no tillers in surviving plants treated at any of the application times. By 16 WAT, the number of tillers increased to 15, 24, and 26 in mowed, pre-flowering, and flowering stages, respectively. Although halosulfuron-methyl is effective in controlling aboveground growth, subsequent emergence of new growth from the rhizome confirms the failure of the herbicide to kill the rhizome. Application of 75 g ai ha–1 of halosulfuron-methyl provided 100% mortality in plants treated at seedling and pre-flowering stages, and 98% mortality when treated at flowering stage in non-rhizomatous plants. A single application of halosulfuron-methyl is highly effective at controlling Navua sedge seedlings but not effective at controlling plants with established rhizomes.
Limited information exists on the critical time of weed removal (CTWR) with the currently used soybean cultivars in Ontario. A study consisting of eight field experiments was conducted from 2017 to 2019 in Ontario, Canada, to determine the impact of delayed postemergence (POST) herbicide application on soybean yield based on average weed height at application, days after crop emergence (DAE), accumulated crop heat units (CHU) from the date of planting, and soybean growth stage. The regression model estimated the weed size at herbicide application that led to 1%, 2.5%, and 5% yield loss in soybean was 9, 14, and 20 cm under low weed density (averaging 73 to 134 plants m–2) and 3, 4, and 6 cm under high weed density (143 to 153 plants m–2) conditions, respectively. The estimated DAE at herbicide application time that led to 2.5%, 5%, 10%, and 25% yield loss in soybean was 24, 30, 37, and 53 DAE under low weed density and 8, 10, 14, and 23 DAE under high weed density, respectively. The predicted crop stage at herbicide application that resulted in 2.5%, 5%, 10%, and 25% yield loss in soybean was V4, V5, R2, and R5 under low weed density and VE, VC, V1, and V4 under high weed density, respectively. This study concludes that soybean yield loss is influenced by the weed density (low vs/high) and the time of the first POST herbicide application. When the first POST herbicide application was delayed until soybean was at the V2 stage the monetary loss was Can$20.46 and Can$221.20 ha–1 in low and high weed-density environments, respectively.
Field studies were conducted on southern highbush blueberry in Elizabethtown and Rocky Point, NC, in 2019, 2020, and 2021 to determine tolerance to 2,4-D choline as a postemergence-directed application. In separate trials for younger and older bearing blueberry bushes, both 2,4-D choline rates and application timing were evaluated. Treatments included 2,4-D choline at 0, 0.53, 1.06, 1.60, and 2.13 kg ae ha–1 applied alone in winter during dormancy, and sequential treatments at 0.53 kg ae ha–1 followed by (fb) 0.53, 1.06 fb 1.06, 1.6 fb 1.6, or 2.13 fb 2.13 kg ae ha–1. The first application of the sequential treatments was applied in winter followed by another application in spring during early green fruit. Injury to blueberry from 2,4-D choline treatments was not observed for either maturity stage, and fruit yield was not affected by any of the treatments. Differences among treatments were not observed for fruit soluble solid content (SSC) in older bushes, or for fruit pH, SSC, and titratable acidity (TA) in younger bushes. In older bushes, fruit pH and TA had rate-by-timing interactions, and TA had a farm-year interaction with differences at Rocky Point in 2019 and Elizabethtown in 2020, but biologically no pattern was observed from the treatments.
Nomenclature: 2,4-D choline; southern highbush blueberry; Vaccinium corymbosum L.
Clomazone is a widely used herbicide in California water-seeded rice for control of bearded sprangletop and watergrass. Generally, clomazone is applied to a flooded rice field at day of rice seeding. However, interest exists among growers to delay the clomazone application. Weather variability may encourage growers to practice Leathers' method. Leathers' method is the practice of draining the field 1 to 2 d after air seeding to encourage better and more uniform seedling establishment, then reflooding back to a 10- to 15-cm flood 4 to 7 d later. Therefore the objective of this study was to evaluate grass weed control and rice response at four rates of clomazone, applied at two timings: at day of seeding (DOS) in a continuous 10-cm flood and after Leathers' method. This study was conducted in 2019 and 2020 at the Rice Experiment Station in Biggs, CA. In 2019, there were no difference across clomazone rates on control of bearded sprangletop independent of application timing used; however, in 2020, bearded sprangletop control with clomazone applied after Leathers' method was 70% to 71% across clomazone rate by 60 d after treatment (DAT), compared to 92% to 97% in the DOS applications. Watergrass control was 100% in 2019 across clomazone rate and application timing. However, in 2020, watergrass control was greater at the DOS application at 54% to 71%. Clomazone applied at the 0.7 kg ha–1 Leathers' method resulted in 84% bleaching by 14 DAT and was similar across all Leathers' method clomazone applications and the 0.7 kg ha–1 DOS application. There was no rice grain yield difference among all clomazone-treated plots, with the exception of the 0.7 kg ha–1 Leathers' method interaction with the DOS applications.
Nomenclature: clomazone; bearded sprangletop, Leptochloa fusca (L.) Kunth ssp. fascicularis (Lam.) N. Snow; watergrass, Echinochloa spp.; rice, Oryza sativa L.
Common bean and azuki bean are poor competitors with weeds and demonstrate sensitivity to herbicides used for weed control in soybean. S-metolachlor, flufenacet, and acetochlor are categorized as Group 15 herbicides and provide control of multiple annual grass and select small-seeded broadleaf weeds. By way of field trials near Exeter and Ridgetown, Ontario, in 2019, 2020, and 2021, four dry bean market classes (azuki, kidney, small red, and white bean) were evaluated for their tolerance to 1× established label rates and 2× rates of S-metolachlor (1,600 and 3,200 g ai ha–1), flufenacet (750 and 1,500 g ai ha–1) and acetochlor (1,700 and 3,400 g ai ha–1) applied preplant incorporated (PPI). Injury was evaluated by assessing visible injury symptoms, density, shoot biomass, height, seed moisture content, and seed yield. Azuki bean was more sensitive to the Group 15 herbicides than other dry bean market classes; the Group 15 herbicides caused a 12% reduction in azuki bean growth at 2 wk after emergence; growth reduction was ≤2% in the other bean classes. Flufenacet (2× rate) was the most injurious treatment, causing a 27% reduction in azuki bean yield. This study concludes that kidney, small red, and white bean have a sufficient margin of crop safety to flufenacet, acetochlor, and S-metolachlor applied PPI. Azuki bean was sensitive to flufenacet; additional research is needed to investigate azuki bean tolerance to acetochlor and S-metolachlor applied PPI.
Nomenclature: Flufenacet; acetochlor; S-metolachlor; Azuki bean; Vigna angularis (Willd.) Ohwi & H. Ohashi; kidney bean; Phaseolus vulgaris L.; small red bean; Phaseolus vulgaris L; white bean; Phaseolus vulgaris L.; common bean; Phaseolus vulgaris L.; soybean; Glycine max (L.) Merr.
A 3-yr field study was conducted in Keiser, AR, to investigate the response of the naturally occurring weed flora, dominated by Palmer amaranth, under various combinations of 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide-based programs and crop rotation sequences. In the first year, corn plots were established with three corn HPPD-based herbicide programs designed to represent a range of efficacies and selection pressures for resistance. In the following two years, corn as monoculture or with soybean and/or cotton crops was included in the rotation sequence for selected herbicide programs. Weed emergence, weed biomass, and soil seedbank were assessed through the entire experimental period. The results show that crop rotation, especially a rotation sequence with corn followed by (fb) soybean fb cotton, and the lowest-risk herbicide program involving seven sites of action over the course of the entire crop rotation was effective in reducing the emergence of naturally occurring weeds, including Palmer amaranth, prickly sida, morningglory species, and grass weeds (broadleaf signalgrass, large crabgrass, barnyardgrass, and johnsongrass) by 88.3%, 57.5%, 28.7%, and 76.3%, respectively. Treatments without crop rotation (corn as monoculture for 3 consecutive years) and poor herbicide programs, with one site of action, increased weed emergence, notably of Palmer amaranth and prickly sida, by 73.5% and 74.1%, respectively. The soil seedbank showed a similar trend to weed emergence. This study highlights the fact that reducing the weed seedbank cannot rely on one management practice but requires a multitactic approach with various control methods. HPPD-inhibiting herbicide programs seem to be effective on Palmer amaranth when coupled with crop rotation and should be used with other best management practices.
Nomenclature: barnyardgrass; Echinochloa crus-galli (L.) P. Beauv.; broadleaf signalgrass; Urochloa platyphylla (Munro ex C. Wright) R.D. Webster; johnsongrass; Sorghum halepense (L.) Pers.; large crabgrass; Digitaria sanguinalis (L.) Scop.; morningglory; Ipomoea spp.; Palmer amaranth; Amaranthus palmeri S. Watson; prickly sida; Sida spinosa L.; corn; Zea mays L.; cotton; Gossypium hirsutum L.; soybean; Glycine max (L.) Merr.
Georgia vegetable growers produce more than 27% of the nation's fresh-market cucumbers. To maximize yields and profit, fields must be weed-free when planting. Limitations with current burndown herbicide options motivated academic, industry, and U.S. Department of Agriculture partners to search for new tools to assist growers. One possibility, glufosinate, controls many common and troublesome weeds, but its influence on cucumber development through residual activity when applied before or at planting is not understood. Thus, four different studies were each conducted two to four times from 2017 to 2020 to determine 1) transplant cucumber response to preplant glufosinate applications as influenced by rate, overhead irrigation, and interval between application and planting; and 2) seeded cucumber response to preemergence (PRE) glufosinate applications as influenced by rate, overhead irrigation, and planting depth. Glufosinate applied at 330, 660, 980, and 1,640 g ai ha–1 the day before transplanting caused 11% to 53% injury on sandy, low organic matter soils. Cucumber vine lengths and plant biomass were reduced up to 28% and 46%, respectively, with the three highest rates. Early-season yield (harvests 1 to 4) noted a 31% to 60% yield loss with glufosinate at 660 to 1,640 g ha–1 with similar trends observed with total yield (11 to 13 harvests). Irrigation (0.75 cm) after application and before transplanting reduced injury to less than 21%, eliminated vine length and biomass suppression except at the highest rate, and eliminated yield loss. Extending the interval between glufosinate application and transplanting from 1 to 4 d was not beneficial, and further extending the interval to 7 d significantly reduced injury half the time. When applied PRE to seeded cucumber and combining the data across locations, glufosinate caused less than 7% injury even at 1,640 g ha–1. Seeded plant vine lengths, biomass, and marketable yield were not influenced by the PRE application, and neither irrigation nor planting depth influenced seeded crop response to glufosinate.
Nomenclature: Glufosinate; cucumber; Cucumis sativus L. ‘Bristol’; ‘Mongoose’; ‘4142’
Glufosinate is among the few remaining effective herbicides for postemergence weed control in North Carolina crops. The evolution of glufosinate resistance in key weeds is currently not widespread in North Carolina, but to better assess the current status of glufosinate effectiveness, surveys were distributed at Extension meetings in 2019 and 2020. The surveys were designed to provide information about North Carolina farmers' perception of glufosinate and its use. Survey results indicate that many North Carolina farmers (≥26%) apply glufosinate at the correct timing (5- to 10-cm weeds). In addition, North Carolina farmers (≥22%) are applying glufosinate as a complementary herbicide to other efficacious herbicides and to control herbicide-resistant weeds, suggesting that glufosinate is part of a diverse chemical weed management plan. Conversely, survey findings indicated that some farmers (13% to 17%) rely exclusively on glufosinate for weed control. Additionally, 28% to 30% of farmers reported glufosinate control failures, and control failures were observed on several weed species among corn, cotton, and soybean crops. The results of the survey suggest that most North Carolina farmers are currently stewarding glufosinate, but they also support the need for Extension personnel to keep educating farmers on how to correctly use glufosinate to delay the evolution of glufosinate-resistant weeds. Semiannual surveys should be distributed to monitor where glufosinate control failures occur and the weed species not being controlled.
Nomenclature: Glufosinate; cotton; Gosspium hirsutum L.; corn; Zea mays L.; soybean; Glycine max L. Merr.
This research examined a potential nuisance aspect of the use of the volatility-reducing agent (VRA) potassium carbonate when combined with glyphosate in spray-tank mixtures. A VRA is now required to be added to dicamba applications to reduce off-target movement from volatility. When no VRA potassium carbonate was added to the spray mixture, there was no pressure buildup. The addition of VRA potassium carbonate plus glyphosate (which lowers the pH) resulted in an observed pressure buildup. Although the gas produced was not identified, it would be expected to be carbon dioxide formed by the dissolution of the carbonate anion from the VRA. Source water pH range from 3.2 to 8.2 had no effect on pressure buildup. Pressure buildup was directly related to water temperature, with a linear response to temperature when the VRA was added last; in contrast, a less direct relationship of temperature to pressure buildup existed at temperatures >30 C when the VRA potassium carbonate was added first. There was no effect on the pressure increase from adding a defoamer or a drift control agent.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere