Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Italian ryegrass is a major weed in winter cereals in the south-central United States. Harvest weed seed control (HWSC) tactics that aim to remove weed seed from crop fields are a potential avenue to reduce Italian ryegrass seedbank inputs. To this effect, a 4-yr, large-plot field study was conducted in College Station, Texas, and Newport, Arkansas, from 2016 to 2019. The treatments were arranged in a split-plot design. The main-plot treatments were (1) no narrow-windrow burning (a HWSC strategy) + disk tillage immediately after harvest, (2) HWSC + disk tillage immediately after harvest, and (3) HWSC + disk tillage 1 mo after harvest. The subplot treatments were (1) pendimethalin (1,065 g ai ha–1; Prowl H2O®) as a delayed preemergence application (herbicide program #1), and (2) a premix of flufenacet (305 g ai ha–1) + metribuzin (76 g ai ha–1; Axiom®) mixed with pyroxasulfone (89 g ai ha–1; Zidua® WG) as an early postemergence application followed by pinoxaden (59 g ai ha–1; Axial® XL) in spring (herbicide program #2). After 4 yr, HWSC alone was significantly better than no HWSC. Herbicide program #2 was superior to herbicide program #1. Herbicide program #2 combined with HWSC was the most effective treatment. The combination of herbicide program #1 and standard harvest practice (no HWSC; check) led to an increase in fall Italian ryegrass densities from 4 plants m–2 in 2017 to 58 plants m–2 in 2019 at College Station. At wheat harvest, Italian ryegrass densities were 58 and 59 shoots m–2 in check plots at College Station and Newport, respectively, whereas the densities were near zero in plots with herbicide program #2 and HWSC at both locations. These results will be useful for developing an improved Italian ryegrass management strategy in this region.
Nomenclature: flufenacet; metribuzin; pendimethalin; pinoxaden; pyroxasulfone; Italian ryegrass, Lolium perenne ssp. multiflorum; wheat, Triticum aestivum L.
Field bindweed is a perennial vining weed with vigorous growth, and is commonly found in highbush blueberry fields of Oregon. It requires and integrated strategy using multiple applications of postemergence herbicides and hand weeding for adequate control. Quinclorac is a herbicide that has been shown to control field bindweed, but no information is available indicating the tolerance of blueberry to quinclorac. The objective of this study was to evaluate the response of blueberry to quinclorac and to evaluate field bindweed control with quinclorac in different mixtures. Three groups of field studies were designed to assess 1) single application control of field bindweed, 2) use of sequential treatments to control field bindweed, and 3) long-term impact of quinclorac on field bindweed. In the single application control studies, a single application of quinclorac at 210 or 420 g ai ha–1 alone or in a mixture with rimsulfuron (35 g ai ha–1) or carfentrazone (35 g ai ha–1), controlled field bindweed by 69% to 76% while reducing its biomass between 22% and 44% compared to the nontreated control (61 g m–2). In a sequential treatment study, a single application of quinclorac (420 g ai ha–1) provided 83% to 100% control of field bindweed, outperforming three sequential applications of carfentrazone. In the long-term study, a single application of quinclorac reduced field bindweed biomass by 50% to 82% in 2019 and 62% to 87% in 2020. These results indicate that quinclorac can be safely applied to highbush blueberry plants. Early spring applications of quinclorac to field bindweed will reduce or eliminate the need for subsequent applications later in the season.
Nomenclature: quinclorac; carfentrazone; mesotrione; rimsulfuron; glufosinate; field bindweed; Convolvulus arvensis L.; highbush blueberry; Vaccinium corymbosum L.
Field studies were conducted in North Carolina in 2018 and 2019 to determine sweetpotato tolerance to indaziflam and its effectiveness in controlling Palmer amaranth in sweetpotato. Treatments included indaziflam pre-transplant; 7 d after transplanting (DATr) or 14 DATr at 29, 44, 58, or 73 g ai ha–1; and checks (weedy and weed-free). Indaziflam applied postemergence caused transient foliar injury to sweetpotato. Indaziflam pretransplant caused less injury to sweetpotato than other application timings regardless of rate. Palmer amaranth control was greatest when indaziflam was applied pretransplant or 7 DATr. In a weed-free environment, sweetpotato marketable yield decreased as indaziflam application was delayed. No differences in storage root length to width ratio were observed.
Dicamba is a synthetic auxin herbicide that may be applied over the top of transgenic dicamba-tolerant crops. The increasing prevalence of herbicide-resistant weeds has resulted in increased reliance on dicamba-based herbicides in soybean production systems. Because of the high volatility of dicamba it is prone to off-target movement, and therefore concern exists regarding its drift onto nearby specialty crops. The present study evaluates 12 mid-Atlantic vegetable crops species for sensitivity to sublethal rates of dicamba. Soybean, snap bean, lima bean, tomato, eggplant, bell pepper, cucumber, summer squash, watermelon, pumpkin, sweet basil, lettuce, and kale were grown in a greenhouse and exposed to dicamba at 0, 0.056, 0.11, 0.28, 0.56, 1.12, 2.24 g ae ha–1, which is, respectively, 0, 1/10,000, 1/5,000, 1/2,000, 1/1,000, 1/500, and 1/250 of the maximum recommended label rate for soybean application (560 g ae ha–1). Vegetable crop injury was evaluated 4 wk after treatment using visual rating methods and leaf deformation index measurements. Overall, snap bean was the most sensitive crop, with dicamba rates as low as 0.11 g ae ha–1 resulting in significantly higher leaf deformation levels compared with the nontreated control. Other Fabaceae and Solanaceae species also demonstrated high sensitivity to sublethal rates of dicamba with rates ranging 0.28 to 0.56 g ae ha–1 causing higher leaf deformation compared with the nontreated control. While cucumber, pumpkin, and summer squash were no or moderately sensitive to dicamba, watermelon showed greater sensitivity with unique symptoms at rates as low as 0.056 g ae ha–1 based on visual evaluation. Within the range of tested dicamba rates, sweet basil, lettuce, and kale demonstrated tolerance to dicamba with no injury observed at the maximum rate of 2.24 g ae ha–1.
Loblolly pine or slash pine response and vegetation colonization are summarized for a region-wide study that included five locations on coastal soils in the southern United States. The objective was to evaluate timing of postplant herbaceous weed control (HWC) treatments following preplant site preparation with imazapyr applied at two timings (August and November) and at three rates (0.56, 0.84, and 1.12 kg ha–1). All imazapyr site preparation treatments were applied after bedding. Site preparation treatments resulted in fast-growing stands without HWC at all locations with average Year 3 dominant tree height ranging from 2.6 to 3.7 m. Imazapyr plus sulfometuron was an effective HWC treatment on loblolly pine. Vegetation control and pine response varied by surface soil texture. On coarser-textured soils, the site preparation treatments resulted in <10% vegetation cover in June of the first pine growing season. On these coarser-textured soils, loblolly pine growth was increased by second-year and not first-year HWC. On finer-textured soils, vegetation colonization was aggressive, with >20% cover in June of the first pine growing season, such that early first-year HWC provided the largest loblolly pine response of single-pass HWC treatments. Pines were highly tolerant to imazapyr site preparation treatments as evidenced by the lack of differences in slash or loblolly pine survival and growth from the doubling of imazapyr rates for applications in either August or November. There was little meaningful residual control of herbaceous vegetation into the second pine growing season from site preparation treatments or first-year HWC regardless of location. There was no consistent pine response benefit from increasing the imazapyr site preparation rate for included treatments. Cost-effective treatments would utilize low site-preparation herbicide rates followed by the appropriate timing of HWC if longer-term vegetation control is the objective.
Palmer amaranth has developed resistance to at least seven herbicide sites of action in the Cotton Belt of the United States, leaving producers with fewer options to manage this weed. Previous research with corn and newly commercially released soybean systems have found the use of 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides such as isoxaflutole (IFT) to be effective at managing Palmer amaranth. Consequently, a new transgenic cultivar of cotton is being developed with tolerance to IFT, allowing for in-crop applications of the herbicide. Two separate studies were conducted near Marianna, AR, in 2019 and replicated in 2020, to investigate the crop safety and utility of IFT when added to cotton herbicide programs. Herbicide programs featured IFT as a preemergence or early-postemergence option, residual herbicides in subsequent postemergence applications, and the presence or absence of a layby application. The use of IFT did not significantly impact cotton injury or yield, whereas the use of layered residual herbicides, including IFT, increased Palmer amaranth control compared to those without. Regardless of earlier use of IFT, layby applications were needed for season-long control of Palmer amaranth, entireleaf morningglory, broadleaf signalgrass, and johnsongrass, as evidenced by greater than a 20 percentage point improvement in control of all weeds when a layby application was made. Overall, findings from these studies indicate IFT to be a suitable tool for managing Palmer amaranth and will provide an additional site of action for cotton herbicide programs. Sequential herbicide applications and overlaying residuals were found to be paramount for managing Palmer amaranth throughout the season.
Studies were conducted in 2019 and 2020 in Lewiston, NC, to determine the crop response of 4-hydroxyphenylpyrivate dioxygenase (HPPD)-resistant cotton to isoxaflutole (IFT) and other cotton herbicides as part of a cotton weed management program that included herbicides applied preemergence, early postemergence (EPOST), and mid-postemergence (MPOST). IFT was applied PRE at 105 g ha–1 alone and in various combinations with acetochlor, diuron, fluometuron, fluridone, fomesafen, pendimethalin, and pyrithiobac. EPOST treatments included IFT at 53 or 105 g ha–1 alone or in combination with glyphosate or glufosinate, or dimethenamid-P + glufosinate. Glyphosate + glufosinate was applied MPOST to all treatments except the nontreated control. Cotton injury from IFT applied PRE was minimal (0% to 3%). Injury following EPOST application of dimethenamid-P + glufosinate ranged from 3% to 5% and 6% to 9% in 2019 and 2020, respectively. In both years, injury from IFT applied PRE followed by IFT applied EPOST never exceeded injury from IFT applied PRE followed by dimethenamid-P + glufosinate. Isoxaflutole applied PRE followed by IFT applied EPOST at 105 g ha–1 resulted in 0% to 2% cotton injury, indicating that IFT can be applied either PRE or EPOST with minimal risk to cotton. Late-season cotton height and cotton lint yield were not affected by any herbicide treatment. The experimental HPPD-resistant cotton cultivar was minimally injured by IFT applied PRE and EPOST, it tolerated standard cotton herbicides, and yield loss was not observed. Given these results, HPPD-resistant cotton and IFT may be integrated into cotton weed management systems with minimal risk for cotton injury and provide an additional effective mechanism of action for managing troublesome weeds in cotton.
Recent legalization of industrial hemp in the United States has led to increased interest among stakeholders to produce hemp for grain and fiber. However, owing to the lack of herbicides registered for use in hemp, producers are left with limited weed management strategies. Moreover, much of the agricultural land that could be used to cultivate industrial hemp may be prone to carryover of previously applied residual herbicides or physical drift from herbicides sprayed nearby. Industrial hemp sensitivity to herbicides is not well documented. Dose–response studies were conducted under controlled conditions in Madison, WI, screening two industrial hemp grain cultivars for tolerance to 44 preemergence and postemergence herbicides commonly used in corn and soybean. Treatments consisted of herbicides applied at 0×, 0.125×, 0.25×, 0.50×, 0.75×, 1×, 2×, and 4× the recommended maximum labeled rates based on soil type. Preemergence applications were delivered immediately after planting, whereas postemergence applications took place when hemp plants reached 5 to 10 cm in height. Nontreated plants served as the control and were used to estimate percent biomass reduction; dose–response curves were generated. Biomass reduction was >50% for rates under the suggested label rate for 23 preemergence and 21 postemergence herbicides tested. All herbicides tested resulted in >25% biomass reduction at the 0.125× rate, except for clopyralid applied preemergence and postemergence and saflufenacil applied preemergence. This is concerning, as the label rates are determined for effective weed control and the mitigation of herbicide resistance. Overall, these results indicate that industrial hemp is very sensitive to most herbicides tested. Growers should consider herbicide use history and surrounding crops when determining industrial hemp field selection to prevent significant plant injury due to herbicide carryover and drift. Further research into alternative methods of weed control will be vital to establishing hemp as a dominant crop once again.
Herbicides that inhibit very-long-chain fatty acids (VLCFAs) have been widely used for preemergence control of annual monocot and small-seeded dicot weed species, such as waterhemp, since their discovery in the 1950s. VLCFA-inhibiting herbicides are often applied in combination with active ingredients that possess residual activity on small-seeded broadleaf weeds, which can make their contribution to preemergence waterhemp control difficult to quantify. Bare-ground field experiments were designed to investigate the efficacy of eight VLCFA-inhibiting herbicides applied at their minimum and maximum labeled rates for control of Illinois waterhemp populations. Four different locations were selected, two of which contained previously characterized VLCFA inhibitor–resistant waterhemp populations in Champaign County (CHR) and McLean County (MCR). Two locations with VLCFA inhibitor–sensitive waterhemp populations included the University of Illinois South Farm in Urbana, IL, and the Orr Research Center in Perry, IL. Soils at the CHR, MCR, and Urbana locations contained greater than 3% organic matter, but less than 3% organic matter at Perry. Non-encapsulated acetochlor and alachlor controlled CHR and MCR waterhemp populations 28 d after treatment (DAT), whereas other VLCFA-inhibiting herbicides resulted in 61% and 76% control of the CHR and MCR populations, respectively. In contrast, all VLCFA-inhibiting herbicides resulted in 81% and 88% control of the Perry and Urbana waterhemp populations, respectively, 28 DAT. Waterhemp control decreased by 42 DAT, especially for the VLCFA inhibitor–resistant CHR and MCR populations. Overall, VLCFA-inhibiting herbicides remain effective for controlling sensitive waterhemp, but most are not effective for controlling VLCFA inhibitor–resistant waterhemp populations. Proper herbicide stewardship and integrated weed management practices should be implemented to maintain VLCFA-inhibiting herbicide efficacy for waterhemp management in the future.
Nomenclature: acetochlor; alachlor; waterhemp; Amaranthus tuberculatus L.
Water seeding is a common cropping strategy in mechanized rice systems. Water seeding of rice can suppress grass weeds, but it can also encourage aquatic weeds and grass ecotypes that escape deep floodwater. In addition, water seeding prevents many cultural methods of weed control and limits available herbicides. Selection pressure from a limited palette of herbicides has resulted in widespread resistance in rice grown in California. This study examined a novel combination of drill seeding and a stale seedbed (“stale-drill”) as a means of using a nonselective herbicide to manage weeds before rice emergence. In 2016 and 2017, rice cultivar ‘M-206’ was drilled at a rate of 120 kg ha–1 to 1.3-cm, 2.5-cm, and 5.1-cm depths. Planting rice deeper than 1.3 cm delayed emergence by 3 to 4 d. A postplant-burndown (PPB) treatment of glyphosate at 870 g ha–1 was applied just prior to rice emergence. Treatment delays had mixed effects on weed control. PPB treatment was more effective at controlling Echinochloa spp. in 2017, reducing density by 30%, 48%, and 73% at 1.3-cm, 2.5-cm, and 5.1-cm seeding depths, respectively. The greatest overall weed control either year was found with applications of glyphosate + pendimethalin followed by penoxsulam + cyhalofop at 1.3-cm planting depth. Rice stand and yield components were more strongly affected by planting depth in 2017 than in 2016, possibly owing to cool weather immediately after seeding. Yields in 2017 were reduced in deeper plantings by up to 72%. Therefore, if the stale-drill method is implemented with higher-vigor cultivars or higher seeding rates, we see potential in this method as a useful tool for reducing herbicide-resistant weeds in rice fields.
Pondweed is a rhizomatous perennial weed of aquatic habitats that recently adapted to rice ecosystems in northern Iran. Two field experiments were conducted at the Rice Research Institute of Iran to determine the impact of pondweed on rice yield and identify effective herbicides for pondweed control. The focus of the first study was to evaluate the herbicides commonly used in Iranian rice, including butachlor, pretilachlor, oxadiargyl, pendimethalin, thiobencarb, and bensulfuron-methyl. None of these herbicides effectively controlled pondweed, except bensulfuron, which reduced pondweed biomass by ≥95% and produced 26% higher rough rice grain yield than the nontreated plots. The second experiment evaluated the performance of acetolactate synthase–inhibiting herbicides on pondweed control, rough rice yield, and pondweed regrowth. Herbicide efficacy on pondweed varied from 36% to 100%. Five preemergence herbicides, bensulfuron at 45 g ai ha–1, flucetosulfuron at 30 g ai ha–1, triafamone plus ethoxysulfuron at 40 g ai ha–1, and metsulfuron-methyl at 15 g ai ha–1, provided ≥98% control of pondweed. Use of postemergence herbicides penoxsulam at 35 g ai ha–1, bispyribac-sodium at 30 g ai ha–1, and pyribenzoxim at 35 g ai ha–1 provided 36%, 89%, and 93% pondweed control, respectively. Rough rice yields ranged from 107% to 124% in herbicide-treated plots compared with the nontreated plots. Soil-applied herbicide treatments produced higher (≥119%) yield than the hand-weeded control or foliar-applied herbicides. Pondweed regrowth was affected by herbicides and was variable. Soil-applied residual herbicides metazosulfuron, flucetosulfuron, and metsulfuron provided complete control of pondweed and prevented regrowth. In contrast, pondweed regrowth in other soil- and foliar-applied herbicide treatments occurred, indicating their lesser translocation to underground vegetative rhizomes. This study shows that although most sulfonylurea herbicides can control pondweed effectively to achieve high rough rice yield, only a few soil-applied herbicides were able to prevent pondweed regrowth.
Five johnsongrass populations collected from corn grown in northern Greece were studied to elucidate the levels and mechanisms of resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. Whole-plant response assays indicated that two populations were highly cross-resistant to all ALS inhibitors tested (foramsulfuron, nicosulfuron, rimsulfuron, and imazamox) but were effectively controlled by the recommended rate of the ACCase-inhibiting herbicides propaquizafop and clethodim. The ALS gene sequence revealed a point mutation that resulted in the substitution of Trp574 by Leu in the ALS enzyme, suggesting that the resistance mechanism is target-site mediated. These findings highlight a serious threat against the sustainable use of the ALS-inhibiting herbicides in controlling johnsongrass and other grass weeds in cornfields, suggesting rotational use of herbicides with different modes of action, along with the use of nonchemical methods, for viable Johnsongrass management.
Nine field experiments were conducted from 2017 to 2019 in Ontario to determine the impact of early weed interference on corn yield based on corn growth stage, days after emergence (DAE), accumulated crop heat units (CHU), and weed size. The predicted weed size at herbicide application that resulted in a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was estimated to be 1, 4, 11, 53, non-estimable (N est.*), and N est.* cm under low weed density and 3, 5, 7, 11, 27, and N est.* cm under high weed density, respectively. The predicted DAE at herbicide application time that resulted in a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was predicted to be 14, 20, 27, 44, N est.*, and N est.* DAE under low weed density and 5, 7, 11, 17, 25, and 59 DAE under high weed density, respectively. The predicted CHU from planting at herbicide application time that led to a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was 468, 636, 821, 1,271, N est.*, and N est.* CHU from planting under low weed density and 207, 283, 385, 551, 972, and 1,748 CHU from planting under high weed density, respectively. The predicted crop stage at herbicide application that led to a 1%, 2.5%, 5%, 10%, 25%, and 50% yield loss in corn was V5, V6, V7, V11, N est.*, and N est.* under low weed density and V1, V2, V3, V4, V8, and V14 under high weed density, respectively. Results indicate that weeds must be controlled before they reach 7 cm in height, prior to 11 d after crop emergence, prior to 385 accumulated CHU from emergence, or prior to the V3 stage under high weed density to avoid greater than 5% yield loss.
The objectives of this study were to determine if the level and consistency of glyphosate-resistant (GR) horseweed control prior to soybean planting can be improved by (i) adding halauxifen-methyl, 2,4-D ester, saflufenacil, metribuzin, or dicamba to glufosinate, (ii) increasing the rate of glufosinate from 500 to 1,000 g ai ha–1, and (iii) adding 28% urea ammonium nitrate (UAN) as the carrier solution. During a 2-yr period (2020–2021), four field trials were conducted on commercial farms located in southwestern Ontario, Canada, with confirmed GR horseweed. Glufosinate controlled GR horseweed 65%, 66%, and 63% at 2, 4, and 8 wk after application (WAA), respectively, and reduced density and biomass 46% and 33% at 8 WAA, respectively. There was no improvement in GR horseweed control from the addition of halauxifen-methyl, 2,4-D ester or saflufenacil to glufosinate and no decrease in density and biomass, with the exception that the addition of saflufenacil to glufosinate reduced density 30% compared to glufosinate alone. The addition of metribuzin to glufosinate improved GR horseweed control by 22%, 22%, and 28% at 2, 4, and 8 WAA, respectively, and further reduced density and biomass 50% and 47%, respectively, at 8 WAA, respectively. The addition of dicamba to glufosinate improved GR horseweed control by 19%, 26%, and 30% at 2, 4, and 8 WAA, respectively, and further reduced density and biomass 54% and 60%, respectively, at 8 WAA. There was no improvement in GR horseweed control by increasing the rate of glufosinate from 500 to 1,000 g ai ha–1 or when using 28% UAN as the carrier solution. The addition of all herbicides to glufosinate, increasing the rate of glufosinate, or using 28% UAN as the carrier solution improved the consistency of GR horseweed control.
Glyphosate-resistant (GR) horseweed interference in soybean can reduce soybean yield up to 93%. Glyphosate plus dicamba, 2,4-D ester, halauxifen-methyl or pyraflufen-ethyl/2,4-D applied preplant (PP) provide variable GR horseweed control in soybean. The objective of this study was to determine if the addition of saflufenacil or metribuzin to glyphosate plus dicamba, 2,4-D ester, halauxifen-methyl, or pyraflufen-ethyl/2,4-D will improve the level and consistency of GR horseweed control. Four trials were conducted over the 2020 and 2021 field seasons in fields with GR horseweed populations. Glyphosate plus dicamba, 2,4-D ester, halauxifen-methyl, or pyraflufen-ethyl/2,4-D controlled GR horseweed 96%, 77%, 71%, and 52%, respectively, at 8 wk after application (WAA). When saflufenacil or metribuzin was added to glyphosate plus dicamba or 2,4-D ester, GR horseweed control was not improved at 8 WAA. When saflufenacil or metribuzin was added to glyphosate plus halauxifen-methyl, GR horseweed control improved by 27% and 25%, respectively, at 8 WAA. When saflufenacil or metribuzin was added to glyphosate plus pyraflufen-ethyl/2,4-D, GR horseweed control was improved by 47% and 37%, respectively, at 8 WAA. The consistency of GR horseweed control was improved when saflufenacil or metribuzin was added to glyphosate plus dicamba, 2,4-D ester, halauxifen-methyl, or pyraflufen-ethyl/2,4-D compared to each herbicide applied alone. Synergism was observed when metribuzin was added to glyphosate plus halauxifen-methyl and when saflufenacil or metribuzin was added to glyphosate plus pyraflufen-ethyl/2,4-D at 8 WAA. Though GR horseweed control was improved with the addition of saflufenacil or metribuzin to glyphosate plus halauxifen-methyl or pyraflufen-ethyl/2,4-D, all treatments including saflufenacil resulted in the highest level and most consistent control.
Tolpyralate is commonly mixed with atrazine for improved control of common annual weed species in corn production systems in the United States and Canada. Weed control efficacy with this mixture is enhanced with the addition of methylated seed oil (MSO) Concentrate®; however, there is little information on the efficacy of tolpyralate + atrazine with other proprietary adjuvants. Therefore, four trials were conducted at field research sites in Ontario, Canada, to evaluate the efficacy of tolpyralate + atrazine when applied with six different commercially available adjuvants on four annual broadleaf and two annual grass weed species in corn. The adjuvants evaluated were MSO Concentrate®, Agral® 90, Assist® Oil Concentrate, Carrier®, LI 700®, and Merge®. A treatment of tolpyralate + atrazine applied with no adjuvant was also included in the study. For the control of velvetleaf and wild mustard, the adjuvants evaluated with tolpyralate + atrazine did not improve control. At 8 wk after application (WAA), the use of Agral® 90, Assist® Oil Concentrate, Carrier®, MSO Concentrate®, or Merge® with tolpyralate + atrazine provided similar or greater control of common ragweed than tolpyralate + atrazine applied with LI 700®. At 8 WAA, the adjuvants performed similarly with tolpyralate + atrazine for the control of common lambsquarters; however, LI 700® was the only adjuvant that did not improve control compared to tolpyralate + atrazine applied without an adjuvant. At 8 WAA, MSO Concentrate®, Carrier®, and Merge® improved control of barnyardgrass and foxtail species with tolpyralate + atrazine to a similar or greater level than Assist® Oil Concentrate, Agral® 90, and LI 700®. Overall, MSO Concentrate®, Carrier®, or Merge® should be added to tolpyralate + atrazine for control of the myriad of weed species interfering with corn production.
Nomenclature: Atrazine; tolpyralate; barnyardgrass; Echinochloa crus-galli (L.) P. Beauv.; common lambsquarters; Chenopodium album L.; common ragweed; Ambrosia artemisiifolia L.; giant foxtail; Setaria faberi Herrm.; green foxtail; Setaria viridis (L.) P. Beauv.; velvetleaf; Abutilon theophrasti Medik.; wild mustard; Sinapis arvensis L.; corn; Zea mays L.
Tolpyralate is a 4-hydroxyphenylpyruvate dioxygenase–inhibiting herbicide that is applied postemergence for control of annual broadleaf and grass weeds in corn. Current Canadian label recommendations for tolpyralate specify the addition of a methylated seed oil (MSO) adjuvant (MSO Concentrate®) for improved weed control. The efficacy of tolpyralate applied with other proprietary adjuvants has not been widely reported in the peer-reviewed literature. Therefore, four field trials were conducted in corn over 2020 and 2021 in Ontario, Canada, to evaluate MSO Concentrate®, Agral® 90 (nonionic surfactant), Assist® Oil Concentrate (blended surfactant), Carrier® (blended surfactant), LI 700® (nonionic surfactant), and Merge® (blended surfactant) as adjuvants with tolpyralate for the control of annual broadleaf and grass weeds. At 8 wk after application (WAA), tolpyralate applied with MSO Concentrate®, Agral® 90, Assist® Oil Concentrate, Carrier®, or Merge® controlled velvetleaf, wild mustard, barnyardgrass, and foxtail species similarly. These adjuvants also enhanced the efficacy of tolpyralate similarly for the control of common ragweed at 8 WAA with the exception that Agral® 90 was inferior to Merge®. At 8 WAA, tolpyralate controlled common lambsquarters the greatest when applied with MSO Concentrate®, Agral® 90, Carrier®, or Merge®; these adjuvants with the exception of Agral® 90 were superior to Assist® Oil Concentrate. At 8 WAA, tolpyralate applied with LI 700® controlled common ragweed, barnyardgrass, and foxtail species less than when tolpyralate was applied with the other adjuvants tested; control of these weed species with tolpyralate was not improved with LI 700® when compared to tolpyralate applied without an adjuvant. Overall, tolpyralate applied with either MSO Concentrate®, Carrier®, or Merge® controlled all annual broadleaf and grass weed species similarly or greater than tolpyralate applied without an adjuvant or tolpyralate with Agral® 90, Assist® Oil Concentrate, or LI 700® at 8 WAA.
Nomenclature: Tolpyralate; barnyardgrass; Echinochloa crus-galli (L.) P. Beauv.; common lambsquarters; Chenopodium album L.; common ragweed; Ambrosia artemisiifolia L.; foxtail species; Setaria spp.; velvetleaf; Abutilon theophrasti Medik.; wild mustard; Sinapis arvensis L.; corn; Zea mays L.
Six field experiments were conducted to investigate any interaction between pyroxasulfone and flumioxazin on soybean tolerance and control of multiple-herbicide-resistant (MHR) waterhemp in soybean during 2016 and 2017 in Ontario, Canada. There was a synergistic increase in soybean injury with the co-application of pyroxasulfone and flumioxazin at all rates evaluated at 2 wk after emergence (WAE), the two highest rates evaluated (134/106 and 268/211 g ai ha–1) at 4 WAE, and the highest rate (268/211 g ai ha–1) evaluated at 8 WAE. Soybean injury with all pyroxasulfone and flumioxazin treatments was transient and had no adverse effect on soybean grain yield. Pyroxasulfone applied preemergence at 45, 89, 134, and 268 g ai ha–1 controlled MHR waterhemp up to 72%, 89%, 92%, and 95%, respectively. Flumioxazin applied preemergence at 35, 70, 106, and 211 g ai ha–1 controlled MHR waterhemp up to 78%, 90%, 93%, and 96%, respectively. Pyroxasulfone/flumioxazin applied preemergence at 45/35, 89/70, 134/106, and 268/211 g ai ha–1 controlled MHR waterhemp up to 92%, 96%, 98%, and 100%, respectively. There were no significant antagonistic or synergistic interactions for the control of MHR waterhemp with pyroxasulfone/flumioxazin at rates evaluated except at 268/211 g ai ha–1, which provided a synergistic increase in MHR waterhemp control at 4 WAE. The MHR waterhemp biomass and density reductions followed a trend similar trend to visible control. Pyroxasulfone/flumioxazin at 268/211 g ai ha–1 caused a synergistic response in biomass reduction (9% difference). Based on these results, there is an additive increase in MHR waterhemp control and potential for a synergistic increase in soybean injury with the co-application of pyroxasulfone plus flumioxazin.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere