Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Non-dicamba-resistant soybean yield loss resulting from dicamba off-target injury has become an increasing concern for soybean growers in recent years. After off-target dicamba movement occurs onto sensitive soybean, little information is available on tactics that could be used to mitigate the cosmetic or yield losses that may occur. Therefore, a field experiment was conducted in 2017, 2018, and 2019 to determine whether certain recovery treatments of fungicide, plant growth hormone, macro- and micronutrient fertilizer combinations, or weekly irrigation could reduce dicamba injury and/or result in similar yield to soybean that was not injured with dicamba. Simulated drift events of dicamba (5.6 g ae ha–1) were applied to non-dicamba-resistant soybean once they reached the V3 or R2 stages of growth. Recovery treatments were applied approximately 14 d after the simulated drift event. Weekly irrigation was the only recovery treatment that provided appreciable levels of injury reduction or increases in soybean height or yield compared to the dicamba-injured plants. Weekly irrigation following the R2 dicamba injury event resulted in an 1% to 14% increase in soybean yield compared with the dicamba-injured control. All other recovery treatments resulted in soybean yields that were similar to the dicamba-injured control, and similar to or lower than the nontreated control. Results from this study indicate that if soybean have become injured with dicamba, weekly irrigation will help soybean recover some of the yield loss and reduce injury symptoms that resulted from off-target dicamba movement, especially in a year with below average precipitation. However, yield loss will likely not be restored to that of noninjured soybean.
Nomenclature: Dicamba; soybean; Glycine max (L.) Merr.
Enlist E3™ soybean cultivars permit over-the-top application of labeled glyphosate, glufosinate, and 2,4-D choline products. Increased Enlist E3™ trait adoption and use of 2,4-D choline postemergence across U.S. soybean production systems raise concerns regarding potential for 2,4-D off-target movement (OTM). A large-scale drift experiment was established near Sun Prairie, WI, and Arlington, WI, in 2019 and 2020, respectively. A 2,4-D-resistant soybean cultivar was planted in the center of the field (∼3 ha), while the surrounding area was planted with a 2,4-D-susceptible cultivar. An application of 785 ae ha–1 2,4-D choline plus 834 g ae ha–1 glyphosate was completed within the center block at R2 and V6 growth stages on August 1, 2019, and July 3, 2020, respectively. Filter papers were placed in-swath and outside of the treated area in one upwind transect and three downwind transects to estimate particle deposition. Low-volume air samplers ran for the 0.5-h to 48-h period following application to estimate 2,4-D air concentration. Injury to 2,4-D-susceptible soybean was assessed 21 d after treatment (0% to 100% injury). The 2,4-D deposition in-swath was 9,966 and 5,727 ng cm–2 in 2019 and 2020, respectively. Three-parameter log-logistic models estimated the distance to 90% reduction in 2,4-D deposition (D90) to be 0.63 m and 0.90 m in 2019 and 2020, respectively. In 2020, the 2,4-D air concentration detected was lower for the upwind (0.395 ng m–3) than the downwind direction (1.34 ng m–3), although both were lower than the amount detected in-swath (4.01 ng m–3). No soybean injury was observed in the downwind or upwind directions. Our results suggest that 2,4-D choline applications following label recommendations pose little risk to 2,4-D-susceptible soybean cultivars; however, further work is needed to understand 2,4-D choline OTM under different environmental conditions and the presence of other susceptible crops.
Nomenclature: 2,4-D; 2; 4-Dicholorophenoxyacetic-acid; soybean; Glycine max (L.) Merr
Field trials were conducted to determine the effects of glyphosate and/or dicamba simulated drift rates on chipping potatoes (Solanum tuberosum L.) ‘Atlantic’ and ‘Dakota Pearl.’ Sublethal herbicide rates were applied at the tuber initiation stage and consisted of dicamba at 99 g ae ha–1 or glyphosate at 197 g ae ha–1 applied alone or the combinations of dicamba at 20 or 99 g ae ha–1 and glyphosate at 40 or 197 g ae ha–1, respectively. At 7 days after treatment (DAT), the high spray combination of glyphosate plus dicamba resulted in the greatest plant damage (28%). Plant injury from plants treated with the low combination of glyphosate plus dicamba did not differ from the nontreated control. At 21 DAT, visible injury increased to 40% for plants treated with the high combination of glyphosate plus dicamba. Total yield suggested that dicamba and glyphosate caused similar yield reductions as plants that received glyphosate at 197 g ha–1 or dicamba at 99 g ha–1 had lower total yields compared to the nontreated and plants that received the combination of glyphosate (197 g ha–1) and dicamba (99 g ha–1) had lower total yields compared to plants that received either herbicide alone. However, ‘Dakota Pearl’ plants were more sensitive to glyphosate at 197 g ha–1 than were ‘Atlantic’ plants, causing the interaction for most tuber grades. Tuber specific gravity was lower for plants that received glyphosate at 197 g ha–1, dicamba at 99 g ha–1, or this combination, but this reduction would not prevent chip processing. Results reinforce the need for diligence when applying these herbicides in proximity to a susceptible crop, such as chipping potatoes, and the need to thoroughly clean sprayers before application to a sensitive crop.
Nomenclature: Dicamba; glyphosate; potato; Solanum tuberosum L. ‘Atlantic;’ ‘Dakota Pearl’
Renewed interest in studying auxin herbicides (WSSA Group 4) is increasing as a result of the release of genetically engineered crop varieties that are tolerant to preemergence and postemergence applications of specific formulations of dicamba. Auxin-resistant crops were developed in response to the development of weed species resistant to glyphosate and other herbicides. Research was conducted at multiple field locations in Georgia in 2018 and 2019 to examine weed control when postemergence herbicides were applied to dicamba- and glyphosate-resistant cotton at eight different points in time over a 24-h period. Applications were made at 1 h prior to sunrise all the way up to midnight during the same day to examine the effect of herbicide application timing on broadleaf weed control. Glyphosate, dicamba, and glyphosate plus dicamba were applied at each timing. Visual ratings of weed control were scored at 7, 14, 21, and 28 d after treatment (DAT). Weed control was affected by herbicide application timing. Midnight applications resulted in the lowest levels of control. Sicklepod, pitted morningglory, and prickly sida control was 49%, 38%, and 41%, respectively. Greatest control of all three species (up to 99%) occurred from the noon to 1 h prior to sunset application timings. Orthogonal contrasts of timing of application indicated that weed control was improved with day > night and pre-dawn > midnight.
Herbicide-resistant (HR) kochia is a growing problem in the Great Plains region of Canada and the United States. Resistance to up to four herbicide sites of action, including photosystem II inhibitors, acetolactate synthase inhibitors, synthetic auxins, and the 5-enolpyruvylshikimate-3-phosphate synthase inhibitor glyphosate have been reported in many areas of this region. Despite being present in the United States since 1993/1994, auxinic-HR kochia is a recent and growing phenomenon in Canada. This study was designed to characterize 1) the level of resistance and 2) patterns of cross-resistance to dicamba and fluroxypyr in 12 putative auxinic-HR kochia populations from western Canada. The incidence of dicamba-resistant individuals ranged among populations from 0% to 85%, while fluroxypyr-resistant individuals ranged from 0% to 45%. In whole-plant dose-response bioassays, the populations exhibited up to 6.5-fold resistance to dicamba and up to 51.5-fold resistance to fluroxypyr based on visible injury 28 d after application. Based on plant survival estimates, the populations exhibited up to 3.7-fold resistance to dicamba and up to 72.5-fold resistance to fluroxypyr. Multiple patterns of synthetic auxin resistance were observed, in which one population from Cypress County, Alberta, was resistant to dicamba but not fluroxypyr, whereas another from Rocky View County, Alberta, was resistant to fluroxypyr but not dicamba based on single-dose population screening and dose-response bioassays. These results suggest that multiple mechanisms may confer resistance to dicamba and/or fluroxypyr in Canadian kochia populations. Further research is warranted to determine these mechanisms. Farmers are urged to adopt proactive nonchemical weed management practices in an effort to preserve efficacy of the remaining herbicide options available for control of HR kochia.
Nomenclature: Dicamba; fluroxypyr; glyphosate; kochia, Bassia scoparia (L.) A.J. Scott
Control of glyphosate-resistant (GR) junglerice is a challenging task in eastern Australia. There is limited information on the efficacy and reliability of alternate herbicides for GR populations of junglerice, especially when targeting large plants and when temperatures are high. A series of experiments were conducted to confirm the level of glyphosate resistance in three populations of junglerice and to evaluate the efficacy of alternate herbicides for the control of GR junglerice populations. The LD50 of glyphosate of B17/7, B17/34, and B17/35 populations was found to be 298, 2,260, and 1,715 g ae ha–1, respectively, suggesting that populations B17/34 and B17/35 were highly resistant to glyphosate. Glyphosate efficacy was reduced at high-temperature (35 C day/25 C night) compared with low-temperature conditions (25 C day/15 C night), suggesting that control of susceptible populations may also be reduced if glyphosate is sprayed under hot conditions. Preemergence herbicides dimethenamid-P (1,000 g ai ha–1) and pendimethalin (1,500 g ai ha–1) provided 100% control of GR populations (B17/34 and 17/35). Postemergence herbicides, such as clethodim (60 or 90 g ai ha–1), glufosinate (750 g ai ha–1), haloxyfop (52 or 78 g ai ha–1), and paraquat (400 or 600 g ai ha–1), applied at the four-leaf stage provided 100% control of GR populations. For larger junglerice plants (eight-leaf stage), postemergence applications of paraquat (400 or 600 g ai ha–1) provided greater weed control than clethodim, glufosinate, and haloxyfop. A mixture of either glufosinate or haloxyfop with glyphosate provided poor control of GR junglerice populations compared with application of glufosinate or haloxyfop applied alone. Efficacy of glufosinate and haloxyfop for the control of GR populations decreased when applied in the sequential spray after glyphosate application. This study identified alternative herbicide options for GR junglerice populations that can be used in herbicide rotation programs for sustainable weed management.
Owing to the lack of effective POST herbicide options, producers typically rely on nicosulfuron as the main POST grass herbicide in sweet corn production systems. In 2019, a Wisconsin sweet corn producer reported fall panicum control escapes after spraying nicosulfuron. Seeds from mature plants were collected to (1) measure fall panicum response to acetolactate synthase (ALS)-inhibiting herbicides, (2) elucidate the resistance mechanism, and (3) evaluate its response to alternative POST herbicides. Greenhouse and laboratory investigations were conducted to assess fall panicum response to ALS-inhibiting herbicides and elucidate the resistance mechanism. Dose–response results showed that fall panicum was highly resistant to nicosulfuron with a resistance ratio of >12.9-fold (survived rates >254 g ai ha–1, or 8× the field label rate). Molecular and genetic studies indicated that there are multiple ALS gene copies in fall panicum and that resistance was due to a mutation in one copy, resulting in an Asp-376Glu amino acid substitution. Additional greenhouse experiments indicate that clethodim (105 g ai ha–1), quizalofop-p-ethyl (70 g ae ha–1), glyphosate (864 g ae ha–1), and glufosinate (650 g ai ha–1) are effective POST options to manage the ALS-resistant fall panicum (>90.0% control and 96.8% biomass reduction) in rotational years. The 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides isoxaflutole (105 g ai ha–1), mesotrione (105 g ai ha–1), tembotrione (92 g ai ha–1), and tolpyralate (39 g ai ha–1) did not provide effective POST fall panicum control. Because these herbicides are commonly used for POST weed control in sweet corn, more investigations are required to evaluate combinations of HPPD-inhibiting herbicides with herbicides from other sites of action for POST fall panicum control. Herein we confirm the first case of herbicide resistance in fall panicum in the United States.
Nomenclature: clethodim; glufosinate; glyphosate; isoxaflutole; mesotrione; nicosulfuron; tembotrione; tolpyralate; quizalofop-p-ethyl; fall panicum; Panicum dichotomiflorum Michx.; sweet corn; Zea mays L. var. saccharate
Foliar delivery of herbicides is a common means for plant management in aquatic environments. Though this technique is decades old, little is known about vegetative spray retention relative to this application method. A more complete understanding of maximizing herbicide retention could lead to improved plant management while simultaneously decreasing pesticide load in aquatic environments. Therefore outdoor mesocosm experiments were conducted in 2020 to evaluate the effect of adjuvant type on foliar spray retention in waterhyacinth [Eichhornia crassipes (Mart.) Solms]. Additionally, the effect of carrier volume on spray retention in waterhyacinth, waterlettuce (Pistia stratiotes L.), and giant salvinia (Salvinia molesta D.S. Mitchell) was documented. Spray deposition did not differ among the nine adjuvants tested; however, spray retention was reduced 6% to 11% when an adjuvant was excluded from the spray solution. The effect of carrier volume on spray retention in waterhyacinth, waterlettuce, and giant salvinia was also investigated. Decreases in spray retention were most sensitive to increased carrier volume in waterhyacinth, followed by giant salvinia and waterlettuce. Among species, spray retention potential, as determined by intercept estimates, was greatest in waterlettuce and giant salvinia regardless of carrier volume. Asymptotes estimates for waterhyacinth, waterlettuce, and giant salvinia were 33%, 46%, and 79% spray retention, respectively. In other words, spray retention was the lowest and remained relatively constant at these values for the high carrier volumes tested (935 and 1,870 L ha–1), which were likely due to the presence of pubescence on leaves and flatter leaf architecture represented by waterlettuce and giant salvinia compared to the glabrous vertical leaves of waterhyacinth. Future research will evaluate these concepts under field conditions.
Weed management is one of the major challenges responsible for growers' reluctance to switch from conventional to organic vegetable production. Competition from uncontrolled weeds can significantly reduce the yield and water use efficiency (WUE) of vegetable crops. A field study was conducted during the summers of 2019 and 2020 at the Quaker Research Farm of Texas Tech University, in Lubbock, TX, to determine physiology, plant growth, yield, soil water depletion pattern, and WUE of pumpkin as affected by five weed control treatments: 1) ammonium nonanoate 5% ai, 2) ammonium nonanoate 6% ai, 3) clove oil + cinnamon oil 4.5% ai, 4) clove oil + cinnamon oil 9% ai, and 5) an untreated control. Each plot received the same herbicide treatment at 20 and 30 d after planting (DAP). The experiment was conducted in a randomized complete block design with four replications of each treatment. Both herbicides resulted in significant weed suppression compared to the untreated control and weed control was 88% to 98% with ammonium nonanoate and 39% to 69% with clove oil + cinnamon oil. Photosynthesis rate, stomatal conductance, shoot dry biomass, average fruit weight, total fruit yield, and WUE of pumpkin were significantly higher in plants that were treated with ammonium nonanoate compared to the untreated control. All the aforementioned parameters were not significantly different between clove oil + cinnamon oil and the untreated control. Use of higher active ingredient concentration did not improve the performance of either herbicide. Soil water depletion and evapotranspiration were comparable among all the treatments. Based on the results, ammonium nonanoate at its lower concentration could be an option for effective weed control, and for improving fruit yield and WUE of pumpkin.
The role of weed suppression by the cultivated crop is often overlooked in annual row cropping systems. Agronomic practices such as planting time, row spacing, tillage and herbicide selection may influence the time of crop canopy closure. The objective of this research was to evaluate the influence of the aforementioned agronomic practices and their interaction with the adoption of an effective preemergence (PRE) soil residual herbicide program on soybean canopy closure and yield. A field experiment was conducted in 2019 and 2020 in Arlington, WI, as a 2×2×2×2 factorial in a randomized complete block design, including early (late April) and standard (late May) planting time, narrow (38 cm) and wide (76 cm) row spacing, conventional tillage and no-till, and soil-applied PRE herbicide (yes and no; flumioxazin 150 g ai ha–1 + metribuzin 449 g ai ha–1 + pyroxasulfone 190 g ai ha–1). All plots were maintained weed-free throughout the growing season. In both years, early planted soybeans reached 90% green canopy cover (T90) before (7 to 9 d difference) and yielded more (188 to 902 kg ha–1 difference) than the standard planted soybeans. Narrow-row soybeans reached T90 earlier than wide-row soybeans (4 to 7 d difference), but yield was similar between row spacing treatments. Conventional tillage resulted in a higher yield compared to a no-till system (377 kg ha–1 difference). The PRE herbicide slightly delayed T90 (4 d or less) but had no impact on yield. All practices investigated herein influenced the time of soybean canopy closure but only planting time and tillage impacted yield. Planting soybeans earlier and reducing their row spacing expedites the time to canopy closure. The potential delay in canopy development and yield loss if soybeans are allowed to compete with weeds early in the season would likely outweigh the slight delay in canopy development by an effective PRE herbicide.
Nomenclature: flumioxazin; metribuzin; pyroxasulfone; soybean; Glycine max L. Merr
Late-emerging summer annual weeds are difficult to control in dry bean production fields. Dry bean is a poor competitor with weeds, due to its slow rate of growth and delayed canopy formation. Palmer amaranth is particularly difficult to control due to season-long emergence and resistance to acetolactate synthase (ALS)-inhibiting herbicides. Dry bean growers rely on PPI and preemergence residual herbicides for the foundation of their weed control programs; however, postemergence herbicides are often needed for season-long weed control. The objective of this experiment was to evaluate effect of planting date and herbicide program on late-season weed control in dry bean in western Nebraska. Field experiments were conducted in 2017 and 2018 near Scottsbluff, NE. The experiment was arranged in a split-plot design, with planting date and herbicide program as main-plot and subplot factors, respectively. Delayed planting was represented by a delay of 15 d after standard planting time. The treatments EPTC + ethalfluralin, EPTC + ethalfluralin followed by (fb) imazamox + bentazon, and pendimethalin + dimethenamid-P fb imazamox + bentazon, resulted in the lowest Palmer amaranth density at 3 wk after treatment and the highest dry bean yield. The imazamox + bentazon treatment provided poor Palmer amaranth control and did not consistently result in Palmer amaranth density and biomass reduction compared with the nontreated control. In 2018, the delayed planting treatment had reduced Palmer amaranth biomass with the pendimethalin + dimethenamid-P treatment, as compared with standard planting. Delaying planting did not reduce dry bean yield and had limited benefit in improving weed control in dry bean.
Nomenclature: Bentazon; dimethenamid-P; EPTC; ethalfluralin; imazamox; pendimethalin; Palmer amaranth; Amaranthus palmeri S. Watson; dry bean; Phaseolus vulgaris L.
Drought stress and weed competition are two of the most important threats to corn production in the northeastern United States. Both pressures have the potential to worsen under climate change. In a 2-yr field study in Ithaca, NY, we tested the effects of drought and burcucumber, an increasingly problematic annual vine, on silage corn. Burcucumber seedlings were transplanted into corn rows at densities of 0, 0.5, 2, and 3 plants m–2 and a drought treatment was later imposed with rainout shelters constructed from steel frames and high-clarity plastic. Available soil moisture was lower in drought plots (47% ± 1% in 2018 and 52% ± 2% in 2019) than no-drought plots (69% ± 1% in 2018 and 68% ± 1% in 2019). Burcucumber planting density (P = 0.008) reduced fresh silage yield. Drought also reduced fresh silage yield (P < 0.001) with a drought-by-year interaction (P = 0.007): drought reduced fresh weight by 29% in 2018 (48,000 ± 2,000 kg ha–1 to 34,000 ± 3,000 kg ha–1) and by 9% in 2019 (38,000 ± 3,000 kg ha–1 to 34,000 ± 3,000 kg ha–1). Burcucumber planting density and drought did not interact. Overall, our findings indicate that drought and competition from burcucumber may have additive effects on silage corn in New York State. Regardless of water availability, active weed management is required to prevent yield losses due to burcucumber. Yield losses may be similar or greater in grain corn and might increase under climate change.
Nomenclature: burcucumber; Sicyos angulatus L.; corn; Zea mays L.
Environmental conditions surrounding herbicide applications are known to affect weed control and crop response. Variable levels of rice injury caused by florpyrauxifen-benzyl have been observed across cropping systems and environmental conditions, warranting research in which single environmental and management strategies are isolated to understand the effect of each factor on rice injury and subsequent reductions in rice growth. A field study was conducted to determine the effects of planting date, rice cultivar, and florpyrauxifen-benzyl rate on rice injury, maturity, and yield. Two greenhouse studies were conducted to determine the effect of soil moisture and time of flooding after florpyrauxifen-benzyl application on rice injury caused by the herbicide. Growth chamber experiments were conducted to isolate the effects of temperature and light intensity on rice injury caused by florpyrauxifen-benzyl. In the field study, levels of injury varied across planting dates in both years, indicating the influence of environment on the crop response to florpyrauxifen-benzyl applications. Under dry (40% soil moisture) and saturated (100%) soil conditions, rice injury increased to 36% and 35%, respectively, compared with 27% and 25% injury at 60% and 80% soil moisture, respectively. Flooding rice 0 to 6 d after florpyrauxifen-benzyl application reduced visible injury; however, a reduction in rice tiller production occurred when the rice was flooded the same day as application. Visible rice injury increased when florpyrauxifen-benzyl was applied under low light intensity (700 µmol m–2 s–1) and high temperatures (35/24 C day/night). Based on these findings, applications of florpyrauxifen-benzyl are least likely to cause unacceptable rice injury when applied to soils having 60% and 80% saturation in high light, low temperature environments, and the crop is flooded 3 to 6 d following application.
Nomenclature: florpyrauxifen-benzyl; rice; Oryza sativa L.
Late watergrass is a competitive weed of rice that is well adapted to both aerobic and anaerobic environments. Cultural controls such as a stale-seedbed and alternating from wet- to dry-seeding have been proposed as management options. However, the effects of these systems on its emergence and early growth are unknown. The objective of this study was to modify a previously developed population-based threshold model (PBTM) to predict emergence and early growth under field conditions. In 2013, a series of experiments were conducted at the California Rice Experiment Station (CRES) in Biggs, CA, to evaluate emergence and early growth of multiple herbicide–resistant and -susceptible late watergrass at four burial depths (0.5, 2, 4, and 6 cm) under three irrigation regimes: continuously flooded (CF), daily flush (DF), and intermittent flush (IF). Resistant plants emerged at a significantly higher rate under the IF treatment (P < 0.05). Both biotypes showed decreasing emergence with increasing depth, and no plants emerged from the 4- or 6-cm depths in the CF treatment. Using the Gompertz growth curve, resistant plants had greater predicted growth rates (k), lower predicted maximum heights (hmax), and a shorter time to predicted maximum growth rate (tm) than susceptible plants under the CF and DF treatments. Under the IF treatment, the susceptible plants had greater k, lower hmax, and shorter time to predicted tm. Information about burial depth and irrigation was incorporated into a previously developed PBTM for late watergrass, and validated at the CRES in a field with a susceptible late watergrass population in 2013 and 2014, under two irrigation systems, CF and IF. Model fit was best in the CF treatments (average Akaike information criteria [AIC] = 199.05) compared to the IF treatments (average AIC = 208.6).
Nomenclature: late watergrass, Echinochloa phyllopogon (Stapf.) Koss; rice, Oryza sativa L.
Evolution of multiple herbicide–resistant Palmer amaranth warrants the development of integrated strategies for its control in the southcentral Great Plains (SGP). To develop effective control strategies, a better understanding of the emergence biology of Palmer amaranth populations from the SGP region is needed. A common garden study was conducted in a no-till (NT) fallow field at the Kansas State University Agricultural Research Center near Hays, KS, during the 2018 and 2019 growing seasons, to determine the emergence pattern and periodicity of Palmer amaranth populations collected from the SGP region. Nine Palmer amaranth populations collected from five states were included: Colorado (CO1, CO2), Oklahoma (OK), Kansas (KS1, KS2), Texas (TX), and Nebraska (NE1, NE2, NE3). During the 2018 growing season, the CO1 and KS1 populations displayed more rapid emergence rates, with greater parameter b values (–5.4, and –5.3, respectively), whereas the TX and NE3 populations had the highest emergence rates (b = –12.2) in the 2019 growing season. The cumulative growing degree days (cGDD) required to achieve 10%, 50%, and 90% cumulative emergence ranged from 125 to 144, 190 to 254, and 285 to 445 in 2018; and 54 to 74, 88 to 160, and 105 to 420 in the 2019 growing season across all tested populations, respectively. The OK population exhibited the longest emergence duration (301 and 359 cGDD) in both growing seasons. All tested Palmer amaranth populations had a peak emergence period between May 11 and June 8 in 2018, and April 30 and June 1 in the 2019 growing season. Altogether, these results indicate the existence of differential emergence pattern and peak emergence periods of geographically distant Palmer amaranth populations from the SGP region. This information will help in developing prediction models for decision-making tools to manage Palmer amaranth in the region.
Nomenclature: Palmer amaranth; Amaranthus palmeri S. Wats
Cover crops can be utilized to suppress weeds via direct competition for sunlight, water, and soil nutrients. Research was conducted to determine if cover crops can be used in label-mandated buffer areas in 2,4-D-resistant soybean cropping systems. Delaying termination of cover crops containing cereal rye to at or after soybean planting resulted in a 25 to more than 200 percentage point increase in cover crop biomass compared to a control treatment. Cover crops generally improved horseweed control when 2,4-D was not used. Cover crops reduced grass densities up to 54% at four of six site-years when termination was delayed to after soybean planting. Cover crops did not reduce giant ragweed densities. Cover crops reduced waterhemp densities by up to 45%. Cover crops terminated at or after planting were beneficial within buffer areas for control of grasses and waterhemp, but not giant ragweed. Yield reductions of 14% to 41% occurred when cover crop termination was delayed to after soybean planting at three of six site-years. Terminating the cover crops at planting time provided suppression of grasses and waterhemp within buffer areas and had similar yield to the highest-yielding treatment in five out of six site-years.
Commercialization of 2,4-D-resistant soybean varieties allows for postemergence (POST) applications of 2,4-D in soybean. With the increase in POST applications of 2,4-D in soybean, shifts in weed populations may occur. A long-term field trial was conducted over 7 yr in a corn-soybean rotation. Weed populations were subjected to four herbicide strategies with variable levels of 2,4-D reliance. The strategies used included 1) diversified glyphosate strategy with six herbicide sites of action (SOAs); 2) 2,4-D reliant strategy with three SOAs; 3) diversified 2,4-D reliant strategy with seven SOAs; and 4) fully diversified strategy with eight SOAs. Soil residual herbicides were used for both corn and soybean years, except for the 2,4-D-reliant strategy, which used only a residual herbicide during the corn years. A 52% or greater reduction in weed densities for all herbicide strategies, except the 2,4-D-reliant strategy, was observed by the end of the study. However, the density of weeds tolerant to 2,4-D, such as monocots, increased after 3 yr of selection pressure, and more than doubled after 5 yr of selection pressure in the 2,4-D-reliant strategy. Additionally, in the 2,4-D-reliant strategy with three SOAs, species richness was 30% higher in the soil seedbank compared to herbicides strategies with six or more SOAs. In order to delay weed shifts, diversified herbicide strategies with more than three SOAs that include residual herbicides should be used in corn:soybean rotational systems that use 2,4-D-resistant soybean.
The annual bluegrass weevil (ABW) is a pest of fine turfgrass, but recent research has found that withholding insecticides for ABW control can reduce annual bluegrass cover. The objective of this research was to evaluate threshold-based insecticide and paclobutrazol programs for annual bluegrass control. The effect of three insecticide programs (preventive, threshold, and no insecticide) and four rates of paclobutrazol (0, 70, 105, or 210 g ha–1 applied monthly) were evaluated. Replicate experiments were conducted from April to November in both 2018 and 2019 on a mixed creeping bentgrass and annual bluegrass fairway in North Brunswick, NJ. By the conclusion of both experiments, all paclobutrazol programs exhibited reduced annual bluegrass cover compared with the nontreated plots. In threshold and no-insecticide programs, reduction in annual bluegrass cover was enhanced by paclobutrazol applied at 105 g ha–1 in both years, and at 70 g ha–1 in the 2019 experiment. Paclobutrazol at 210 g ha–1 resulted in annual bluegrass cover of <20% regardless of insecticide program. In 2019, threshold-based ABW control without paclobutrazol provided similar annual bluegrass control as monthly applications of paclobutrazol at 70 and 105 g ha–1 with the preventive insecticide program. A reduction in turfgrass quality from threshold-based insecticide programs persisted for a shorter duration than the no-insecticide program, regardless of paclobutrazol treatment. Threshold-based ABW insecticide programs that allow ABW feeding damage to occur can result in reduced annual bluegrass cover. These reductions were further enhanced by paclobutrazol applications. The combination of threshold-level insecticide with moderate rates of paclobutrazol (70 to 105 g ha–1) provided reductions in annual bluegrass cover that were similar to the highest rate of paclobutrazol (210 g ha–1) without ABW damage. Turfgrass managers who integrate the threshold-level insecticide approach and monthly paclobutrazol applications may achieve greater annual bluegrass control than either strategy alone if temporary reductions in turf quality can be tolerated.
A field study was conducted twice in Elizabeth, MS, at on-farm sites in 2010–11 and 2011–12, and twice in 2012–13 at Mississippi State University's Delta Research and Extension Center in Stoneville, MS, to evaluate glyphosate-resistant (GR) Italian ryegrass control and crop response to fall treatments followed by postemergence herbicide treatments in winter and/or spring. Italian ryegrass was controlled ≥92% and 61% following S-metolachlor and tillage 77 d after fall treatments (DA-FT), respectively. S-metolachlor fall treatment provided 33% greater control than clethodim winter treatment at 21 d after winter treatments (DA-WT). Tillage fall treatment followed by (fb) clethodim winter treatment fb paraquat spring treatment provided similar control (93%) to treatments containing S-metolachlor fall treatment fb a winter or spring herbicide treatment (≥93%) 24 d after spring treatments (DA-ST). Greatest soybean and corn density and yield were also observed following programs containing S-metolachlor fall treatment. Sequential postemergence herbicide treatments were not required to increase corn and soybean density and yield when S-metolachlor was used as a fall treatment. Growers have the best opportunity to maximize GR Italian ryegrass control when S-metolachlor fb a winter or spring herbicide treatment is used.
Nomenclature:S-metolachlor; clethodim; paraquat; Italian ryegrass; Lolium perenne L. ssp. multiflorum (Lam.) Husnot. LOLMU; Glycine max (L.) Merr. GLXMA; Zea mays L. ZEAMX.
Wild oat is a herbicide resistance-prone global weed species that causes significant economic losses in dryland and horticultural agriculture. As a result, there has been a significant research effort to control this species. A major impediment to this research is the seed coat-mediated dormancy of wild oat, which requires a labor-intensive incision or puncturing of the seed coat to initiate seed germination. This study defines the most efficient settings of a mechanical thresher to overcome wild oat seed dormancy and then validates these settings using multiple populations collected from the Western Australian grain belt. We also compare the effects of rapid mechanical scarification and known germination stimulus tactics such as scarification with sulfuric acid (H2SO4), partial endosperm removal, sandpaper scarification of the seed coat, and immersion in sodium nitroprusside (NO donor SNP) solution on wild oat seedling growth rate. Threshing treatment of 1,500 rpm for 5 s provides equivalent germination compared with manually puncturing individual wild oat seeds, with no difference in seedling relative growth rate. The mechanical scarification of seeds using the thresher resulted in greater germination (66%) than H2SO4 scarification (0%), partial endosperm removal (10%), sandpaper seed coat scarification (25%), and exposure to NO donor SNP (34%). This study demonstrates that the physical dormancy of wild oat can be rapidly overcome using a commercially available mechanical thresher.
Herbicides with soil-residual activity have the potential for carryover into subsequent crops, resulting in injury to sensitive crops and limiting productivity if severe. The increased use of soil-residual herbicides in the United States for management of troublesome weeds in corn- and soybean-cropping systems has potential to result in more cases of carryover. Soil management practices have different effects on the soil environment, potentially influencing herbicide degradation and likelihood of carryover. Field experiments were conducted at three sites in 2019 and 2020 to determine the effects of corn (clopyralid and mesotrione) and soybean (fomesafen and imazethapyr) herbicides applied in the fall at reduced rates (25% and 50% of labeled rates) and three soil management practices (tillage, no-tillage, and a fall-established cereal rye cover crop) on subsequent growth and productivity of the cereal rye cover crop and the soybean and corn crops, respectively. Most response variables (cereal rye biomass and crop canopy cover at cover crop termination in the spring, early-season crop stand and herbicide injury ratings, and crop yield) were not affected by herbicide carryover. Corn yield was lower when soil was managed with a cereal rye cover crop compared with tillage at all three sites, while yield was lower for no-till compared with tillage at two sites. Soybean yield was lower when managed with a cereal rye cover crop compared with tillage and no-till at one site. Findings from this research indicate a low carryover risk for these herbicides across site-years when label rotational restrictions are followed and environmental conditions favorable for herbicide degradation exist, regardless of soil management practice on silt loam or silty clay loam soil types in the U.S. Midwest region.
The critical timing of weed removal (CTWR) is the point in crop development when weed control must be initiated to prevent crop yield loss due to weed competition. A field study was conducted in 2018 and 2020 near Scottsbluff, NE, to determine how the use of preemergence herbicides affects the CTWR in dry bean. The experiment was arranged as a split plot, with herbicide treatment and weed removal timing as main and sub-plot factors, respectively. Herbicide treatments consisted of no-preemergence application, or pendimethalin (1,070 g ai ha–1) + dimethenamid-P (790 g ai ha–1) applied preemergence. Sub-plot treatments included season-long weed-free, weed removal at: V1, V3, V6, R2, and R5 dry bean growth stages, and a season-long weedy control. A four-parameter logistic model was used to estimate the impact of time of weed removal, for all response variables including dry bean yield, dry bean plants m–1 row, number of pods per plant, number of seeds per pod, and seed weight. The CTWR based on 5% yield reduction was estimated to range from the V1 growth stage [(16 d after emergence (DAE)] to the R1 growth stage (39 DAE) in the no-preemergence herbicide treatment. In the preemergence-applied treatment, the CTWR began at the R2 growth stage (47 DAE). Number of dry bean plants m–1 row was reduced in the no-preemergence treatment when weed removal was delayed beyond the R2 growth stage in the 2020 field season. The use of preemergence herbicides prevented a reduction in the number of pods per plant in 2020, and the number of seeds per pod in 2018 and 2020. In 2018, the number of pods per plant was reduced by 73% when no preemergence herbicide was applied, compared to 26% in the preemergence-applied treatment. The use of preemergence-applied soil-active herbicides in dry bean delayed the CTWR and preserved yield potential.
Nomenclature: Pendimethalin; dimethenamid-P; dry bean; Phaseolus vulgaris L.
Reusing soil can reduce environmental impacts associated with obtaining natural fresh soil during road construction and analogous activities. However, the movement and reuse of soils can spread numerous plant diseases and pests, including propagules of weeds and invasive alien plant species. To avoid the spread of barnyardgrass in reused soil, its seeds must be killed before that soil is spread to new areas. We investigated the possibility of thermal control of barnyardgrass seeds using a prototype of a stationary soil steaming device. One Polish and four Norwegian seed populations were examined for thermal sensitivity. To mimic a natural range in seed moisture content, dried seeds were moistened for 0, 12, 24, or 48 h before steaming. To find effective soil temperatures and whether exposure duration is important, we tested target soil temperatures in the range 60 to 99 C at an exposure duration of 90 s (Experiment 1) and exposure durations of 30, 90, or 180 s with a target temperature of 99 C (Experiment 2). In a third experiment, we tested exposure durations of 90, 180, and 540 s at 99 C (Experiment 3). Obtaining target temperatures was challenging. For target temperatures of 60, 70, 80, and 99 C, the actual temperatures obtained were 59 to 69, 74 to 76, 77 to 83, and 94 to 99 C, respectively. After steaming treatments, seed germination was followed for 28 d in a greenhouse. Maximum soil temperature affected seed germination, but exposure duration did not. Seed premoistening was of influence but varied among temperatures and populations. The relationships between maximum soil temperature and seed germination were described by a common dose–response function. Seed germination was reduced by 50% when the maximum soil temperature reached 62 to 68 C and 90% at 76 to 86 C. For total weed control, 94 C was required in four populations, whereas 79 C was sufficient in one Norwegian population.
Nomenclature: barnyardgrass; Echinochloa crus-galli (L.) P. Beauv.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere