Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Rhizoma perennial peanut (RPP) is well adapted to the Gulf Coast region of the United States, but its varietal tolerance to glyphosate and triclopyr is not well defined. The research was conducted to determine the effect of various rates of glyphosate and triclopyr on established RPP, and the response of common RPP varieties to these herbicides. The RPP sward was approximately 7 yr younger at Zolfo Springs than at the Ona location. RPP showed moderate tolerance to glyphosate and triclopyr application, and injury level did not differ with the age of RPP sward. However, biomass production was negatively influenced by the age of the RPP sward. Overall, injury from glyphosate applications did not exceed 40% at either site. The glyphosate rate for 20% biomass reduction was predicted to be 0.53 and 2.17 kg ae ha–1 at Zolfo Springs and Ona, respectively. RPP injury from triclopyr was greater at the Zolfo Springs location than at Ona, and the triclopyr rate predicted to result in a 20% biomass reduction was 0.45 and 0.99 kg ae ha–1 at the Zolfo Springs and Ona locations, respectively. There was a difference on RPP varieties response to glyphosate and triclopyr application. ‘Florigraze’ and ‘Ona 33’ were less tolerant to glyphosate compared to ‘UF-Tito’ and ‘Ecoturf’ at 30 d after treatment. Likewise, UF-Tito and Florigraze were less tolerant to triclopyr compared to Ona 33 and Ecoturf. Overall, Florigraze showed highest injury and at least 2-fold reduction on biomass compared to the other three varieties from glyphosate or triclopyr application. Results from this research indicate that glyphosate and triclopyr appear to be safe to apply to long-established RPP stands, but herbicide rate and RPP varieties should be considered if stands are <5 yr old.
In southern Australia, annual sowthistle and prickly lettuce have become more prevalent following the adoption of reduced tillage cropping systems. They are especially problematic in lentil and other pulse crops, which are weakly competitive and have few herbicide options available for POST control of broadleaf weeds. This study aimed to evaluate the influence of management in a previous cereal crop on weed densities in a subsequent crop. At two field sites, crop seeding density and POST herbicide treatments (a conventional choice that included metsulfuron-methyl and MCPA; and a proactive choice that included bromoxynil, picolinafen, and MCPA) were applied to a wheat crop, and weed density was assessed at the beginning of the following season to measure for a legacy effect of the treatments. Study site populations were also screened for herbicide resistance and were found to have high (≥90% survival) ALS inhibitor resistance. Crop competition treatments had no effect on weed populations, and effects of herbicide treatment were significant at only one of the sites. At this site, both herbicide treatments had lower weed densities than the nontreated in the first year, but the legacy effect was only significant for annual sowthistle density in the proactive treatment. At both sites, even where weeds were extremely sparse or completely controlled following herbicide treatment in the first year, moderate densities were observed the following year, indicating that colonization from the seedbank or adjacent areas could be contributing to weed numbers. Weed density assessments and accurate knowledge of the herbicide resistance status of target weeds should guide herbicide selection to maximize control.
Kochia accessions (designated as KS-4A and KS-4H) collected from a corn field near Garden City, KS, have previously shown multiple resistance to glyphosate, dicamba, and fluroxypyr. These accessions were also suspected as being resistant to photosystem II (PS II) inhibitors. The main objectives of this research were to 1) confirm the coexistence of cross-resistance to PS II inhibitors (atrazine and metribuzin) applied PRE and POST, 2) investigate the underlying mechanism of PS II-inhibitor resistance, and 3) determine the effectiveness of alternative POST herbicides for control of these multiple herbicide–resistant (MHR) kochia accessions. Results from dose-response experiments revealed that the KS-4A and KS-4H kochia accessions were 23-fold to 48-fold resistant to PRE- and POST-applied atrazine and 13-fold to 18-fold resistant to POST-applied metribuzin compared to a known susceptible kochia accession (KS-SUS). Both accessions also showed putative resistance to PRE-applied metribuzin that needs to be confirmed. Sequence analyses of the psbA gene further revealed that all samples from the KS-4A and KS-4H kochia accessions had a Ser264Gly point mutation. A pretreatment with malathion followed by a POST application of atrazine at 1,120 g ha–1 or metribuzin at 630 g ha–1 did not reverse the resistance phenotypes of these MHR accessions. In a separate greenhouse study, alternative POST herbicides, including bicyclopyrone + bromoxynil; bromoxynil + pyrasulfotole; paraquat alone or in combination with atrazine, metribuzin, 2,4-D, or saflufenacil; and saflufenacil alone or in combination with 2,4-D effectively controlled the KS-4H accession (≥97% injury). To our knowledge, this research reports the first case of kochia accessions with cross-resistance to PRE-applied atrazine and POST-applied metribuzin. Growers should adopt diversified weed control strategies, including the use of competitive crops, cover crops, targeted tillage, and harvest weed seed control along with effective alternative PRE and POST herbicides with multiple sites of action to control MHR kochia seedbanks on their production fields.
The benefits of no-till fallow, which include reduced soil erosion, improved soil health, and increased stored soil water, are in jeopardy because of the widespread development of glyphosate resistance in Russian thistle. The objective of this research was to evaluate the efficacy of soil-active, residual herbicides for Russian thistle control in no-till fallow. The combinations of sulfentrazone + carfentrazone and flumioxazin + pyroxasulfone, and metribuzin alone were each applied in late fall, late winter, and split-applied in late fall and late winter at three sites: Adams, OR, in 2017–2018; Lind, WA, in 2018–2019; and Ralston, WA, in 2019–2020. All treatments provided good to excellent control of the initial flush of Russian thistle when assessed in mid-May, except the late-fall application of metribuzin at all three sites, and the late-fall application of sulfentrazone + carfentrazone at Adams. Cumulative Russian thistle densities, evaluated monthly throughout the fallow season, were lowest for the sulfentrazone + carfentrazone treatments, except for the late-fall application at Adams. However, flumioxazin + pyroxasulfone and metribuzin provided greater control of tumble mustard and prickly lettuce than did sulfentrazone + carfentazone. Sulfentrazone + carfentrazone, flumioxazin + pyroxasulfone, and metribuzin can all be used for Russian thistle control in fallow. To reduce the risk for crop injury to subsequently planted winter wheat, a late-fall application of sulfentrazone + carfentrazone may be the preferred treatment in low-rainfall regions where winter wheat–fallow is commonly practiced. A late-winter application may be preferred in higher rainfall regions where a 3-year rotation (e.g., winter wheat–spring wheat–fallow) is common. Flumioxazin + pyroxasulfone should be considered if other broadleaf weeds, such as tumble mustard or prickly lettuce, are of concern. The use of these soil-applied herbicides will reduce the need for the frequent application of glyphosate for Russian thistle control in no-till fallow.
Nomenclature: Carfentrazone; flumioxazin; glyphosate; metribuzin; pyroxasulfone; sulfentrazone; prickly lettuce; Lactuca serriola L. LACSE; Russian thistle; Salsola tragus L. SASKT; tumble mustard; Sisymbrium altissimum L. SSYAL; winter wheat; Triticum aestivum L.
Hairy fleabane and horseweed are pervasive weed species in agriculture. Glyphosate-resistant (GR) and glyphosate/paraquat–resistant (GPR) biotypes challenge current management strategies. These GR and GPR biotypes have non–target site resistance, which can confer resistance to herbicides with different sites of action (SOAs). This study's objective was to characterize the response of GR, GPR, and glyphosate/paraquat–susceptible (GPS) biotypes of both weed species to herbicides with a different SOA. Whole-plant dose–response bioassays indicated a similar response among tested biotypes of both weed species to rimsulfuron, dicamba, hexazinone, glufosinate, flumioxazin, saflufenacil, or mesotrione. The hairy fleabane GR and GPR biotypes were 2.7- and 2.9-fold resistant to 2,4-D relative to the GPS biotype (GR50 766.7 g ai haha–1), confirming 2,4-D resistance in hairy fleabane for the first time in California. The GR and GPR biotypes were not cross-resistant to dicamba. No differences in response to 2,4-D were observed among horseweed biotypes with a GR50 ranging from 150.2 to 277.4 g ai haha–1. The GPR biotypes of both species were cross-resistant to diquat, with a 44.0-fold resistance in hairy fleabane (GR50 863.7 g ai haha–1) and 15.6-fold resistance in horseweed (GR50 563.1 g ai haha–1). The confirmation of multiple resistances to glyphosate, paraquat, and 2,4-D in hairy fleabane curtails herbicide SOA alternatives and jeopardizes resistance management strategies based on herbicide rotation and tank mixtures, underscoring the critical need for nonchemical weed control alternatives.
Numerous perennial horticultural crops are grown across the southeastern United States. Blueberry and blackberry (also known as caneberry) are commonly found in roadside stands, promote agritourism via pick-your-own markets, are important for fresh market commercial production in the region, and when processed, provide desirable value added products. Season-long weed control using residual herbicides is crucial for these perennial fruit crops to maximize berry quality and yield. Studies performed from 2012 to 2014 in Lanier and Clinch counties in Georgia evaluated the effects of repeated applications of indaziflam at 35, 75, or 145 g ai ha–1 applied biannually in March and September (five total applications) on growth of ‘Alapaha’ rabbiteye and ‘Palmetto’ highbush blueberry, and ‘Apache’ thornless blackberry. All indaziflam treatments were mixed with glufosinate, and a glufosinate-only treatment was included as a check. Minor leaf chlorosis (<10%) was noted within 30 d after application for all blueberries for all treatments, but this was always transient. Blueberry stem diameter was not different for any treatment, even when indaziflam was applied up to 725 g ai ha–1 over 3 yr as compared to glufosinate alone. There was no chlorosis or stem diameter differences for blackberry noted for any treatment. Indaziflam applied in blueberry and blackberry production provides season-long control of numerous troublesome weed species, without causing injury or negatively impacting crop growth.
Striking a balance between the weed control capacity of living mulches and their competition with the main crop is complex. At rates that avoid severe injury to living mulch, herbicides may reduce their vigor while simultaneously contributing to weed control. In a 2-yr field study carried out in Freeville, NY, we evaluated the effects of various combinations consisting of two herbicides, applied sequentially at reduced rates, on the growth of a sunn hemp living mulch and weeds (including common lambsquarters, common purslane, hairy galinsoga, and Powell amaranth). When a herbicide with primarily POST activity (Type 1; e.g., rimsulfuron, 0.005 to 0.007 kg ai ha–1) was applied first, performance of sunn hemp (1700 to 3900 kg ha–1 dry biomass; 10% to 88% groundcover) was poor and weed growth (25% to 62% groundcover) was high, likely because sunn hemp was severely injured at a young growth stage and was outcompeted by weeds. A follow-up application (approximately 2 wk later) of a herbicide with primarily PRE and residual activities (Type 2; e.g., metribuzin, 0.05 to 0.15 kg ai ha–1), with a surfactant to enhance its POST activity, had little effect on established weeds. However, because sunn hemp was already 20 cm tall at weed emergence, applying a Type 2 herbicide first did not cause severe injury to sunn hemp and reduced weed pressure, thereby also enhancing sunn hemp performance (3,800 to 6,100 kg ha–1 dry biomass; 85% to 94% groundcover). Moreover, the follow-up application of a Type 1 herbicide affected the smaller weeds more (4% to 21% groundcover) than the better-established sunn hemp. Our results demonstrate that an appropriate sequence of herbicides at reduced rates may be important to control weeds while maintaining a healthy living mulch stand.
Nomenclature: Metribuzin; rimsulfuron; common lambsquarters; Chenopodium album L.; common purslane; Portulaca oleracea L.; hairy galinsoga; Galinsoga quadriradiata Cav.; Powell amaranth; Amaranthus powellii S. Watson; sunn hemp; Crotalaria juncea L.
The recent registration of sulfentrazone, a selective, soil-applied, PRE herbicide labeled for control of various weeds in cranberry, expanded the number of modes of action that could be used in the crop. A 2018 preliminary study in Massachusetts showed that high rates of sulfentrazone applied at the cabbage head stage reduced the number of flowering uprights (vertical stems) without impacting the final yield. To clarify the use patterns needed to promote crop safety when using sulfentrazone, six studies were conducted in New Jersey and Massachusetts in 2019 and 2020. Studies compared sulfentrazone applications made at two timings (spring dormant, SD; or cabbage head [CH] stage), two rates (280 and 420 g ai ha–1), and three application volumes simulating either chemigation (3,740 L ha–1) or boom application (190 L ha–1 alone or followed by 0.25 cm water wash-off). Boom application studies in New Jersey in 2018 and 2019 did not show significant long-lasting injury (necrosis or stunting). However, a comprehensive observation of cranberry uprights 8 wk after treatment showed a high rate of terminal bud necrosis, a reduction in the number of reproductive structures, and the development of axillary shoots associated with a high rate of sulfentrazone applied at CH. A mitigation study conducted in 2019 and 2020 confirmed the safety of chemigated sulfentrazone at the high rate with no yield reduction, regardless of crop stage at application. Washing off the herbicide from the cranberry canopy immediately after boom application did prevent the necrosis of terminal bud and the related development of nonproductive secondary shoots. Considering the results of this study, application of sulfentrazone over the top of cranberry vine before scales of the terminal bud start loosening would be prudent practice at this time.
Mesotrione typically requires multiple applications to control emerged weeds in turfgrass. As it is absorbed by both foliage and roots, a controlled-release (CR) formulation could eliminate the need for multiple applications. Research was conducted to evaluate simulated-release scenarios that mimic a potential CR mesotrione formulation. A soluble-concentrate formulation of mesotrione was titrated to produce a stepwise change in mesotrione rates, which were applied daily to mimic predetermined release scenarios over a 3-wk period. CR scenarios were compared to a broadcast treatment of mesotrione at 280 g ai ha–1 applied twice at 3-wk intervals, and a nontreated. Mesotrione applied in three temporal-release scenarios controlled creeping bentgrass, goosegrass, nimblewill, smooth crabgrass, and white clover equivalent to the standard sprayed mesotrione treatment in every comparison. However, each CR scenario injured tall fescue two to seven times more than the standard treatment. Soil- and foliar-initiated repeat treatments were equivalent in most comparisons. Our data indicate that mesotrione applied in a temporal range to simulate controlled-release scenarios can deliver desired weed control efficacy comparable to sequential broadcast applications. More research is needed to elucidate proper timings and release scenarios to minimize turfgrass injury.
Nomenclature: Mesotrione; dandelion, Taraxacum officinale F.H. Wigg. TAROF; goosegrass, Eleusine indica L. ELEIN; nimblewill, Muhlenbergia schreberi J.F. Gmel. MUHSC; smooth crabgrass, Digitaria ischaemum Schreb. ex Muhl. DIGIS; white clover, Trifolium repens L. TRFRE; creeping bentgrass, Agrostis stolonifera L. AGSST; tall fescue; Festuca arundinacea Schreb. FESAR
Sugarcane infested with bermudagrass and harvested as seed cane introduces the potential for weedy propagules to reinfest fields. Research was conducted in 2018 and 2019 following sugarcane harvest for seed cane to evaluate bermudagrass management with photosystem II (PSII)- and 4-hydroxyphenylpyruvate dioxygenase (HPPD)–inhibiting herbicides applied alone or mixed with triclopyr. Combinations of diuron at 2.8 kg ha–1 with clomazone at 1.5 kg ha–1 or triclopyr at 1.1 kg ha–1 and hexazinone at 0.74 kg ha–1 with triclopyr applied early POST (EPOST) in mid-February injured bermudagrass 85% to 86%, and injury was greater than diuron or hexazinone alone (16% and 10%) in mid-March. Bermudagrass injury decreased to 45% to 56% for these combination treatments by April; however, injury differences were similar to the earlier rating. Late POST (LPOST) mid-March application of these treatments indicated similar bermudagrass injury trends when evaluated in early April. By mid-May, however, no treatment resulted in greater than 18% bermudagrass injury. Clomazone plus diuron applied LPOST resulted in 19% sugarcane injury by early April; however, all other treatments resulted in 7% sugarcane injury or less. In mid-May, a mid-April EPOST application of topramezone at 0.025 kg ha–1 plus triclopyr at 1.1 kg ha–1 resulted in 62% bermudagrass injury, which was equivalent to that observed with other topramezone rates in this combination (0.012 and 0.037 kg ha–1) (54% to 60%). Bermudagrass injury from triclopyr mixed with mesotrione (32%) or triclopyr mixed with atrazine, mesotrione, and S-metolachlor (47% to 55%) resulted in bermudagrass injury similar to that with topramezone plus triclopyr (54% to 62%). Data showed the flexibility of triclopyr when mixed with several HPPD- or PSII-inhibitor herbicides for bermudagrass management in a Louisiana sugarcane cropping system. Greater flexibility in application timing for HPPD-inhibitor herbicides than for PSII-inhibitor herbicides (diuron or hexazinone), and mixed with triclopyr, may suppress bermudagrass POST in April and May with minimal sugarcane injury.
Topramezone and carfentrazone + 2,4-D + mecoprop-p + dicamba (SpeedZone®) are herbicides labeled for POST goosegrass (Eleusine indica L. Gaertn.) control in hybrid bermudagrass (Cynodon dactylon × C. transvaalensis Burtt Davy). Field research was conducted in Knoxville, TN, during 2019 and 2020 to evaluate goosegrass control and hybrid bermudagrass tolerance to these herbicides applied alone and in mixture. Treatments included topramezone (12.2 g ha–1), SpeedZone® [carfentrazone (33.6 g ha–1) + 2,4-D (1,029 g ha–1) + mecoprop-p (322 g ha–1) + dicamba (91 g ha–1)] and SpeedZone® + topramezone at 12.2, 6.1, 3.6, or 2.4 g ha–1. A nontreated control was included for comparison. Hybrid bermudagrass tolerance was assessed on four cultivars (‘Northbridge’, ‘Tifway’, ‘Tahoma 31’, and ‘TifTuf’) via visual ratings of turfgrass injury and assessments of normalized difference vegetation index (NDVI). At the termination of the experiment, SpeedZone® alone and in mixture with topramezone controlled goosegrass better than or equal to topramezone alone. Mixtures of SpeedZone® + topramezone reduced injury on all cultivars compared to topramezone alone, particularly when mixtures delivered ≤6.1 g ha–1 topramezone. Injury subsided on all cultivars by 28 d after treatment regardless of herbicide. Findings suggest that SpeedZone® can be mixed with topramezone at the rates tested herein to minimize hybrid bermudagrass injury from topramezone applications for goosegrass control.
Nomenclature: 2; 4-D; carfentrazone; dicamba; mecoprop-p; topramezone; bermudagrass; Cynodon spp.; goosegrass; Eleusine indica L. Gaertn; hybrid bermudagrass; C. dactylon × C. transvaalensis Burtt Davy
Only four herbicides are registered for smooth crabgrass or goosegrass control on creeping bentgrass golf putting greens. None of the four herbicides control weedy grasses for the entire season or control weeds postemergence when applied once at labeled rates. Three of the product labels prohibit repeated use or application during stressful summer conditions. We hypothesized frequently applying herbicides at low doses could provide season-long control of summer grasses while minimizing turf injury. Seven field experiments were conducted on creeping bentgrass putting greens to evaluate various herbicides applied monthly, biweekly, or weekly for postemergence and residual control of goosegrass and smooth crabgrass as well as creeping bentgrass putting green tolerance. Metamifop applied twice monthly at 200 g ai ha–1, topramezone applied eight times weekly at 1.5 g ae ha–1, and siduron applied weekly at 5.6 kg ai ha–1 or four times biweekly at 11 kg ha–1 did not injure creeping bentgrass greater than 10% and maintained creeping bentgrass quality and cover equivalent to nontreated turf. Weekly or biweekly programs of fenoxaprop or quinclorac caused unacceptable injury and quality decline. Metamifop applied monthly and either fenoxaprop program controlled both smooth crabgrass and goosegrass by 97% to 99% throughout the growing season. Programs containing either quinclorac or siduron controlled smooth crabgrass by 99% to 100% but did not control goosegrass greater than 39%. All topramezone programs controlled smooth crabgrass by 69% to 77% and goosegrass by 93% to 98%. In additional studies, siduron applied five times biweekly did not injure creeping bentgrass on putting greens and controlled smooth crabgrass by more than 90% at seasonal, cumulative rates between 17 and 65 kg ai ha–1. This method of frequent, low-dose herbicide treatment to control smooth crabgrass and goosegrass on golf putting greens is novel and currently could be legally implemented with siduron.
Carfentrazone-ethyl is one of few herbicides labeled for control of silvery-thread moss (STM) in golf course putting greens, but common use rates are up to three times higher than for broadleaf weeds. Our objective was to determine the efficacy of a single POST application of carfentrazone-ethyl for STM control in greenhouse and field dose response studies. In the greenhouse, carfentrazone-ethyl was applied at 0, 14, 28, 56, 112, and 224 g ai ha–1 to pots containing established STM and creeping bentgrass. Percent gametophyte injury was visually estimated at 14, 28, 49, and 77 d after treatment (DAT). Shoot viability was determined by excising shoots from treated pots and plating them in Petri dishes containing sand. The 28- and 49-DAT ED90 (doses required to cause 90% gametophyte injury) were 26.8 and 54.3 g ha–1, respectively; both of these doses are substantially lower than the label rates for long- and short-term control, respectively. All doses reduced the viability of transplanted shoots at 10 DAT compared to untreated STM; however, regrowth occurred in all Petri dishes by 17 DAT. Field studies were initiated in Manhattan, KS and San Luis Obispo, CA to corroborate greenhouse results. Averaged across locations, carfentrazone-ethyl applied at 56 and 112 g ha–1 caused 76% and 84% STM injury at 14 DAT, but STM injury quickly lessened to 45% and 48% by 28 DAT, respectively. In greenhouse and field studies, STM recovery did not occur until 2 wk after treatment (WAT), which indicates the label-stipulated application interval of 2 wk is too short. Our research suggests that 56 g ha–1 can provide similar burndown control of STM as compared to the highest label rate (112 g ha–1), and turfgrass managers should consider extending the reapplication interval to 3 or 4 wk when moss recovery is observed.
Field trials were conducted in 2016 and 2017 at the Southwest Purdue Agricultural Center in Vincennes, IN, to determine the tolerance of plasticulture-grown ‘Fascination’ triploid watermelon to flumioxazin. Treatments were applied after plastic was laid, but 1 d prior to transplanting, and consisted of row middle applications of clomazone (210 g ai ha–1) plus ethafluralin (672 g ai ha–1), flumioxazin (107 g ai ha–1), and flumioxazin (88 g ha–1) plus pyroxasulfone (112 g ai ha–1); a broadcast application of flumioxazin (107 g ha–1); and a nontreated check. The broadcast application of flumioxazin reduced watermelon vine length and normalized difference vegetation index (NDVI) values compared with values for the nontreated check. All other herbicide treatments had vine length and NDVI values similar to those of the nontreated check. At 25/26 d after transplanting (DAP), weedy ground cover in row middles of the nontreated check was 39% and 14% in 2016 and 2017, respectively. Weedy ground cover in herbicide-containing treatments was significantly less, at ≤7% and ≤5% in 2016 and 2017, respectively. Marketable watermelon yield of the nontreated check was 77,931 kg and 11,115 fruits ha–1. The broadcast application of flumioxazin resulted in reduced marketable yield (64,894 kg ha–1) and fewer fruit (9,550 ha–1).
Weeds are difficult to control in potted tropical ornamentals, especially when plants are kept for extended time periods at a nursery. Management is complicated by the lack of tolerance data for many tropical species. Experiments were conducted in 2015, 2016, and 2017 at the Gulf Coast Research and Education Center in Balm, FL, to evaluate tolerance of stromanthe, croton, philodendron, arbicola, cordyline, ixora, plumbago, allamanda, bird-of-paradise, firebush, and hibiscus to granular applications of indaziflam, flumioxazin, pendimethalin + oxyfluorfen, pendimethalin + dimethenamid-P, trifluralin + oxyfluorfen + isoxaben, and trifluralin + isoxaben, and liquid applications of prodiamine + isoxaben and dimethenamid-P. Indaziflam, pendimethalin + oxyfluorfen, and trifluralin + oxyfluorfen + isoxabin were safe for use on all evaluated ornamentals except stromanthe. Dimethenamid-P and pendimethalin + oxyfluorfen were safe on all evaluated ornamentals except allamanda. Flumioxazin damaged philodendron and bird-of-paradise but was safe on all other ornamentals tested. Trifluralin + isoxaben and prodiamine + isoxaben were safe on hibiscus, firebush, and bird-of-paradise, but prodiamine + isoxaben damaged allamanda. We have identified multiple PRE herbicides that can safely be used on multiple tropical ornamentals grown in containers.
Field experiments were conducted in 2016 and 2017 to evaluate the effects of seeding rate and herbicide programs on weed control and pinto bean yield under irrigation. The experiments comprised a 5 × 5 factorial randomized complete block design with five replications. The weed control treatments comprised a nontreated control, hand-weeded control, EPTC + ethalfluralin PRE, EPTC + ethalfluralin PRE followed by (fb) dimethenamid-P POST at V1, and EPTC + ethalfluralin PRE fb bentazon/imazamox POST. There were five seeding rates ranging from 247,000 to 494,000 seeds ha–1 planted in 19-cm rows. Weed biomass was reduced by 6 kg ha–1 with every additional 1,000 seeds ha–1. EPTC plus ethalfluralin fb either dimethenamid-P or bentazon plus imazamox reduced weed biomass by at least 29% compared to the nontreated control. There was a significant effect of weed control treatment on pinto bean yield (P = 0.0004). However, there was no significant seeding rate (P = 0.42) or seeding rate–by–weed control interaction effect on pinto bean yield (P = 0.38). Pinto bean yield ranged from 3,080 kg ha–1 in the nontreated control to 4,740 kg ha–1 hand-weeded treatment. Increased seeding rate in narrow rows is a cultural practice that can improve weed control in pinto bean but may not necessarily increase yield.
The ability to use the protoporphyrinogen oxidase (PPO)-inhibiting herbicides fomesafen, flumioxazin, and sulfentrazone in potato is limited regionally or by soil texture, largely because of crop injury noted in research in the 1990s. With that in mind, we evaluated whether reducing the herbicide rates could maintain weed control while providing more consistent crop safety. Studies were conducted on a silt loam and a coarse-textured loamy sand soil. Soil texture played a greater than anticipated role in PPO-inhibitor herbicide injury risk as it relates to high-precipitation events. For example, in 2020 at the silt loam location, there were five precipitation events across the season that exceeded 2.5 cm, including one 6 d after treatment (DAT), and a seasonal total precipitation that was over 10 cm greater than the previous year. Despite excessive moisture and initial potato injury as high as 27% where flumioxazin was applied at the high rate with S-metolachlor, by 29 DAT injury was less than 10% in all treatments, and marketable tuber yield was similar among treatments. In contrast, in 2020 at the loamy sand location, there were four precipitation events across the season that exceeded 2.5 cm, and potato injury was as much as 60%. In 2020 the high amount of injury from flumioxazin was hypothesized to be caused by precipitation before herbicide application and not after, suggesting a need for more research in this area. This work documents the fine line between yield reduction presumably caused by reduced weed control and yield reduction assumed to be related to herbicide injury. This delineation between adequate weed control and consistent crop safety may differ by soil texture and environmental conditions, supporting the notion that custom-tailored weed management may become more necessary as high-precipitation events become more common in upper midwestern U.S. agricultural systems.
Nomenclature: Flumioxazin; fomesafen; sulfentrazone; potato; Solanum tuberosum L.
Italian ryegrass has become a problematic weed in hazelnut orchards of Oregon because of the presence of herbicide-resistant populations. Resistant and multiple-resistant Italian ryegrass populations are now the predominant biotypes in Oregon; there is no information on which herbicides effectively control Italian ryegrass in hazelnut orchards. Six field studies were conducted in commercial orchards to evaluate Italian ryegrass control with POST herbicides. Treatments included flazasulfuron, glufosinate, glyphosate, paraquat, rimsulfuron, and sethoxydim applied alone or in selected mixtures during early spring when plants were in the vegetative stage. Treatment efficacy was dependent on the experimental site. The observed range of weed control 28 d after treatment was 13% to 76% for glyphosate, 1% to 72% for paraquat, 58% to 88% for glufosinate, 16% to 97% for flazasulfuron, 8% to 94% for rimsulfuron, and 25% to 91% for sethoxydim. Herbicides in mixtures improved control of Italian ryegrass compared to single active ingredients based on contrast analysis. Herbicides in mixture increased control by 27% compared to glyphosate, 18% to rimsulfuron, 15% to flazasulfuron, 19% to sethoxydim, and 12% compared to glufosinate when averaged across all sites, but mixture did not always improve reduction of ground coverage or of biomass. This complex site-specific response highlights the importance of record-keeping for efficient herbicide use. Glufosinate is an effective option to manage Italian ryegrass. However, the glufosinate-resistant biotypes documented in Oregon may jeopardize this practice. Nonchemical weed control options are needed for sustainable weed management in hazelnuts.
Nomenclature: Flazasulfuron; glufosinate; glyphosate; paraquat; rimsulfuron; sethoxydim; Italian ryegrass, Lolium perenne subsp. multiflorum (Lam.) Husn.; hazelnut, Corylus avellana L.
J. Connor Ferguson, Misha R. Manuchehri, Justin S. Calhoun, Justin T. Childers, Luke H. Merritt, Kayla L. Broster, Zachary R. Treadway, Zaim Ugljic, Michael T. Wesley Jr
Hairy buttercup and cutleaf evening primrose are winter annual weeds that have become more problematic for winter wheat growers in the southern Great Plains and the midsouthern United States in recent years. Little research exists on which to base recommendations for controlling hairy buttercup in wheat, and little research has been published on cutleaf evening primrose control in recent years. With growing concerns of increased herbicide resistance among winter annual weeds, incorporating new herbicide sites of action has become necessary. The objective of this study was to assess halauxifen-methyl as a novel herbicide to control these two problematic winter annual broadleaf weeds in winter wheat in Mississippi and Oklahoma. Studies were conducted across four site-years in Mississippi and one site-year in Oklahoma comparing 15 herbicide programs with and without halauxifen-methyl. Hairy buttercup and cutleaf evening-primrose control was the greatest when a synthetic auxin was combined with an acetolactate synthase–inhibiting herbicide. Treatments including halauxifen-methyl resulted in the greatest control of hairy buttercup, whereas a synthetic auxin herbicide plus chlorsulfuron and metsulfuron resulted in the greatest control of cutleaf evening primrose. Halauxifen-methyl is an effective addition for control of winter annual broadleaf weeds like hairy buttercup and cutleaf evening primrose in winter wheat.
Junglerice is becoming more prevalent in Tennessee, Arkansas, and Mississippi row crop fields. The evolution of glyphosate-resistant (GR) junglerice populations is one reason for the increase. Another possible explanation is that glyphosate and clethodim grass activity is being antagonized by dicamba. This question has led to research to examine whether sequential applications alleviate antagonism observed with dicamba plus glyphosate and/or clethodim mixtures and determine whether sequential treatments with those herbicides at 24 h, 72 h, or 168 h can improve junglerice control. Glyphosate + clethodim applications provided >90% junglerice control. The observed levels of antagonism varied by whether the location of the test was in the greenhouse or the field, and the timing of applications. In the greenhouse, clethodim + dicamba provided excellent control, whereas in the field, the same treatment showed a greater than 30% reduction in junglerice control compared with clethodim alone. However, control was restored by using a mixture of glyphosate + clethodim without dicamba. The environment at the time of application and relative GR level of the junglerice influenced the overall control of these sequential applications. When clethodim applied first followed by dicamba at 72 h or 168 h, better control was observed compared with applying dicamba followed by clethodim. Overall, mixing glyphosate + clethodim provided the most complete junglerice control regardless of timing. These data confirm that leaving dicamba out of the spray tank will mitigate herbicide antagonism on junglerice control. These data would also indicate that avoiding dicamba and glyphosate mixtures will also improve the consistency of control with glyphosate-susceptible junglerice.
Nomenclature: Clethodim; dicamba; glyphosate; junglerice; Echinochloa colona L.
Ludwigia prostrata is a problematic weed in rice fields in China, where acetolactate synthase (ALS)-inhibiting herbicides (e.g., bensulfuron-methyl) are widely used for the management of broadleaf weeds. Recently, an L. prostrata biotype (JS-R) that failed to be controlled with ALS-inhibiting herbicides was found in Jiangsu Province, China. This study aims to determine the level and molecular mechanism of resistance to bensulfuron-methyl in this JS-R biotype and to evaluate its spectrum of cross-resistance to other ALS-inhibiting herbicides. The dose–response assays indicated that the JS-R L. prostrata biotype had evolved 21.2-fold resistance to bensulfuron-methyl compared with the susceptible biotype (JS-S). ALS gene sequencing revealed that a nucleotide mutation (CCA to TCA) at codon 197, resulting in a Pro-197-Ser mutation, was detected in the resistant plants. Moreover, while the JS-R biotype contained the Pro-197-Ser resistance mutation and showed cross-resistance to pyrazosulfuron-ethyl (12.0-fold), it was sensitive to penoxsulam, bispyribac-sodium, and imazethapyr, which may serve as alternative herbicides to control the resistant L. prostrata biotype. This is the first confirmation of an L. prostrata biotype resistant to bensulfuron-methyl due to a Pro-197-Ser resistance mutation in the ALS gene.
Glyphosate and paraquat are effective preplant burndown herbicide options for multicrop vegetable production that uses plastic mulch, but problematic weeds such as wild radish, cutleaf evening primrose, annual morningglory, or horseweed may not be adequately controlled with these herbicides alone. The herbicides 2,4-D and dicamba could help control these troublesome weeds prior to planting if they can be removed from plastic mulch and thus avoid crop damage. Treatments included 2,4-D (1,065 and 2,130 g ae ha–1) and dicamba (560 and 1,120 g ae ha–1) applied broadcast over plastic mulch a day before transplanting. Just before transplanting, treatments received either 0.76 cm of water via overhead irrigation or no irrigation. Plastic mulch samples were collected at application and planting to determine herbicide presence using analytical techniques, and cantaloupe and zucchini squash were subsequently transplanted on the plastic beds. Analytical ultra-high performance liquid chromatography revealed that 88% to 99% of the initial herbicide concentration was present at crop planting when irrigation was not implemented. At most, a 1/50 rate of dicamba and a 1/500 rate of 2,4-D was present at planting when overhead irrigation was applied prior to transplanting. Maximum cantaloupe and squash injury from 2,4-D with irrigation was 10% and did not influence plant growth, biomass, or yield. For dicamba with overhead irrigation, cantaloupe injury was 35%, vine lengths were reduced by 24%, and maturity was delayed, whereas squash injury ranged from 9% to 12%, with no influence on growth or yield. Without irrigation to wash herbicides from the mulch prior to planting, 60% to 100% injury of both crops occurred with both herbicides. Zucchini squash was more tolerant to dicamba than cantaloupe. Results demonstrated that 2,4-D can be adequately removed from the surface of plastic mulch with irrigation, whereas a single irrigation event was not sufficient to remove dicamba.
Field studies were conducted from 2005 to 2009 in Idaho and Oregon to 1) evaluate the competitive effect of volunteer potato on sugar beet yield (volunteer potato competition experiment), and 2) determine the optimum timing of volunteer potato removal from glyphosate-tolerant sugar beet fields using glyphosate (volunteer potato removal timing experiment). The volunteer potato competition experiment consisted of eight potato densities, including the untreated check: 0, 6,741, 10,092, 13,455, 16,818, 20,184, 26,910, and 40,365 tubers ha–1. The volunteer potato removal experiment consisted of 10 removal timings (including the untreated check) ranging from the 10-cm rosette stage to mid-tuber bulking. There was a linear decrease in sugar beet root and sucrose yield as volunteer potato density increased (P < 0.001) such that with every volunteer potato tuber per square meter, sugar beet root yield decreased by 15% and sucrose yield decreased by 14%. At the highest volunteer potato density (40,365 tubers ha–1), sugar beet root yield was 29,600 kg ha–1 (compared to 73,600 kg ha–1 for the untreated), representing a 60% reduction in sugar beet root yield. In the removal timing study, a one-time application of glyphosate at the 10-cm rosette, hooking, and tuber initiation stages provided 74% to 98% reduction in volunteer potato tuber biomass. Delaying volunteer potato removal beyond the tuber initiation stage reduced sugar beet root and sucrose yield (12% to 20%), resulting in an economic loss of $104 to $161 per hectare. The best potato removal timing that optimizes the trade-off between improved control and potential for sugar beet yield reductions is before or at the tuber initiation stage.
Nomenclature: glyphosate; potato; Solanum tuberosum L; common beet; Beta vulgaris L.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere