Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Pesticide drift has been a concern since the introduction of pesticides. Historical incidences with off-target movement of 2,4-D and dichlorodiphenyltrichloroethane (DDT) have increased our understanding of pesticide fate in the atmosphere following aerial application. More recent incidences with dicamba have brought to light gaps in our current understanding of aerial pesticide movement following ground application. In this paper, we review the current understanding of inversions and other weather and environmental factors that contribute to secondary pesticide movement and raise questions that need to be addressed. Factors that influence volatility and terminology associated with the atmosphere, such as cool air drainage, temperature inversions, and radiation cooling will be discussed. We also present literature that highlights the need to consider the role(s) of wind in secondary drift in addition to the role in physical drift. With increased awareness of pesticide movement and more herbicide-resistant traits available than ever before, it has become even more essential that we understand secondary movement of pesticides, recognize our gaps in understanding, and advance from what is currently unknown.
Agronomic crops engineered with resistance to 2,4-D or dicamba have been commercialized and widely adopted throughout the United States. Because of this, increased use of these herbicides in time and space has increased damage to sensitive crops. From 2014 to 2016, cucumber and cantaloupe studies were conducted in Tifton, GA, to demonstrate how auxinic herbicides (namely, 2,4-D or dicamba), herbicide rate (1/75 or 1/250 field use), and application timing (26, 16, and 7 d before harvest [DBH] of cucumber; 54, 31, and 18 DBH of cantaloupe) influenced crop injury, growth, yield, and herbicide residue accumulation in marketable fruit. Greater visual injury, reductions in vine growth, and yield loss were observed at higher rates when herbicides were applied during early-season vegetative growth compared with late-season with fruit development. Dicamba was more injurious in cucumber, whereas cantaloupe responded similarly to both herbicides. For cucumber, total fruit number and relative weights were reduced (16% to 19%) when either herbicide was applied at the 1/75 rate 26 DBH. Cantaloupe fruit weight was also reduced 21% and 10% when either herbicide was applied at the 1/75 rate 54 or 31 DBH, respectively. Residue analysis noted applications made closer to harvest were more likely to be detectable in fruit than earlier applications. In cucumber, dicamba was detected at both rates when applied 7 DBH, whereas in cantaloupe, it was detected at both rates when applied 18 or 31 DBH in 2016 and at the 1/75 rate applied 18 or 31 DBH in 2014. Detectable amounts of 2,4-D were not observed in cucumber but were detected in cantaloupe when applied at either rate 18 or 31 DBH. Although early-season injury will more likely reduce cucumber or cantaloupe yields, the quantity of herbicide residue detected will be most influenced by the time interval between the off-target incident and sampling.
The loss of methyl bromide led vegetable growers to rely more heavily on herbicides to control weeds. Although herbicides can be effective, limited options in vegetable production challenge growers. Identifying new, effective tools to be applied over plastic mulch before planting, for improved weed control with minimal crop injury, would be beneficial. The objective of these experiments was to evaluate the persistence of preplant applications of glyphosate (1,125 or 2,250 g ae ha-1) plus 2,4-D (1,065 or 2,130 g ae ha-1) or dicamba (560 g ae ha-1) over plastic mulch, using analytical techniques and subsequent yellow squash and watermelon response. Glyphosate and 2,4-D were not analytically detected at damaging concentrations on plastic mulch when at least 3.5 cm of rainfall was received after application and before planting. In addition, bioassay results showing less than 10% visual injury for either squash and watermelon, with no growth or yield suppression observed, supported analytical results. In contrast, dicamba concentrations on plastic mulch, regardless of rainfall amount or time between application and planting, remained at damaging levels. Squash yields were reduced by dicamba applied 1 to 30 d before planting, whereas watermelon was more resilient. 2,4-D plus glyphosate applied preplant over plastic mulch can provide an additional herbicide option for vegetable growers. More research is needed to understand the impact of residual activity of 2,4-D when transplants land directly in holes in plastic mulch at the time of application. The relationship of dicamba with plastic mulch is complex, because the herbicide cannot be easily removed by rainfall. Thus, dicamba should not be included in a weed management system in plasticulture vegetable production.
The herbicide 2,4-D is used in a variety of cropping systems, especially in grasses because it is a selective postemergence broadleaf herbicide. However, the most common formulation (2,4-D dimethylamine) is antagonized when mixed in hard water. The objective of this research was to determine which formulations of 2,4-D or premixes of various formulations of synthetic auxin herbicides are subject to hard water antagonism. Formulations surveyed for hard water antagonism in the first experiment included 2,4-D dimethylamine, 2,4-D diethanolamine, 2,4-D monomethylamine, 2,4-D isopropylamine salt, 2,4-D choline salt, 2,4-D isooctyl ester, and 2,4-D ethylhexyl ester. Synthetic auxin formulation types in the second experiment included water-soluble, emulsifiable concentrates and emulsion-in-water. All formulations were mixed with both soft and hard water (600 mg CaCO3 L-1) and applied to dandelions to determine whether antagonism occurred in hard water. Water-soluble (amine and choline) 2,4-D formulations were antagonized by hard water, but water-insoluble (ester) 2,4-D formulations were not antagonized. Similar results were found by formulation type with water-soluble synthetic auxin premixes antagonized but emulsifiable concentrates not antagonized. Furthermore, water-soluble salt formulations were not antagonized when formulated in premixes with other synthetic auxin herbicides as an emulsion-in-water. This research demonstrates that all 2,4-D water-soluble formulations and water-soluble premixes with phenoxycarboxylic acid herbicides are subject to hard water antagonism. Formulations of 2,4-D containing emulsifying agents protect against antagonism by the water-insoluble nature of ingredients in their formulation.
Foothill deathcamas is a bulbous, perennial, native forb found throughout the western United States. Deathcamas begins growth early in the spring. The lack of alternative forages at this time can result in livestock becoming poisoned from the consumption of deathcamas. Research on herbicides for deathcamas control is limited to work from the 1950s and 1960s that identified 2,4-D as a control agent. The objective of this study was to evaluate alternative herbicide options for deathcamas control that include 2,4-D, 2,4-D + triclopyr, quinclorac, aminopyralid, imazapic, and chlorsulfuron. We also investigated the impact of plant growth stage on deathcamas control by making herbicide applications at two growth stages. One set of plots was treated with herbicides when deathcamas was in the early vegetative stage and the second set was treated at flowering. There is some evidence that stress might affect alkaloid content; therefore, we monitored alkaloid content of treated and nontreated deathcamas. Plots were established at Mt. Sterling, UT, and Mt. Pleasant, UT. Deathcamas density was reduced in 2,4-D, 2,4-D + triclopyr, and imazapic treatments 1 and 2 yr after herbicide application (P < 0.0001). Compared with the pretreatment densities, deathcamas densities(± standard error of the mean) 2 yr after herbicide application were reduced 96% ± 1.4%, 100% ± 0%, and 98% ± 0.9% for 2,4-D, 2,4-D + triclopyr, and imazapic, respectively, at the Mt. Sterling site. At the Mt. Pleasant site, deathcamas density was reduced by 84% ± 2.8% with 2,4-D alone, whereas 2,4-D + triclopyr and imazapic provided similar density reductions as observed at the Mt. Sterling site. Steroidal alkaloid concentrations did not change in herbicide-treated deathcamas at either stage of plant growth. These data indicate that 2,4-D, 2,4-D + triclopyr, and imazapic can effectively control deathcamas in the vegetative and flowering growth stages.
Conservation tillage adoption continues to be threatened by glyphosate and acetolactate synthase–resistant Palmer amaranth and other troublesome weeds. Field experiments were conducted from autumn 2010 through crop harvest in 2013 at two locations in Alabama to evaluate the effect of integrated management practices on weed control and seed cotton yield in glyphosate-resistant cotton. The effects of a cereal rye cover crop using high- or low-biomass residue, followed by wide or narrow within-row strip tillage and three PRE herbicide regimens were evaluated. The three PRE regimens were (1) pendimethalin at 0.84 kg ae ha-1 plus fomesafen at 0.28 kg ai ha-1 applied broadcast, (2) pendimethalin plus fomesafen applied banded on the row, or (3) no PRE. Each PRE treatment was followed by (fb) glyphosate (1.12 kg ae ha-1) applied POST fb layby applications of diuron (1.12 kg ai ha-1) plus monosodium methanearsonate (2.24 kg ai ha-1). Low-residue plots ranged in biomass from 85 to 464 kg ha-1, and high-biomass residue plots ranged from 3,119 to 6,929 kg ha-1. In most comparisons, surface disturbance width, residue amount, and soil-applied herbicide placement did not influence within-row weed control; however, broadcast PRE resulted in increased carpetweed, large crabgrass, Palmer amaranth, tall morning-glory, and yellow nutsedge weed control in row middles compared with plots receiving banded PRE. In addition, high-residue plots had increased carpetweed, common purslane, large crabgrass, Palmer amaranth, sicklepod, and tall morning-glory weed control between rows. Use of banded PRE herbicides resulted in equivalent yield and revenue in four of six comparisons compared with those with broadcast PRE herbicide application; however, this would likely result in many between-row weed escapes. Thus, conservation tillage cotton would benefit from broadcast soil-applied herbicide applications regardless of residue amount and tillage width when infested with Palmer amaranth and other troublesome weed species.
Nomenclature: Diuron; fomesafen; glyphosate; monosodium methanearsonate; pendimethalin; carpetweed; Mollugo verticillata L. MOVE; common purslane; Portulaca oleracea L. POOL; large crabgrass; Digitaria sanguinalis (L.) Scop. DISA; Palmer amaranth; Amaranthus palmeri S. Watson AMPA; sicklepod; Senna obtusifolia (L.) Irwin & Barneby SEOB4; tall morning-glory Ipomoea purpurea (L.) Roth IPPU2; yellow nutsedge; Cyperus esculentus L. CYES; cereal rye; Secale cereal L.; cotton; Gossypium hirsutum L.
The invasion of waterhemp into northern sugarbeet growing regions has prompted producers to re-integrate inter-row cultivation into weed management programs, as no currently registered herbicides can control glyphosate-resistant waterhemp POST in crop. Inter-row cultivation was a common weed control practice in sugarbeet until the release of glyphosate-resistant sugarbeet cultivars in 2008 made the use of inter-row cultivation unnecessary. In the late 2010s, producers began again to use inter-row cultivation to remove weeds that glyphosate did not control, but producers need information on the effectiveness and safety of inter-row cultivation when used with soil-residual herbicide programs. Efficacy and tolerance field experiments were conducted in Minnesota and North Dakota from 2017 to 2019. Results from the efficacy experiment demonstrated that cultivation improved waterhemp control 11% and 12%, 14 and 28 d after treatment, respectively. Waterhemp response to cultivation was dependent on crop canopy and precipitation after cultivation. Cultivation had minimal effect on waterhemp density in three environments, but at one environment, near Galchutt, ND in 2019, waterhemp density increased 600% and 196%, 14 and 28 d after treatment, respectively. Climate data indicated that in 2019 Galchutt, ND received 105 mm of precipitation in the 14 d following cultivation and had an open crop canopy that probably contributed to further weed emergence. Results from the tolerance experiment demonstrated that root yield and recoverable sucrose were not affected by cultivation timing or number of cultivations. In one environment, cultivating reduced sucrose content by 0.8% regardless of date or cultivation number, but no differences were found in four environments. Damage/destruction of leaf tissue from in-season cultivation is probably responsible for the reduction in sucrose content. Results indicate that cultivation can be a valuable tool to control weeds that herbicide cannot, but excessive rainfall and open crop canopy following cultivation can create an environment conducive to further weed emergence.
As herbicide-resistant weeds become more problematic, producers will consider the use of cover crops to suppress weeds. Weed suppression from cover crops may occur especially in the label-mandated buffer areas of dicamba-resistant soybean where dicamba use is not allowed. Three cover crops terminated at three timings with three herbicide strategies were evaluated for their effect on weed suppression in dicamba-resistant soybean. Delaying termination until soybean planting or after and using cereal rye or cereal rye + crimson clover increased cover-crop biomass by at least 40% compared to terminating early or using a crimson clover–only cover crop. Densities of problematic weed species were evaluated in early summer before a blanket POST application. Plots with cereal rye had 75% less horseweed compared to crimson clover at two of four site-years. Cereal rye or the mixed cover crop terminated at or after soybean planting reduced waterhemp densities by 87% compared to early termination timings of crimson clover and the earliest termination timing of the mix at one of two site-years. Cover crops were not as effective in reducing waterhemp densities as they were in reducing horseweed densities. This difference was due to a divergence in emergence patterns; waterhemp emergence generally peaks after termination of the cover crop, whereas horseweed emergence coincides with establishment and rapid vegetative growth of cereal rye. Cover crops alone were generally not as effective as was using a high-biomass cover crop combined with an herbicide strategy that contained dicamba and residual herbicides. However, within label-mandated buffer areas where dicamba cannot be used, a cover crop containing cereal rye with delayed termination until soybean planting combined with residual herbicides could be used to improve suppression of horseweed and waterhemp.
Junglerice has become a major weed in Tennessee cotton and soybean fields. Glyphosate has been relied on to control these accessions over the past two decades, but in recent years cotton and soybean producers have reported junglerice escapes after glyphosate + dicamba and/or clethodim applications. In the growing seasons of 2018 and 2019, a survey was conducted of weed escapes in dicamba-resistant (DR) crops. Junglerice was the most prevalent weed escape in these DR (Roundup Ready Xtend®) cotton and soybean fields in both years of the study. In 2018 and 2019, junglerice was found 76% and 64% of the time in DR cotton and soybean fields, respectively. Progeny from junglerice seeds collected during this survey was screened for glyphosate and clethodim resistance. Seventy percent of the junglerice accessions tested had an effective relative resistance factor to glyphosate of 3.1 to 8.5. In all, 13% of the junglerice accessions could no longer be effectively controlled with glyphosate. This research also showed that all sampled accessions could still be controlled with clethodim in a greenhouse environment, but less control was observed in the field. These data also suggest that another cause for the poor junglerice control is dicamba antagonism of glyphosate and clethodim activity.
Junglerice has become a major weed in the mid-south and other areas of the United States. Glyphosate resistance has been documented in junglerice populations and is part of the reason for the increase in its prevalence. However, reduced junglerice control with glyphosate + dicamba and clethodim + dicamba mixtures has been observed in many production fields where glyphosate resistance has not yet evolved. Therefore, research was conducted to assess reduced junglerice control with glyphosate and clethodim when applied with dicamba. Adding dicamba to the spray tank with glyphosate reduced junglerice control by 27%. Adding dicamba to the spray tank with clethodim reduced junglerice control by 11%. The use of Turbo Teejet Induction (TTI) nozzles reduced junglerice control an additional 8% compared to applications with an air induction extended range (AIXR) nozzle. When a drift reduction agent (DRA) was added to dicamba mixtures with glyphosate or clethodim, junglerice control was reduced 36%. Junglerice control was similar with the glyphosate + dicamba treatment compared to the glyphosate + 2,4-D mixture. There was no interaction between nozzles and herbicide treatment. Regardless of herbicide treatment junglerice control was always lower when applied with the ultracourse TTI nozzle. Many applicators in Tennessee prefer to make one application of glyphosate + dicamba in a mixture to save time (authors' personal experience). These results show that the addition of dicamba to glyphosate or clethodim applied with labeled nozzles and a DRA results in reduced junglerice control and should be avoided.
Nomenclature: junglerice; Echinochloa colona (L.) Link
Palmer amaranth is an extremely troublesome weed for soybean growers because of its aggressive growth, adaptability, prolific seed production, and widespread resistance to many herbicides. Studies were initiated to determine the effects of herbicide application at first female inflorescence on Palmer amaranth control, biomass, seed production, cumulative germination, and seed viability. Enlist (2,4-D–resistant) soybean and Xtend (dicamba-resistant) soybean were planted and various combinations of either 2,4-D or dicamba with and without glufosinate and/or glyphosate were applied at first visible female Palmer amaranth inflorescence. Mixtures of 2,4-D + glufosinate and 2,4-D + glufosinate + glyphosate provided the greatest control at 4 wk after treatment in Enlist soybean. Similarly, in Xtend soybean, combinations of dicamba + glufosinate and dicamba + glufosinate + glyphosate provided the greatest control. The greatest reductions in biomass were from combinations of auxin herbicides (2,4-D or dicamba) plus glufosinate with and without glyphosate. Seed production was reduced most by treatments containing at least one effective site of action: an auxin herbicide (2,4-D or dicamba) or glufosinate. In contrast to previous research, cumulative germination and seed viability were not affected by herbicide treatments. This research indicates the efficacy of auxin herbicides or glufosinate alone and in combination to reduce the seed production of Palmer amaranth when applied at first female inflorescence. More research is needed to evaluate the full potential for applications of these herbicides at flower initiation to mitigate the evolution of herbicide resistance.
Nomenclature: 2,4-D, dicamba; glufosinate; glyphosate; Palmer amaranth; Amaranthus palmeri S. Watson AMAPA; soybean Glycine max (L.) Merr.
The evolution of multiple herbicide-resistant weeds, including Palmer amaranth, has necessitated the implementation of an integrated weed management (IWM) program. Understanding weed emergence patterns is critical for developing effective IWM strategies. The objective of this study was to evaluate the effect of tillage timings and residual herbicides on cumulative emergence and emergence pattern of Palmer amaranth. Field experiments were conducted in 2015 and 2016 in a field naturally infested with photosystem (PS) II and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth near Shickley, Nebraska, in a bare ground study, with no crop planted in the plots, although residues from the preceding corn crop were present on the soil surface. Treatments consisted of shallow tillage timings (early, mid, and late), three premix corn or soybean residual herbicides, and a nontreated control. The Weibull function was fitted to cumulative Palmer amaranth emergence with day of year (DOY) and thermal time (TT) as independent variables. Year by treatment interaction was significant for time to 10%, 25%, 50%, 75%, and 90% Palmer amaranth emergence and cumulative emergence. The majority of Palmer amaranth seedlings emerged early, following early tillage with 90% cumulative emergence occurring on DOY 172 compared with DOY 210 to 212 for mid- and late-tillage, and DOY 194 for the nontreated control in 2015. In 2016, 90% of cumulative emergence following early-, mid-, and late-tillage (DOYs 201 to 211) were similar, and that of the nontreated control (DOY 188) was similar to that of early tillage. Nontreated control and PRE herbicide treatments had similar DOY values for 90% emergence in both years. The number of emerged Palmer amaranth seedlings over the season was higher with shallow tillage than no tillage or with the use of PRE herbicides.
A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. Currently, there are no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE, to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at the cotyledon stage, or two true-leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true-leaf application stage, the highest rates of desmedipham and phenmedipham were associated with low mortality rates in sugarbeet, resulting in a failed response of death. The highest rates of desmedipham + phenmedipham caused a death response of sugarbeet; the selectivity index was 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon-size Palmer amaranth at a labeled rate but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7-cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.
Nomenclature: Desmedipham; phenmedipham; Palmer amaranth; Amaranthus palmeri S. Watson AMPI; sugarbeet; Beta vulgaris L.
Glyphosate-resistant (GR) Palmer amaranth is a troublesome weed that can emerge throughout the soybean growing season in Nebraska and several other regions of the United States. Late-emerging Palmer amaranth plants can produce seeds, thus replenishing the soil seedbank. The objectives of this study were to evaluate single or sequential applications of labeled POST herbicides such as acifluorfen, dicamba, a fomesafen and fluthiacet-methyl premix, glyphosate, and lactofen on GR Palmer amaranth control, density, biomass, seed production, and seed viability, as well as grain yield of dicamba- and glyphosate-resistant (DGR) soybean. Field experiments were conducted in a grower's field infested with GR Palmer amaranth near Carleton, NE, in 2018 and 2019, with no PRE herbicide applied. Acifluorfen, dicamba, a premix of fomesafen and fluthiacet-methyl, glyphosate, or lactofen were applied POST in single or sequential applications between the V4 and R6 soybean growth stages, with timings based on product labels. Dicamba applied at V4 or in sequential applications at V4 followed by R1 or R3 controlled GR Palmer amaranth 91% to 100% at soybean harvest, reduced Palmer amaranth density to as low as 2 or fewer plants m–2, reduced seed production to 557 to 2,911 seeds per female plant, and resulted in the highest soybean yield during both years of the study. Sequential applications of acifluorfen, fomesafen and fluthiacet premix, or lactofen were not as effective as dicamba for GR Palmer amaranth control; however, they reduced seed production similar to dicamba. On the basis of the results of this study, we conclude that dicamba was effective for controlling GR Palmer amaranth and reduced density, biomass, and seed production without DGR soybean injury. Herbicides evaluated in this study had no effect on Palmer amaranth seed viability.
Nomenclature: Acifluorfen; dicamba; fluthiacet-methyl; fomesafen; glyphosate; lactofen; Palmer amaranth; Amaranthus palmeri S. Watson; soybean; Glycine max (L.) Merr.
Palmer amaranth is the latest pigweed species documented in Connecticut; it was identified there in 2019. In a single-dose experiment, the Connecticut Palmer amaranth biotype survived the field-use rates of glyphosate (840 g ae ha-1) and imazaquin (137 g ai ha-1) herbicides applied separately. Additional experiments were conducted to (1) determine the level of resistance to glyphosate and acetolactate synthase (ALS) inhibitors in the Connecticut-resistant (CT-Res) biotype using whole-plant dose-response bioassays, and (2) evaluate the response of the CT-Res biotype to POST herbicides commonly used in Connecticut cropping systems. Based on the effective dose required for 90% control (ED90), the CT-Res biotype was 10-fold resistant to glyphosate when compared with the Kansas-susceptible (KS-Sus) biotype. Furthermore, the CT-Res biotype was highly resistant to ALS-inhibitor herbicides; only 18% control was achieved with 2,196 g ai ha-1 imazaquin. The CT-Res biotype was also cross-resistant to other ALS-inhibitor herbicides, including chlorimuron-ethyl (13.1 g ai ha-1), halosulfuron-methyl (70 g ai ha-1), and sulfometuron-methyl (392 g ai ha-1). The CT-Res Palmer amaranth was controlled 75% to 100% at 21 d after treatment (DAT) with POST applications of 2,4-D (386 g ae ha-1), carfentrazone-ethyl (34 g ai ha-1), clopyralid (280 g ae ha-1), dicamba (280 g ae ha-1), glufosinate (595 g ai ha-1), lactofen (220 g ai ha-1), oxyfluorfen (1,121g ai ha-1), and mesotrione (105 g ai ha-1) herbicides. Atrazine (2,240 g ai ha-1) controlled the CT-Res biotype only 52%, suggesting the biotype is resistant to this herbicide as well. Here we report the first case of Palmer amaranth from Connecticut with multiple resistance to glyphosate and ALS inhibitors. Growers should proactively use all available weed control tactics, including the use of effective PRE and alternative POST herbicides (tested in this study), for effective control of the CT-Res biotype.
Rapid vegetative growth and adverse application conditions are common factors leading to the failure of postemergence herbicides on Palmer amaranth. A sequential herbicide application, or respray, is often necessary to control weeds that have survived the initial herbicide application to protect crop yield and minimize weed seed production. The optimum timing after the initial application and the most effective herbicide for control of Palmer amaranth has not been characterized. The objectives of these experiments were to determine the optimum herbicide for treating Palmer amaranth regrowth, the optimum timing for each of those herbicides, and how the initial failed herbicide might affect efficacy of a second herbicide application. Bare ground field experiments were performed in 2017 and 2018 in which glufosinate or fomesafen herbicide failure was induced on Palmer amaranth plants that were 30 cm in height. Respray treatments of glufosinate, fomesafen, lactofen, 2,4-D, and dicamba were applied once at timings of 4 to 5 d, 7 d, or 11 d after the initial spray application. Nearly all herbicide treatment and timing combinations increased control by at least 13 percentage points compared to no respray herbicide treatment. Regardless of initial herbicide, glufosinate applied as a respray treatment was the most consistent and efficacious with up to 97% control. The specific herbicide used in the second application impacted final weed control more so than timing of the respray application. For instance, control by glufosinate respray treatments was 10 to 18 percentage points greater than control from lactofen respray treatments, whereas control decreased by 3 percentage points when respray applications of any herbicide were made 11 d after initial application of glufosinate compared to 4 to 5 and 7 d after initial application of glufosinate. In the event of failure to control Palmer amaranth with glufosinate or fomesafen, glufosinate should be applied in order to maximize control.
Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial in which the first factor consisted of two rates of linuron (420 and 700 g ai ha-1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS; 0.5% vol/vol), linuron plus S-metolachlor (800 g ai ha-1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98% and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but it resulted in greater sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yields were similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system that includes linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.
Common teasel is a troublesome invasive weed in North and South America. Additional information on the efficacy of herbicide application and mowing at different growth stages will help in common teasel management. First, an outdoor pot experiment was performed to assess the effects of increasing application rates and combinations of glyphosate and 2,4-D amine when applied at the 4-leaf, rosette, and bolting stages. Second, field experiments were performed to evaluate the impact of time of cutting on invasive common teasel height, head number, and head length. Finally, germinability of seeds collected from naturally growing plants was determined to evaluate the feasibility of mowing invasive common teasel after flowering. Only glyphosate applied at 1.08 kg ae ha-1 at the 4-leaf stage provided adequate control (>90%). Although control was not satisfactory (<90%) when applying glyphosate at 2.16 kg ae ha-1 at the rosette and bolting stages, and 2,4-D at 1.75 kg ai ha-1 at 4-leaf stage, significant injury and biomass decline were observed. Glyphosate and 2,4-D combinations did not improve common teasel control compared with single applications of each. Cutting rosettes strongly reduced inflorescence production (34%–49%) and cutting flowering plants prevented total regrowth. Germination of seeds averaged 14% when harvested 10 d after flowering, and maximum seed germination (>90%) occurred 30 d after flowering. Glyphosate applied alone at the recommended commercial rate early in the growing season, together with cutting at the flowering stage, may be the most beneficial way of controlling invasive common teasel.
Nomenclature: 2,4-D; glyphosate; common teasel; Dipsacus fullonum L. DIWSI
Hair fescue is a common tuft-forming perennial grass weed that reduces yields and hinders mechanical harvest in lowbush blueberry fields. PRE terbacil applications traditionally controlled hair fescue but currently only provide suppression in most fields. Terbacil use has not, however, been evaluated in conjunction with other currently registered herbicides in lowbush blueberry. The objective of this research was to evaluate a range of terbacil-based herbicide treatments for hair fescue management in lowbush blueberry. The experiment was conducted at three lowbush blueberry fields in Nova Scotia, Canada. Spring nonbearing-year terbacil applications (2,000 g ai ha-1) exhibited variable efficacy on hair fescue with reduced total tuft density at one site and reduced flowering-tuft density and flowering-tuft inflorescence number at two sites. Suppression was limited to the year of application only. Terbacil followed by (fb) foramsulfuron (35 g ai ha-1) did not improve suppression. A terbacil tank mixture with glufosinate (750 ai ha-1), however, reduced flowering-tuft density and flowering-tuft inflorescence number at each site and reduced total tuft density at one site, suggesting improved suppression with terbacil + glufosinate relative to terbacil alone. Terbacil + glufosinate fb foramsulfuron gave additional reductions in total tuft density at two sites and reduced bearing-year flowering-tuft density at two sites, indicating that hair fescue suppression with this herbicide combination extends into the bearing year. Although less effective than the industry standard pronamide applications, terbacil + glufosinate or terbacil + glufosinate fb foramsulfuron could be used as part of a weed management program for hair fescue in lowbush blueberry.
Resistance to penoxsulam among barnyardgrass populations is prevalent in rice fields in China. Seeds of penoxsulam-resistant (AXXZ-2) and penoxsulam-susceptible (JLGY-3) barnyardgrass populations, as well as the seeds of two rice varieties, including Wuyungeng32 (WY) and Liangyou669 (LY), were planted in plastic pots and then treated with a rate titration of acetochlor, anilofos, butachlor, clomazone, oxadiazon, pendimethalin, pretilachlor, pyraclonil, or thiobencarb. The two barnyardgrass populations exhibited similar susceptibility to acetochlor, anilofos, butachlor, oxadiazon, pretilachlor, or pyraclonil. However, the susceptibility differed between the barnyardgrass populations in response to clomazone, pendimethalin, and thiobencarb. For AXXZ-2, herbicide rates that caused 50% reduction in shoot biomass from the nontreated control (GR50) were 179, >800, and 1,798 g ha-1 for clomazone, pendimethalin, and thiobencarb, respectively; whereas JLGY-3 GR50 values were 61, 166, and 552 g ha-1, respectively. Both rice varieties demonstrated excellent tolerance to acetochlor, butachlor, oxadiazon, pretilachlor, and thiobencarb. However, substantial rice damage was observed when anilofos and clomazone were used. Anilofos at 352 g ha-1 and clomazone at 448 g ha-1 reduced rice shoot biomass by 41% and 50% from the nontreated, respectively. Averaged across herbicide rates, clomazone use resulted in a reduction in rice shoot biomass from that of the nontreated control by 52% and 34% for WY and LY, respectively; and pendimethalin use resulted in a reduction in rice shoot biomass from the nontreated control by 25% and 9% for WY and LY, respectively.
Few options are available for controlling bermudagrass invasion of seashore paspalum. Bermudagrass and seashore paspalum tolerance to topramezone, triclopyr, or the combination of these two herbicides were evaluated in both greenhouse and field conditions. Field treatments included two sequential applications of topramezone (15.6 g ai ha-1) alone and five rates of topramezone + triclopyr (15.6 + 43.2, 15.6 + 86.3, 15.6 + 172.6, 15.6 + 345.2, or 15.6 g ai ha-1 + 690.4 g ae ha-1). Secondary greenhouse treatments included a single application of topramezone (20.8 g ha-1) or triclopyr (258.9 g ha-1) alone, or in combination at 20.8 + 258.9 or 20.8 + 517.8 g ha-1, respectively. Greenhouse and field results showed that topramezone applications in combination with triclopyr present opposite responses between bermudagrass and seashore paspalum. Topramezone increased bermudagrass injury and decreased seashore paspalum bleaching injury compared to topramezone alone. In field evaluations, topramezone + triclopyr at 15.6 + 690.4 g ha-1 used in sequential applications resulted in >90% injury to bermudagrass, however, injury decreased over time. Furthermore, sequential applications of topramezone + triclopyr at 15.6 + 690.4 g ha-1 resulted in >50% injury to seashore paspalum. Application programs including topramezone plus triclopyr should increase bermudagrass suppression and reduce seashore paspalum injury compared to topramezone alone. However, additional studies are needed because such practices will likely require manipulation of topramezone rate, application timing, application interval, and number of applications in order to maximize bermudagrass control and minimize seashore paspalum injury.
Goosegrass control options in bermudagrass are limited. Topramezone is one option that offers excellent control of mature goosegrass, but application to bermudagrass results in unacceptable symptoms of bleaching and necrosis typical of hydroxyphenylpyruvate dioxygenase inhibitors. Previous research has shown that adding chelated iron reduced the phytotoxicity of topramezone without reducing the efficacy of the herbicide, resulting in safening when applied to bermudagrass. Our objective was to examine additional iron sources to determine whether similar safening effects occur with other sources. Field trials were conducted in the summers of 2016 to 2018 (Auburn University). Mixtures of topramezone and methylated seed oil were combined with six different commercial iron sources, including sodium ferric ethylenediamine di-o-hydroxyphenyl-acetate (FeEDDHA), ferrous diethylenetriamine pentaacetic acid (FeDTPA), iron citrate, FeSO4, and a combination of iron oxide/sucrate/sulfate, some of which contained nitrogen. Bermudagrass necrosis and bleaching symptoms were visually rated on a 0% to 100% scale. Reflectance (normalized difference vegetation index) and clipping yield measurements were also collected. Application of FeDTPA and FeSO4 reduced symptoms of bleaching and necrosis when applied with topramezone. Other treatments that contained nitrogen did not reduce injury but did reduce bermudagrass recovery time following the appearance of necrosis. Inclusion of small amounts of nitrogen often negated the safening effects of FeSO4. The iron oxide/sucrate/sulfate product had no effect on bleaching or necrosis. Data suggest that the iron source had a differential effect on bleaching and necrosis reduction when applied in combination with topramezone to bermudagrass. Overall, FeSO4 and FeDTPA safened topramezone the most on bermudagrass.
Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of chaff material containing weed seed into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavorable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, and chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine the influences of (1) chaff lines on the summer–autumn seed survival of selected weed species and (2) chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P > 0.05) in seed survival of four weed species (rigid ryegrass, wild oat, annual sowthistle, and turnip weed) when seeds were placed beneath or beside chaff lines. In one instance, wild oat seed survival was increased (P < 0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship in which there was approximately a 2.0% reduction in emergence with every 1,000 kg ha–1 increase in chaff material. This relationship was consistent across wheat, barley, canola, and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies suggested that chaff lines may not affect the survival over summer–autumn of the contained weed seeds but that the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40,000 kg ha–1).
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere