Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Nutsedge species are problematic in plastic-mulched vegetable production because of the weed's rapid reproduction and ability to penetrate the mulch. Vegetable growers rely heavily on halosulfuron to manage nutsedge species; however, the herbicide cannot be applied over mulch before vegetable transplanting due to potential crop injury. This can be problematic when multiple crops are produced on a single mulch installation. Field experiments were conducted to determine the response of broccoli, cabbage, squash, and watermelon to halosulfuron applied on top of mulch prior to transplanting. Halosulfuron at 80 g ai ha–1 was applied 21, 14, 7, and 1 d before planting (DBP), and 160 g ai ha–1 was applied 21 DBP. In all experiments, extending the interval between halosulfuron application and planting reduced crop injury. For squash and watermelon, visual injury, plant diameters/vine runner lengths, marketable fruit weights, and postharvest plant biomass resulted in similar values when applying 80 g ha–1 21 DBP and with the nontreated weed-free control. Reducing this interval increased injury for both crops. Visual crop injury and yield reductions up to 40% occurred, with halosulfuron applied 14, 7, or 1 DBP in squash and 1 DBP in watermelon. Broccoli and cabbage showed greater sensitivity, with injury and plant diameter reductions greater than 15%, even with halosulfuron applied at 80 g ha–1 21 DBP. Experimental results confirm that halosulfuron binds to plastic mulch, remains active, and is slowly released from the mulch over a substantial period, during rainfall or overhead irrigation events. Extending the plant-back interval to at least 21 d before transplanting did overcome squash and watermelon injury concerns with halosulfuron at 80 g ha–1, but not broccoli and cabbage. Applying halosulfuron over mulch to control emerged nutsedge before planting squash and watermelon would be beneficial if adequate rainfall or irrigation and appropriate intervals between application and planting are implemented.
Nomenclature: Halosulfuron; purple nutsedge, Cyperus rotundus L.; yellow nutsedge, Cyperus esculentus L.; broccoli, Brassica oleracea var. botrytis L. ‘Emerald crown'; cabbage, Brassica oleracea var. capitata L. ‘Cheers'; squash, Cucurbita pepo L. ‘Enterprise'; watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai ‘Sangria'
PRE herbicides are the backbone of a successful weed management program in Christmas tree production. In a 2-yr field study, weed control efficacy and tolerance of newly transplanted Canaan fir to different PRE treatments were evaluated. Herbicide treatments consisted of two rates of each of atrazine plus mesotrione plus S-metolachlor at 561 + 150 + 1,504 and 1,122 + 300 + 3,008 g ai ha–1, flumioxazin at 214 and 429 g ai ha–1, hexazinone plus sulfometuron methyl at 289 + 27 and 480 + 46 g ai ha–1, indaziflam at 20 and 41 g ai ha–1, simazine plus oryzalin at 3,366 + 1,683 and 3,366 + 3,366 g ai ha–1, and a nontreated control. Averaged over 2 yr, all PRE treatments controlled giant foxtail, large crabgrass, and redroot pigweed at least 80% throughout the summer. Only the high rates of atrazine plus mesotrione plus S-metolachlor maintained >80% season-long control of yellow foxtail. Horseweed was controlled >85% with flumioxazin at both rates and at high rates of atrazine plus mesotrione plus S-metolachlor, hexazinone plus sulfometuron methyl, and indaziflam. The season-long PRE control of both red sorrel and wild carrot was maintained ≥80% with atrazine plus mesotrione plus S-metolachlor and hexazinone plus sulfometuron methyl regardless of application rate. By 16 wk after treatment, within-row densities of weeds evaluated in this study were reduced >75% in plots treated with atrazine plus mesotrione plus S-metolachlor at both application rates or hexazinone plus sulfometuron methyl at 480 + 46 g ai ha–1. Within-row weed densities in the nontreated control plots were 50, 32, 36, 25, 27, 31, and 19 plants m–2 for large crabgrass, giant foxtail, horseweed, redroot pigweed, red sorrel, wild carrot, and yellow foxtail, respectively. No discernible injury was observed in Canaan fir with any PRE treatment in both study years.
Bearded sprangletop is a problematic weed in California rice production. The objective of this research was to determine the response of two bearded sprangletop biotypes (clomazone-susceptible [S] and -resistant [R]) to flooding depth. A study was conducted in 2017 and 2018 at the California Rice Experiment Station in Biggs, CA, to evaluate the flooding tolerance of the two biotypes against 5-, 10-, and 20-cm continuous flooding depths. Plant emergence, plant height, panicles per plant, seed per panicle, 100-seed weight, and seed per plant data were collected. At the 5-cm flood depth, neither biotype was controlled, and the R biotype had 260% more emergence, produced 475% more panicles per plant, and 455% more seed per plant than the S biotype. With a 10-cm flood, only the R biotype survived flooding and produced more panicles per plant and seed per plant than any other flood depth–biotype combination evaluated. There was no emergence of either bearded sprangletop biotype at the 20-cm flood depth. Continuous flooding can still be used as a management tool to control bearded sprangletop; however, the depth of flooding appears to limit emergence of S biotypes at 5 cm and R biotypes at 10 cm, and completely inhibits growth of both biotypes at 20 cm. The results of this study indicate that clomazone-resistant bearded sprangletop is more likely to spread throughout the Sacramento Valley because this biotype can survive clomazone applications and can tolerate a standard 10-cm flood.
Nomenclature: Clomazone; bearded sprangletop, Diplachne fusca (L.) P. Beauv. ex Roem. & Schult. ssp. fascicularis (Lam.) P. M. Peterson & N. Snow; rice, Oryza sativa
Field studies were conducted from 2009 through 2011 at the Sustainable Agriculture Research and Extension Center near Lingle, Wyoming, to evaluate great northern bean response to PRE flumioxazin mixed with either trifluralin, pendimethalin, or ethalfluralin. Seven treatments were arranged in a randomized complete block with three or four replicates y–1. The soil texture of the study site was loam in 2009 and 2011, and sandy loam in 2010. Soil organic matter ranged from 1.4% to 1.8%. Treatments included flumioxazin plus trifluralin, flumioxazin plus pendimethalin, flumioxazin plus ethalfluralin, ethalfluralin plus EPTC, imazamox plus bentazon (POST), hand-weeded control, and nontreated control. Dry bean density 4 wk after planting differed among herbicide treatments (P < 0.001). Treatments that included flumioxazin reduced dry bean density 54% compared with treatments without flumioxazin. Dry bean yield was influenced by dry bean density; on average, yield in flumioxazin-containing herbicide treatments was 30% less than treatments not containing flumioxazin, even though weed control was generally greater in flumioxazin treatments.
Greenhouse and outdoor container experiments were conducted to determine garden spurge and large crabgrass emergence when seeds were placed either on top of or below three different mulch materials [pine bark (PB), hardwood (HW), or pine straw (PS)] applied at five depths (0, 1.3, 2.5, 5.1, and 10.2 cm). To elucidate mulch characteristics that contributed to weed control, photosynthetic active radiation (PAR) was recorded underneath each mulch layer, moisture retention was monitored for 24 h following irrigation, and particle size was determined using standard soil sieves. HW reduced PAR (97%) more than did PB (90%) or PS (92%) at 1.3 cm, but few or no differences were noted between mulches at greater mulch depths. HW also contained the highest percentage of small particles and consequently retained more water (29%), than PB (14%) or PS (22%) 24 h following a simulated irrigation event. Emergence of large crabgrass and garden spurge was consistently greater when seeds were placed on top of the mulch, compared to seeds placed below. Emergence of both species also tended to respond to increasing depth in a quadratic manner, indicating that once a critical level of mulch was applied (2.5 to 5 cm), further reductions in weed emergence would not be observed, at least over the short term (12 wk). PB and PS tended to provide a greater reduction in emergence of both species compared to HW. This research also indicates that larger particle materials such as PB or PS would be advantageous because of their ability to suppress weed emergence regardless of seed position.
Nomenclature: Garden spurge; Euphorbia hirta L.; large crabgrass; Digitaria sanguinalis (L.) Scop
During the 2015, 2016, and 2017 growing seasons, weed and weed-free mixed tall fescue and legume forage samples were harvested from 29 pastures throughout Missouri for investigation of the nutritive value of 20 common pasture weed species throughout the season. At certain times during the growing season, many broadleaf weed species had greater nutritive values for a given quality parameter as compared with the available weed-free, mixed tall fescue and legume forage harvested from the same location. There were no significant differences in crude protein concentration between the weed-free forage and many weeds throughout the growing season. However, crude protein content of common burdock, common cocklebur, common ragweed, dandelion, horsenettle, and lanceleaf ragweed was greater than that of the corresponding forage sample at multiple collection periods. The digestible neutral detergent fiber (dNDF) content of all broadleaf weeds except lanceleaf ragweed was significantly lower than that of the weed-free forage at all collection periods. Conversely, large crabgrass had significantly greater digestible neutral detergent fiber levels than did the mixed tall fescue forage at all sampling dates. Dandelion and spiny amaranth had greater in vitro true digestibility (IVTD) content than did the forage for the entire growing season. Three perennial weeds—horsenettle, vervains, and late boneset—did not differ in IVTD levels as compared with the mixed tall fescue and legume forage at any collection date. For most summer annual weeds, the trend was toward greater digestibility earlier in the season, with a gradual decline and often lower IVTD by the late summer or early fall. The results of this study will enable producers to make more informed management decisions about the potential benefit or detriment a weed may provide to the overall nutritive value of the pasture system.
Nomenclature: Common burdock, Arctium minus (Hill) Bernh.; common cocklebur, Xanthium strumarium L.; common ragweed, Ambrosia artemisiifolia L.; dandelion, Taraxacum officinale F.H. Wigg; horsenettle, Solanum carolinense L.; lanceleaf ragweed, Ambrosia bidentata Michx.; large crabgrass, Digitaria sanguinalis (L.) Scop.; late boneset, Eupatorium serotinum Michx.; spiny amaranth, Amaranthus spinosus L.; vervain species, Verbena spp.; tall fescue, Schedonorus arundinaceus (Schreb.) Dumort.
Acetyl co-enzyme A carboxylase (ACCase)-resistant rice allows quizlaofop-p-ethyl to be applied as a POST control of troublesome grass weeds. A field study was conducted in 2017 and 2018 at the H. Rouse Caffey Rice Research Station near Crowley, LA, to evaluate the influence of a crop oil concentrate (COC), a silicon-based surfactant plus a nitrogen source (SNS), or a high-concentrate COC (HCOC) in overcoming the grass weed control antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na. Quizalofop-p-ethyl was applied at 120 g ai ha–1, bispyribac-Na was applied at 34 g ai ha–1, and all adjuvants were applied at 1% vol/vol. Antagonistic interactions were observed at 14 d after treatment (DAT) when quizalofop-p-ethyl was mixed with bispyribac-Na with no adjuvant for control of barnyardgrass, the non–ACCase-tolerant rice cultivars ‘CL-111’ and ‘CLXL-745’, and red rice. At 14 DAT, antagonism of quizalofop-p-ethyl for control of barnyardgrass was observed when mixed with bispyribac-Na plus COC, SNS, or HCOC, with an observed control of 43%, 63%, and 86%, respectively, compared with an expected control of 95% for quizalofop-p-ethyl alone. However, the antagonism of quizalofop-p-ethyl when mixed with bispyribac-Na plus HCOC for barnyardgrass control at 14 DAT was overcome by 28 DAT, with an observed control of 91%, compared with an expected control of 97%. Synergistic or neutral interactions were observed at 14 and 28 DAT when COC, SNS, or HCOC was added to a mixture of quizalofop-p-ethyl plus bispyribac-Na for CL-111, CLXL-745, and red rice control. According to the results of this study, HCOC is the most effective adjuvant for quizalofop-p-ethyl and bispyribac-Na mixtures for control of weedy rice and barnyardgrass.
Nomenclature: Bispyribac-Na; quizalofop-p-ethyl; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv.; red rice, Oryza sativa L.; rice, Oryza sativa L.
Total vegetation control (TVC) is an essential management practice to eliminate all vegetation for the purpose of protecting infrastructure, people, or natural resources on sites where vegetation poses major fire, visibility, and infrastructure risks. TVC is implemented on sites such as railroads, power substations, airports, roadsides, and oil and gas facilities. Current research has identified that tank-mixing two effective mechanisms of action is a superior resistance management strategy compared to rotating mechanisms of action; however, effective tank mixes for TVC have not been thoroughly evaluated. A field experiment was conducted from 2013 to 2014 at five sites in Colorado to compare 32 treatment combinations to two industry standards for TVC. Research objectives were (1) to identify herbicide tank-mix combinations for TVC with multiple effective mechanisms of action for resistance management, (2) to evaluate lower use rate alternatives to minimize nontarget impacts, and (3) to determine the efficacy of fall versus spring application timings. Seven treatments were identified as top-ranking treatments, averaging 96% bare-ground (BG) across five sites and two application timings. Four out of the seven top-ranked treatments included aminocyclopyrachlor, chlorsulfuron, and indaziflam. The industry standard diuron plus imazapyr was in the top ranking, whereas the other industry standard bromacil plus diuron performed inconsistently across sites. Probability modeling was used to predict the probability of achieving 97% or 100% BG with various treatment combinations. The combination of aminocyclopyrachlor, chlorsulfuron, indaziflam, and imazapyr had the highest predicted BG probability, with 88% predicted probability of achieving 100% BG, compared to 67% and 52% predicted probabilities for the industry standards diuron plus imazapyr and bromacil plus diuron, respectively. In three of the five sites, fall applications outperformed the same treatments applied in the spring. Several top-ranking treatments represent newer, lower use rate herbicide combinations that provide multiple mechanisms of action to manage herbicide-resistant weeds and minimize nontarget impacts.
Field studies were conducted on organic soils in Belle Glade, FL, in 2016 to 2017 to evaluate sugarcane tolerance and fall panicum control with topramezone applied alone or in combination with triazine herbicides (atrazine, metribuzin, ametryn). Treatments included topramezone (25 and 50 g ai ha–1) applied alone or in combination with atrazine (2,240 g ai ha–1), metribuzin (2,240 g ai ha–1), and ametryn (440 g ha–1) on four plant cane varieties to evaluate tolerance, and on second ratoon fields to determine efficacy on fall panicum control. Topramezone applied alone had no effect on sugarcane chlorophyll fluorescence (i.e., the ratio of variable fluorescence to maximum fluorescence), total chlorophyll, and carotenoid 7 to 28 d after treatment (DAT), suggesting sugarcane tolerance. Significant reduction of these parameters occured 7 to 14 DAT when topramezone (50 g ai ha–1) was applied with ametryn or metribuzin; however, reductions were not detected thereafter, indicating recovery. Sugarcane yield was not affected by topramezone applied alone or in combination with the triazine herbicides. Topramezone (50 g ai ha–1) plus metribuzin resulted in acceptable control of fall panicum (84%) with limited to no regrowth of meristematic tissue at sugarcane canopy closure, equivalent to 56 to 70 DAT. These results indicate that when sequential applications of topramezone, applied alone or in combination with these triazine herbicides, are required for efficacious weed control, topramezone applications alone can be made after 7 d, whereas the combinations can be made after 14 or 21 d, depending on sugarcane sensitivity.
Leafy spurge (Euphorbia esula L.) and purple loosestrife (Lythrum salicaria L.) are invasive weeds that displace native vegetation. Herbicides are often applied to these weeds during flowering, so it would be ideal to identify them early in the season, possibly by the leaves. This paper evaluates the spectral separability of the inflorescences and leaves of these plants from surrounding vegetation. Leafy spurge, purple loosestrife, and surrounding vegetation were collected from sites in southeastern North Dakota and subjected to spectral analysis. Partial least-squares discriminant analysis (PLS-DA) was used to separate the spectral signatures of these weeds in the visible and near-infrared wavelengths. Using PLS-DA, the weeds were discriminated from their surroundings with R2 values of 0.86 to 0.92. Analysis of the data indicated that the bands contributing the most to each model were in the red and red-edge spectral regions. Identifying these weeds by the leaves allows them to be mapped earlier in the season, providing more time for herbicide application planning. The spectral signatures identified in this proof of concept study are the first step before using ultra–high resolution aerial imagery to classify and identify leafy spurge and purple loosestrife.
Nomenclature: Leafy spurge, Euphorbia esula L.; purple loosestrife, Lythrum salicaria L.
In recent years, soybean acreage has increased significantly in western Canada. One of the challenges associated with growing soybean in western Canada is the control of volunteer glyphosate-resistant (GR) canola, because most soybean cultivars are also glyphosate resistant. The objective of this research was to determine the impact of soybean seeding rate and planting date on competition with volunteer canola. We also attempted to determine how high seeding rate could be raised while still being economically feasible for producers. Soybean was seeded at five different seeding rates (targeted 10, 20, 40, 80, and 160 plants m–2) and three planting dates (targeted mid-May, late May, and early June) at four sites across western Canada in 2014 and 2015. Soybean yield consistently increased with higher seeding rates, whereas volunteer canola biomass decreased. Planting date generally produced variable results across site-years. An economic analysis determined that the optimal rate was 40 to 60 plants m–2, depending on market price, and the optimal planting date range was from May 20 to June 1.
Nomenclature: Glyphosate; canola, Brassica napus L.; soybean, Glycine max (L.) Merr
Halauxifen plus florasulam, thifensulfuron plus fluroxypyr, and bromoxynil plus bicyclopyrone are three, relatively new POST premix herbicides developed for control of broadleaf weeds in winter wheat. These herbicides, along with older products, were evaluated for their control of horseweed in Altus, Perkins, and Ponca City, Oklahoma, during the spring of 2017 and 2018. Horseweed has become a critical weed in Oklahoma because of its extensive germination window, changes in tillage practices, and increase in herbicide-resistant horseweed biotypes. Visual weed control was estimated every 2 wk throughout the growing season and wheat yield was collected from three of the six site-years. Horseweed size ranged from 5 to 20 cm at time of application. The halauxifen plus florasulam, and thifensulfuron plus fluroxypyr combinations were effective at controlling a wide range of horseweed rosette sizes across all locations, whereas control with other treatments varied depending on presence of herbicide resistance, weed size at time of application, and mix partner.
POST weed control atop the bed during strawberry production is limited to hand weeding, clopyralid, and acetyl CoA carboxylase inhibitors. Identification of additional modes of action is desirable to increase available options for producers and alleviate herbicide resistance concerns. The study objective was to screen sulfonylurea herbicides for safety of strawberry coordinated with efficacy against Carolina geranium. Herbicide treatments included metsulfuron-methyl, flazasulfuron, foramsulfuron, thifensulfuron-methyl, trifloxysulfuron-sodium, and rimsulfuron. Strawberry plants were heavily damaged by all herbicides apart from foramsulfuron. Although the strawberry plant was dramatically affected by the evaluated herbicides, demonstrating strong epinasty, there were no differences in resultant biomass at 31 d after treatment (DAT) compared to controls. Carolina geranium was severely injured by metsulfuron-methyl, flazasulfuron, and thifensulfuron-methyl, and moderately injured by foramsulfuron. There were consistent reductions in biomass by 31 DAT by metsulfuron-methyl and flazasulfuron. Overall, metsulfuron-methyl and flazasulfuron are suitable candidates for Carolina geranium control in row-middles. Foramsulfuron is a suitable candidate for additional field-based screening for utility in POST use in strawberry production atop the bed. Consideration toward doses, surfactants, timings, and cultivar tolerance may be necessary to minimize injury as observed in the greenhouse (15% to 20%).
In recent years, unmanned aerial vehicle (UAV) technology has expanded to include UAV sprayers capable of applying pesticides. Very little research has been conducted to optimize application parameters and measure the potential of off-target movement from UAV-based pesticide applications. Field experiments were conducted in Raleigh, NC during spring 2018 to characterize the effect of different application speeds and nozzle types on target area coverage and uniformity of UAV applications. The highest coverage was achieved with an application speed of 1 m s–1 and ranged from 30% to 60%, whereas applications at 7 m s–1 yielded 13% to 22% coverage. Coverage consistently decreased as application speed increased across all nozzles, with extended-range flat-spray nozzles declining at a faster rate than air-induction nozzles, likely due to higher drift. Experiments measuring the drift potential of UAV-applied pesticides using extended-range flat spray, air-induction flat-spray, turbo air–induction flat-spray, and hollow-cone nozzles under 0, 2, 4, 7, and 9 m s–1 perpendicular wind conditions in the immediate 1.75 m above the target were conducted in the absence of natural wind. Off-target movement was observed under all perpendicular wind conditions with all nozzles tested but was nondetectable beyond 5 m away from the target. Coverage from all nozzles exhibited a concave-shaped curve in response to the increasing perpendicular wind speed due to turbulence. The maximum target coverage in drift studies was observed when the perpendicular wind was 0 and 8.94 m s–1, but higher turbulence at the two highest perpendicular wind speeds (6.71 and 8.94 m s–1) increased coverage variability, whereas the lowest variability was observed at 2.24 m s–1 wind speed. Results suggested that air-induction flat-spray and turbo air–induction flat-spray nozzles and an application speed of 3 m s–1 provided an adequate coverage of target areas while minimizing off-target movement risk.
Field trials were conducted near Pontotoc, Mississippi; Chase, Louisiana; and Clinton, North Carolina, in 2017 and 2018 to determine the effect of pendimethalin rate and timing application on sweetpotato crop tolerance, yield, and storage root quality. Treatments consisted of five pendimethalin rates (266, 532, 1,065, 1,597, and 2,130 g ai ha–1) by two application timings (0 to 1 or 10 to 14 d after transplanting). Additionally, a nontreated check was included for comparison. Crop injury (stunting) was minimal (≤4%) through 6 wk after transplanting (WAP) and no injury was observed from 8 to 14 WAP, regardless of application timing or rate. The nontreated check yielded 6.6, 17.6, 5.5, and 32.1 × 103 kg ha–1 of canner, no. 1, jumbo, and total grades, respectively. Neither pendimethalin application timing nor rate influenced jumbo, no. 1, marketable, or total sweetpotato yield. Overall, these results indicate that pendimethalin will be a valuable addition to the toolkit of sweetpotato growers.
Doveweed is a problematic weed species in many agricultural ecosystems as well as on roadsides and rights-of-way. Effective POST chemical control options for doveweed are limited in many cropping systems. Greenhouse studies were conducted to evaluate the effectiveness of metsulfuron-methyl dose and the impact of mixtures and sequential applications of either trifloxysulfuron-sodium or bentazon with metsulfuron-methyl for doveweed control. By 14 d after the initial treatment, applying 0.04 kg ai ha–1 metsulfuron-methyl, either once or sequentially, provided 100% control of doveweed. Application of trifloxysulfuron-sodium at 0.04 kg ai ha–1 alone or in mixture with metsulfuron-methyl (0.04 kg ha–1) did not provide consistent doveweed control nor did it reduce biomass. Trifloxysulfuron-sodium applied alone at 0.08 kg ha–1 or in a mixture with metsulfuron-methyl (0.04 kg ha–1) provided consistent doveweed control (>80%). A single application of bentazon (0.56 kg ai ha–1) was ineffective at controlling doveweed. A single application of the bentazon and metsulfuron-methyl mixture (0.56 + 0.04 kg ha–1, respectively) or sequential applications of either bentazon alone (0.56 kg ha–1) or in mixture with metsulfuron-methyl (0.04 kg ha–1) provided excellent doveweed control (100%) by 35 d after treatment. Overall, single applications of metsulfuron-methyl (0.02 to 0.17 kg ha–1) or mixtures of metsulfuron-methyl with trifloxysulfuron-sodium (0.04 + 0.08 kg ha–1, respectively) or bentazon (0.04 + 0.56 kg ha–1, respectively) controlled doveweed and may be useful for enhancing the control spectrum for other weeds. Sequential applications of the bentazon and metsulfuron-methyl mixture (0.56 + 0.04 kg ha–1, respectively) provided doveweed control and are a resistance-management strategy for doveweed.
A field study was conducted during the 2016 and 2017 crop seasons at the LSU AgCenter H. Rouse Caffey Rice Research Station to evaluate weed control and rice yield after quizalofop-p-ethyl applications in water-seeded coenzyme A carboxylase (ACCase)–resistant ‘PVLO1' long-grain rice production utilizing different flood systems, application timings, and quizalofop rates. The initial application of quizalofop was applied at five timings beginning when ‘PVLO1’ rice was at the coleoptile stage (PEG) through the one- to two-tiller stage. A total quizalofop rate of 240 g ai ha–1 was split into two applications: 97 followed by 143 g ha–1 or 120 followed by 120 g ai ha–1 in both pinpoint and delayed flood water-seeded management systems. A second quizalofop application was applied 14 d after initial treatment (DAIT). At 14 DAIT, a reduction in control of barnyardgrass and red rice was observed by delaying the initial quizalofop application to the two- to four-tiller stage compared with rice treated at earlier growth stages. At 42 DAIT, control of barnyardgrass was 94% to 96%, and red rice was 98% following the second application of quizalofop, regardless of initial application timing. Rice treated with quizalofop at the PEG and two- and three-leaf stage resulted in a rice height of 104 cm at harvest compared with 96 to 100 cm when the initial application of quizalofop was delayed to later growth stages. Applying the initial application of quizalofop to rice at the PEG timing in the pinpoint or the delayed flood system resulted in a total gross value per hectare of $450 and $590, respectively. Within each flood system, delaying the initial application of quizalofop to the one- to two-tiller stage resulted in a gross per-hectare value reduction of $100 ha-1 in the pinpoint flood and $110 ha-1 in the delayed flood.
Nomenclature: Quizalofop-p-ethyl; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv.; red rice, Oryza sativa L.; rice, Oryza sativa L.
Downy brome, feral rye, and jointed goatgrass are problematic winter annual grasses in central Great Plains winter wheat production. Integrated control strategies are needed to manage winter annual grasses and reduce selection pressure exerted on these weed populations by the limited herbicide options currently available. Harvest weed-seed control (HWSC) methods aim to remove or destroy weed seeds, thereby reducing seed-bank enrichment at crop harvest. An added advantage is the potential to reduce herbicide-resistant weed seeds that are more likely to be present at harvest, thereby providing a nonchemical resistance-management strategy. Our objective was to assess the potential for HWSC of winter annual grass weeds in winter wheat by measuring seed retention at harvest and destruction percentage in an impact mill. During 2015 and 2016, 40 wheat fields in eastern Colorado were sampled. Seed retention was quantified and compared per weed species by counting seed retained above the harvested fraction of the wheat upper canopy (15 cm and above), seed retained below 15 cm, and shattered seed on the soil surface at wheat harvest. A stand-mounted impact mill device was used to determine the percent seed destruction of grass weed species in processed wheat chaff. Averaged across both years, seed retention (±SE) was 75% ± 2.9%, 90% ± 1.7%, and 76% ± 4.3% for downy brome, feral rye, and jointed goatgrass, respectively. Seed retention was most variable for downy brome, because 59% of the samples had at least 75% seed retention, whereas the proportions for feral rye and jointed goatgrass samples with at least 75% seed retention were 93% and 70%, respectively. Weed seed destruction percentages were at least 98% for all three species. These results suggest HWSC could be implemented as an integrated strategy for winter annual grass management in central Great Plains winter wheat cropping systems.
Nomenclature: Downy brome, Bromus tectorum L. BROTE; feral rye, Secale cereale L. SECCE; jointed goatgrass, Aegilops cylindrica Host, AEGCY; wheat, Triticum aestivum L. TRZAX
In Australia, junglerice and feather fingergrass are problematic weeds in sorghum. The high seed production potential of these weeds increases their seedbank in the soil and makes weed control practices more difficult and expensive, particularly when weeds have evolved resistance to herbicides. A study was conducted to evaluate the seed production and seed retention behavior of junglerice and feather fingergrass at sorghum crop maturity following four transplanting times: 0, 2, 4, and 6 wk after sorghum emergence. Averaged across years, junglerice and feather fingergrass produced 4,060 and 5,740 seeds plant-1, respectively,when they were transplanted with the emergence of a sorghum crop. Seed retention ranged from 42% to 56% for junglerice and 67% to 75% for feather fingergrass when these weeds were transplanted from 0 to 4 wk after crop emergence. A positive correlation (r = 0.75 for junglerice; r = 0.44 for feather fingergrass) was found between seed production and weed biomass in both weeds, indicating that larger plants produced more seeds than smaller plants. However, no correlation was found between weed biomass and seed retention for junglerice. A weak positive correlation (r = 0.44) was found between feather fingergrass biomass and percent seed retention, indicating that seed retention was greater in larger plants compared with smaller plants. Our results suggest that feather fingergrass is a good candidate for harvest weed seed control (HWSC) tactics if crop harvest is timely. There is limited opportunity to use HWSC tactics for targeting junglerice seeds in sorghum crops, because most seeds dispersed before crop maturity. Additional research is required to evaluate seed retention levels of these weeds in other summer crops such as corn and soybean to determine the potential for HWSC for management of these species.
Nonnative annual brome invasion is a major problem in many ecosystems throughout the semiarid Intermountain West, decreasing production and biodiversity. Herbicides are the most widely used control technique but can have negative effects on co-occurring species. Graminicides, or grass-specific herbicides, may be able to control annual bromes without harming forbs and shrubs in restoration settings, but limited studies have addressed this potential. This study focused on evaluating the efficacy of glyphosate and four graminicides to control annual bromes, specifically downy brome and Japanese brome. In a greenhouse, glyphosate and four graminicides (clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl) were applied at two rates to downy brome plants of different heights (Experiment 1) and to three accessions of downy brome and Japanese brome of one height (Experiment 2). All herbicides reduced downy brome biomass, with most effective control on plants of less than 11 cm and with less than 12 leaves. Overall, quizalofop-P-ethyl and fluazifop-P-butyl treatments were most effective, and glyphosate and sethoxydim treatments least effective. Accessions demonstrated variable response to herbicides: the downy brome accession from the undisturbed site was more susceptible to herbicides than downy brome from the disturbed accession and Japanese brome accessions. These results demonstrate the potential for graminicides to target these annual bromes in ecosystems where they are growing intermixed with desired forbs and shrubs.
Field studies were conducted over five seasons from 2004 to 2015 to determine the critical period for weed control (CPWC) in high-yielding, irrigated cotton using a competitive mimic grass weed, Japanese millet. Japanese millet was planted with or after cotton emergence at densities of 10, 20, 50, 100, and 200 plants m–2. Japanese millet was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 degree days of crop growth (GDD). Data were combined over years. Japanese millet competed strongly with cotton, with season-long interference resulting in an 84% reduction in cotton yield with 200 Japanese millet plants m–2. The data were fit to extended Gompertz and logistic curves including weed density as a covariate, allowing a dynamic CPWC to be estimated for densities of 10 to 200 Japanese millet plants m–2. Using a 1% yield-loss threshold, the CPWC commenced at 65 GDD, corresponding to 0 to 7 d after crop emergence (DAE), and ended at 803 GDD, 76 to 98 DAE with 10 Japanese millet plants m–2, and 975 GDD, 90 to 115 DAE with 200 Japanese millet plants m–2. These results highlight the high level of weed control required throughout the cropping season in high-yielding cotton to ensure crop losses do not exceed the cost of weed control.
Nomenclature: Japanese millet, Echinochloa esculenta (A. Braun) H. Scholz ‘Shirohie'; cotton, Gossypium hirsutum L. GOSHI
Weed control in corn traditionally has relied on atrazine as a foundational tool to control problematic weeds. However, the recent discovery of atrazine in aquifers and other water sources increases the likelihood of more strict restrictions on its use. Field-based research trials to find atrazine alternatives were conducted in 2017 and 2018 in Fayetteville, AR, by testing the tolerance of corn to PRE and POST applications of different photosystem II (PSII) inhibitors alone or in combination with mesotrione or S-metolachlor. All experiments were designed as a two-factor factorial, randomized complete block, with the two factors being (1) PSII-inhibiting herbicide and (2) the herbicide added to create the mixture. The PSII-inhibiting herbicides were prometryn, ametryn, simazine, fluometuron, metribuzin, linuron, diuron, atrazine, and propazine. The second factor consisted of either no additional herbicide, S-metolachlor, or mesotrione. Treatments were applied immediately after planting in the PRE experiments and to 30-cm–tall corn for the POST experiments. For the PRE study, low levels of injury (<15%) were observed at 14 and 28 d after application and corn height was negatively affected by the PSII-inhibiting herbicide applied. PRE-applied fluometuron- and ametryn-containing treatments consistently caused injury to corn, often exceeding 5%. Because of low injury levels caused by all treatments, crop density and yield did not differ from that of the nontreated plants. For the POST study, crop injury, relative height, and relative yield were affected by PSII-inhibiting herbicide and the herbicide added. Ametryn-, diuron-, linuron-, propazine-, and prometryn-containing treatments caused at least 25% injury to corn in at least 1 site-year. All PSII-inhibiting herbicides, except metribuzin and simazine when applied alone, caused yield loss in corn when compared with atrazine alone. Diuron-, linuron-, metribuzin-, and simazine-containing treatments applied PRE and metribuzin- and simazine-containing treatments applied POST should be investigated further as atrazine replacements.
Get someone else to blow your horn and the sound will carry twice as far. Will Rogers
It is said that love makes the world go ‘round—the announcement lacks verification. It's wind from the dinner horn that does it. O. Henry
The finest workers in stone are not copper or steel tools, but the gentle touches of air and water working at their leisure with a liberal allowance of time. Henry David Thoreau
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere