Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Evolution of glyphosate-resistant (GR) weeds, such as horseweed, presents major challenges in no-till soybean production systems. Effective GR horseweed control with preplant burndown applications is necessary to prevent potential soybean yield losses due to competition and to manage the soil weed seedbank. Halauxifen-methyl is a new synthetic auxin herbicide for broadleaf weed control in preplant burndown applications for soybean and other crops at low use rates (5 g ae ha–1). Experiments were conducted to evaluate the efficacy of herbicide treatments containing halauxifen-methyl for control of GR horseweed in comparison to existing herbicide treatments utilized in no-till GR soybean systems. Glyphosate alone controlled horseweed 33%. Herbicide treatments that included halauxifenmethyl, dicamba, or saflufenacil in combination with glyphosate controlled horseweed 87% to 96%, 89%, and 93%, respectively, 35 d after burndown application (DAB). Horseweed control, horseweed density reduction, and ground cover reduction by halauxifen-methyl plus glyphosate was similar to dicamba plus glyphosate. Horseweed control was greater for halauxifen-methyl plus glyphosate than for 2,4-D plus glyphosate. Cloransulam, cloransulam plus flumioxazin, and cloransulam plus sulfentrazone added to halauxifenmethyl plus glyphosate increased horseweed control and reduced horseweed density. No herbicide injury or soybean yield reduction was observed for treatments containing halauxifen-methyl.
Field studies were conducted in 2015 and 2016 in North Carolina to determine the response of ‘Covington’ and ‘Murasaki-29’ sweetpotato cultivars to four rates of linuron (420, 560, 840, and 1,120 g ai ha-1) alone or with S-metolachlor (803 g ai ha-1) applied 7 or 14 d after transplanting (DAP). Injury (chlorosis/necrosis and stunting) to both cultivars was greater when linuron was applied with S-metolachlor as compared to linuron applied alone. Herbicide application at 14 DAP caused greater injury (chlorosis/necrosis and stunting) to both cultivars than when applied at 7 DAP. At 4 wk after treatment (WAT), stunting of Covington and Murasaki-29 (hereafter Murasaki) from linuron at 420 to 1,120 g ha-1 increased from 27% to 50% and 25% to 53%, respectively. At 7 or 8 WAT, crop stunting of 8% or less and 0% was observed in Covington and Murasaki, respectively, regardless of application rate and timing. Murasaki root yields were similar in the linuron alone or with S-metolachlor treatments, and were lower than the nontreated check. In 2016, no. 1 and marketable sweetpotato yields of Covington were similar for the nontreated check, linuron alone, or linuron plus S-metolachlor treatments, but not in 2015. Decreases in no. 1 and marketable root yields were observed when herbicides were applied 14 DAP compared to 7 DAP for Covington in 2015 and for Murasaki in both years. No. 1 and marketable yields of Covington were similar for 420 to 1,120 g ha-1 linuron and nontreated check except marketable root yields in 2015. No. 1 and marketable sweetpotato yields of Murasaki decreased as application rates increased.
In 2015, winter wheat growers in Virginia reported commercial failures of thifensulfuron to control mouse-ear cress. This was the first reported case of field-evolved acetolactate synthase (ALS) resistance in mouse-ear cress, so research was conducted to evaluate alternative herbicide options as well as to document potential yield loss in winter wheat from mouse-ear cress. Efficacy studies were conducted at three site-years in 2015 to 2016 and 2016 to 2017 as well as a POST greenhouse trial. In the PRE study, flumioxazin, pyroxasulfone, saflufenacil, and metribuzin resulted in more than 80% mouse-ear cress control 15 wk after planting across all sites with no observable wheat injury. No differences were observed in wheat yield in two of three sites in the PRE herbicide study; yield differences were attributed to common chickweed and not to mouse-ear cress. In the POST herbicide study, 2,4-D, dicamba, and metribuzin resulted in greater than 75% control in the field and greenhouse. Metribuzin, dicamba, and pyroxsulam resulted in crop injury 3 wk after treatment at some sites, but injury was transient. Yield from all POST treatments was similar to the nontreated plots. No yield loss was observed by mouse-ear cress densities greater than 300 plants m-2, indicating that mouse-ear cress is not very competitive with winter wheat. Growers should make herbicide decisions based on other weeds in the field and can incorporate the aforementioned herbicides for mouse-ear cress control.
Nomenclature: Dicamba; flumioxazin; metribuzin; pyroxasulfone; pyroxsulam; saflufenacil; thifensulfuron; 2,4-D; common chickweed, Stellaria media L.; mouse-ear cress, Arabidopsis thaliana L.; wheat, Triticum aestivum L.
Dicamba may be an efficacious option for the control of glyphosate-resistant (GR) horseweed in glyphosate/dicamba-resistant soybean; research is needed to optimize the application rate based on horseweed height at the time of application. The purpose of this study was to determine the effect of glyphosate/dicamba rate and application timing for the control of GR horseweed. Glyphosate/dicamba was applied at three rates (900, 1,350, and 1,800 g ae ha-1) at three horseweed application timings (5, 15, and 25 cm) in a factorial design. There was no interaction between glyphosate/dicamba rate and timing for GR horseweed control or soybean yield; however, there was an interaction for GR horseweed density and biomass. At 2 and 4 wk after application (WAA), there was a decrease in GR horseweed control as the height at the time application increased. At 4 WAA, the application of glyphosate/dicamba to GR horseweed that was 5-, 15-, and 25-cm tall provided 87%, 76%, and 62% control, respectively. There was no impact of glyphosate/dicamba application timing on soybean yield. At 2, 4, and 8 WAA, there was an increase in GR horseweed control as the rate of glyphosate/ dicamba was increased. At 8 WAA, glyphosate/dicamba applied at 900, 1,350, and 1,800 g ae ha-1 controlled GR horseweed 76%, 87%, and 92%, respectively. Earlier application timings and higher rates of glyphosate/dicamba caused the greatest reduction in GR horseweed density and biomass. Reduced GR horseweed competition resulted in a 100% to 144% increase in soybean yield, but there was no difference in soybean yield among glyphosate/dicamba rates tested.
Nomenclature: Dicamba; glyphosate; horseweed, Erigeron canadensis L. Cronq.; soybean, Glycine max (L.) Merr.
Cover crops are being increasingly recommended as an integrated approach to controlling glyphosate-resistant Palmer amaranth and other troublesome weeds. Thus, a field experiment was conducted in 2010 through 2012 to evaluate the critical period for weed control (CPWC) in cotton as affected by a cereal rye cover crop and tillage. The management systems evaluated included conventional tillage following winter fallow, conservation tillage (CT) following winter fallow, and CT following a cereal rye cover crop managed for maximum biomass. Throughout most of the growing season, weed biomass in cereal rye cover crop plots was less than the CT winter-fallow system in both years and less than both CT winter fallow and conventional tillage in 2012. The CPWC was shortest in 2010 following conventional tillage; however, in 2012, production system influences on CPWC were less. The presence of the rye cover crop delayed the critical timing for weed removal (CTWR) approximately 8 d compared with fallow treatment both years, while conventional tillage delayed CTWR about 2 wk compared with winter fallow. Relative yield losses in both years did not reach the 5% threshold limit until about 2 wk after planting (WAP) for CT following winter fallow, 3 WAP for CT following a cover crop, and 3.5 WAP following conventional tillage. Thus, CT following winter fallow should be avoided to minimize cotton yield loss.
David G. Ouse, James M. Gifford, Jerome Schleier, David D. Simpson, Holger H. Tank, Curtiss J. Jennings, Suresh P. Annangudi, Pablo Valverde-Garcia, Robert A. Masters
Herbicide active ingredients, formulation type, ambient temperature, and humidity can influence volatility. A method was developed using volatility chambers to compare relative volatility of different synthetic auxin herbicide formulations in controlled environments. 2,4-D or dicamba acid vapors emanating after application were captured in air-sampling tubes at 24, 48, 72, and 96 h after herbicide application. The 2,4-D or dicamba was extracted from sample tubes and quantified using liquid chromatography and tandem mass spectrometry. Volatility from 2,4-D dimethylamine (DMA) was determined to be greater than that of 2,4-D choline in chambers where temperatures were held at 30 or 40 C and relative humidity (RH) was 20% or 50%. Air concentration of 2,4-D DMA was 0.399 µg m-3 at 40 C and 20% RH compared with 0.005 µg m-3 for 2,4-D choline at the same temperature and humidity at 24 h after application. Volatility from 2,4-D DMA and 2,4-D choline increased as temperature increased from 30 to 40 C. However, volatility from 2,4-D choline was lower than observed from 2,4-D DMA. Volatility from 2,4-D choline at 40 C increased from 0.00458 to 0.0263 µg m-3 and from 0.00341 to 0.025 µg m-3 when humidity increased from 20% to 50% at 72 and 96 h after treatment, respectively, whereas, volatility from 2,4-D DMA tended to be higher at 20% RH compared with 50% RH. Air concentration of dicamba diglycolamine was similar at all time points when measured at 40 C and 20% RH. By 96 h after treatment, there was a trend for lower air concentration of dicamba compared with earlier timings. This method using volatility chambers provided good repeatability with low variability across replications, experiments, and herbicides.
Tolpyralate is a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibiting herbicide for POST weed management in corn; however, there is limited information regarding its efficacy. Six field studies were conducted in Ontario, Canada, over 3 yr (2015 to 2017) to determine the biologically effective dose of tolpyralate for the control of eight annual weed species. Tolpyralate was applied POST at six doses from 3.75 to 120 g ai ha-1 and tank mixed at a 1:33.3 ratio with atrazine at six doses from 125 to 4,000 g ha-1. Regression analysis was performed to determine the effective dose (ED) of tolpyralate, and tolpyralate + atrazine, required to achieve 50%, 80%, or 90% control of eight weed species at 1, 2, 4, and 8 wk after application (WAA). The ED of tolpyralate for 90% control (ED90) of velvetleaf, common lambsquarters, common ragweed, redroot pigweed or Powell amaranth, and green foxtail at 8 WAA was ≤15.5 g ha-1; however, tolpyralate alone did not provide 90% control of wild mustard, barnyardgrass, or ladysthumb at 8WAAat any dose evaluated in this study. In contrast, the ED90 for all species in this study with tolpyralate + atrazine was ≤13.1 + 436 g ha-1, indicating that tolpyralate + atrazine can be highly efficacious at low field doses.
Nomenclature: Atrazine; tolpyralate; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv. ECHCG; common lambsquarters, Chenopodium album L. CHEAL; common ragweed, Ambrosia artemisiifolia L. AMBEL; green foxtail, Setaria viridis (L.) P. Beauv. SETVI; ladysthumb, Persicaria maculosa Gray POLPE; Powell amaranth, Amaranthus powelli S. Watson AMAPO; redroot pigweed, Amaranthus retroflexus L. AMARE; velvetleaf, Abutilon theophrasti Medik. ABUTH; wild mustard, Sinapis arvensis L. SINAR; corn, Zea mays L.
Tolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate + atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha-1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate + atrazine (30 + 1,000 g ai ha-1) and topramezone + atrazine (12.5 + 500 g ai ha-1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate + atrazine provided >90% control of green foxtail by 1WAA.Tolpyralate + atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione + atrazine (100 + 280 g ai ha-1) at 8 WAA. Overall, tolpyralate + atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione + atrazine and topramezone + atrazine.
Nomenclature: Atrazine; mesotrione; tolpyralate; topramezone; barnyardgrass, Echinochloa crus-galli (L.) P. Beauv. ECHCG; common lambsquarters, Chenopdium album L. CHEAL; common ragweed, Ambrosia artemisiifolia L. AMBEL; green foxtail, Setaria viridis (L.) P. Beauv. SETVI; ladysthumb, Persicaria maculosa Gray. POLPE; Powell amaranth, Amaranthus powelli S. Watson AMAPO; redroot pigweed, Amaranthus retroflexus L. AMARE; pigweed spp., Amaranthus spp., AMASS; velvetleaf, Abutilon theophrasti Medik. ABUTH; wild mustard, Sinapis arvensis L. SINAR; corn, Zea mays L
A field study was conducted in 2015 and 2016 to compare particle drift of glyphosate using a fluorescent tracer dye applied with hooded and open sprayers at four spray qualities (Fine [F], Medium [M], Very-Coarse [VC], and Ultra-Coarse [UC]). F and M spray qualities exhibited up to 86% and 56% less drift, respectively, out to 31 m downwind with the hooded sprayer than with the open sprayer. Conversely, VC and UC spray qualities were not affected by sprayer type out to 31m downwind. From 43 to 104m downwind, hooded sprayer applications exhibited approximately 50% less drift than open sprayer applications, regardless of spray quality. From 43 to 89m downwind, F spray qualities, regardless of sprayer type, exhibited higher drift than all other spray qualities. These data indicate that hooded sprayers considerably reduce drift of all spray qualities at short distances downwind. Additionally, at longer distances downwind, both larger spray qualities and sprayer hoods reduced drift independently.
The investigation of potential herbicides for weed control in sweetpotato is critical due to the limited number of registered herbicides and the development of populations of herbicideresistant weeds. Therefore, field studies were conducted at the Horticultural Crops Research Station, Clinton, NC and the Pontotoc Ridge–Flatwoods Branch Experiment Station, Pontotoc, MS to determine the effect of oryzalin application rate and timing on sweetpotato tolerance. Oryzalin at 0.6, 1.1, 2.2, 3.4, and 4.5 kg ai ha-1 was applied immediately after transplanting or 14 d after sweetpotato transplanting (DAP). At Clinton, oryzalin applied immediately after transplanting resulted in ≤1% leaf distortion 4 and 6 wk after transplanting (WAP) regardless of application rate. However, when oryzalin was applied 14 DAP, greater sweetpotato leaf distortion was observed from 2.2, 3.4, and 4.5 kg ha-1 (≤8%) than 0.6 and 1.1 kg ha-1 (≤4%). At Pontotoc, oryzalin applied immediately after transplanting resulted in ≤6% leaf distortion 4 WAP regardless of application rate. However, when oryzalin was applied at 14 DAP, greater leaf distortion was reported from 3.4 and 4.5 kg ha-1 (11 to 13%) than 0.6, 1.1, and 2.2 kg ha-1 (4 to 6%). Oryzalin application rate and timing did not affect yield of no.1, jumbo, or marketable sweetpotato. Based on these results, oryzalin herbicide has potential for registration in sweetpotato.
Sugarbeet, grown for biofuel, is being considered as an alternate cool-season crop in the southeastern United States. Previous research identified ethofumesate PRE and phenmedipham + desmedipham POST as herbicides that controlled troublesome cool-season weeds in the region, specifically cutleaf evening-primrose. Research trials were conducted from 2014 through 2016 to evaluate an integrated system of sweep cultivation and reduced rates of ethofumesate PRE and/or phenmedipham + desmedipham POST for weed control in sugarbeet grown for biofuel. There were no interactions between the main effects of cultivation and herbicides for control of cutleaf evening-primrose and other cool-season species in two out of three years. Cultivation improved control of cool-season weeds, but the effect was largely independent of control provided by herbicides. Of the herbicide combinations evaluated, the best overall cool-season weed control was from systems that included either a 1/2X or 1X rate of phenmedipham + desmedipham POST. Either rate of ethofumesate PRE was less effective than phenmedipham + desmedipham POST. Despite improved cool-season weed control, sugarbeet yield was not affected by cultivation each year of the study. Sugarbeet yields were greater when treated with any herbicide combination that included either a 1/2X or 1X rate of phenmedipham + desmedipham POST compared with either rate of ethofumesate PRE alone or the nontreated control. These results indicate that cultivation has a very limited role in sugarbeet grown for biofuel. The premise of effective weed control based on an integration of cultivation and reduced herbicide rates does not appear to be viable for sugarbeet grown for biofuel.
Henbit is a winter annual weed that is not effectively controlled by spring-applied herbicide applications. Research was conducted to determine henbit's emergence pattern and whether fall-applied residual herbicides would be effective for henbit control in the spring. Henbit emerges in Louisiana from late October through March, but emergence predominantly occurs in the last week of October through the first week of December. Applying paraquat plus flumioxazin, oxyfluorfen, or rimsulfuron:thifensulfuron November 1 through December 15 provided better than 90% henbit control in March. Applying paraquat plus S-metolachlor on November 15 or December 1 provided 92% henbit control, which was similar to flumioxazin, oxyfluorfen, and rimsulfuron:thifensulfuron. The addition of flumioxazin, oxyfluorfen, or rimsulfuron:thifensulfuron to paraquat reduced the height of henbit plants by 4% to 22% of nontreated plants when applied November 1 through December 15. These studies indicate that crop producers can achieve control of henbit in March following November 1 through December 15 applications of paraquat plus flumioxazin or rimsulfuron:thifensulfuron; however, paraquat plus oxyfluorfen can be applied October 15 through December 15 to achieve similar control.
In response to concerns about acetolactate synthase (ALS) inhibitor–resistant weeds in wheat production systems, we explored the efficacy of managing Bromus spp., downy and Japanese bromes, in a winter wheat system using alternative herbicide treatments applied in either fall or spring. Trials were established at Lethbridge and Kipp, Alberta, and Scott, Saskatchewan, Canada over three growing seasons (2012–2014) to compare the efficacy of pyroxasulfone (a soil-applied very-long-chain fatty acid elongase inhibitor; WSSA Group 15) and flumioxazin (a protoporphyrinogen oxidase inhibitor; WSSA Group 14) against industry-standard ALSinhibiting herbicides for downy and Japanese brome control. Winter wheat injury from herbicide application was minor, with the exception of flucarbazone application at Scott. Bromus spp. control was greatest with pyroxsulam and all herbicide treatments containing pyroxasulfone. Downy and Japanese bromes were controlled least by thiencarbazone and flumioxazin, respectively, whereas Bromus spp. had intermediate responses to the other herbicides tested. Herbicides applied in fall resulted in reduced winter wheat yield relative to the spring applications. Overall, pyroxasulfone or pyroxsulam provided the most efficacious Bromus spp. control compared with the other herbicides and consistently maintained optimal winter wheat yields. Therefore, pyroxasulfone could facilitate management of Bromus spp. resistant to ALS inhibitors in winter wheat in the southern growing regions of western Canada. Improved weed control and delayed herbicide resistance may be achieved when pyroxasulfone is applied in combination with flumioxazin.
Nomenclature: Flucarbazone; flumioxazin; pyroxasulfone; pyroxsulam; thiencarbazone; downy brome, Bromus tectorum L. BROTE; Japanese brome, Bromus japonicus Thunb. BROJA; winter wheat, Triticum aestivum L.
Nader Soltani, J. Anita Dille, Darren E. Robinson, Christy L. Sprague, Don W. Morishita, Nevin C. Lawrence, Andrew R. Kniss, Prashant Jha, Joel Felix, Robert E. Nurse, Peter H. Sikkema
The objective of this WSSA Weed Loss Committee report is to provide quantitative data on the potential yield loss in sugar beet due to weed interference from the major sugar beet growing areas of the United States and Canada. Researchers and extension specialists who conducted research on weed control in sugar beet in the United States and Canada provided quantitative data on sugar beet yield loss due to weed interference in their regions. Specifically, data were requested from weed control studies in sugar beet from up to 10 individual studies per calendar year over a 15-yr period between 2002 and 2017. Data collected indicated that if weeds are left uncontrolled under optimal agronomic practices, growers in Idaho, Michigan, Minnesota, Montana, Nebraska, North Dakota, Ontario, Oregon, and Wyoming would potentially lose an average of 79%, 61%, 66%, 68%, 63%, 75%, 83%, 78%, and 77% of the sugar beet yield. The corresponding monetary loss would be approximately US$234, US$122, US$369, US$43, US$40, US$211, US$12, US$14, and US$32 million, respectively. The average yield loss due to weed interference for the primary sugar beet growing areas of North America was estimated to be 70%. Thus, if weeds are not controlled, growers in the United States would lose approximately 22.4 million tonnes of sugar beet yield valued at approximately US$1.25 billion, and growers in Canada would lose approximately 0.5 million tonnes of sugar beet yield valued at approximately US$25 million. The high return on investment in weed management highlights the importance of continued weed science research for sustaining high crop yield and profitability of sugar beet production in North America.
In 2017, dicamba-resistant (DR) soybean was commercially available to farmers in the United States. In August and September of 2017, a survey of 312 farmers from 60 Nebraska soybeanproducing counties was conducted during extension field days or online. The objective of this survey was to understand farmers' adoption and perceptions regarding DR soybean technology in Nebraska. The survey contained 16 questions and was divided in three parts: (1) demographics, (2) dicamba application in DR soybean, and (3) dicamba off-target injury to sensitive soybean cultivars. According to the results, 20% of soybean hectares represented by the survey were planted to DR soybean in 2017, and this number would probably double in 2018. Sixty-five percent of survey respondents own a sprayer and apply their own herbicide programs. More than 90% of respondents who adopted DR soybean technology reported significant improvement in weed control. Nearly 60% of respondents used dicamba alone or glyphosate plus dicamba for POST weed control in DR soybean; the remaining 40% added an additional herbicide with an alternative site of action (SOA) to the POST application. All survey respondents used one of the approved dicamba formulations for application in DR soybean. Survey results indicated that late POST dicamba applications (after late June) were more likely to result in injury to non-DR soybean compared to early POST applications (e.g., May and early June) in 2017. According to respondents, off-target dicamba movement resulted both from applications in DR soybean and dicamba-based herbicides applied in corn. Although 51% of respondents noted dicamba injury on non-DR soybean, 7% of those who noted injury filed an official complaint with the Nebraska Department of Agriculture. Although DR soybean technology allowed farmers to achieve better weed control during 2017 than previous growing seasons, it is apparent that off-target movement and resistance management must be addressed to maintain the viability and effectiveness of the technology in the future.
Sugarcane growers in Florida have been reporting reduced control of fall panicum with asulam, the main herbicide used for POST grass control. Therefore, outside container experiments were conducted to determine the response of four fall panicum populations from Florida to asulam applied alone and to evaluate whether tank-mix combination with trifloxysulfuron enhances control. Asulam was applied at 230 to 7,400 g ai ha − 1, corresponding to 1/16 to 2X the maximum labeled rate for a single application in sugarcane, with or without combination with trifloxysulfuron at 16 g ai ha − 1. Three fall panicum populations were collected from fields in which reduced control had been reported, while one population was from a field not used for sugarcane production but adjacent to a sugarcane field. The potency of asulam based on ED50 values (the rate required to cause 50% dry weight reduction at 28 d after treatment) ranged from 2,249 to 5,412 g ha − 1 for tolerant populations with reported reduced fall panicum control compared with 1,808 g ha − 1 for the susceptible population from the field not used for sugarcane production, showing that the latter was most sensitive to asulam. Addition of trifloxysulfuron to asulam increased potency on fall panicum by 5- to 15-fold, indicating that the tank mix enhanced dry weight reduction for all populations. The probability of fall panicum survival (regrowth after aboveground biomass harvesting) at the labeled rate of asulam ranged from 2% to 47% compared with 0% to 6% when trifloxysulfuron was added to the tank mix. Our results show differential response of fall panicum populations in Florida to asulam, which can be overcome by tank mixing with trifloxysulfuron even for populations that are difficult to control in sugarcane, but no evolution of resistance to asulam.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere