Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Tropical cyclone (hereafter as TC) is one of the serious environmental disasters. In order to promote theoretical research into prevention and control of TCs, the current developments and trends in research on economic loss assessment of TCs around the world need to be understood. In this paper, bibliometric visualization analysis is used to analyze research progress based on literature collected from the Web of Science Core Collection database. The evolution trend of years and countries, cooperation networks, major scholars, knowledge bases, key topics, hotspots and challenges were presented quantitatively through keyword co-occurrence analysis, burst strength analysis, cluster analysis and keyword strategy matrix. The results indicate that the USA currently has the most influential studies. The top four topics in this research field are the influence of TCs on forest ecosystem, human health, social and economic system, along with the research on the influence of TCs under climate change. In addition, more studies considering the vulnerability, variability and risk assessment of TCs need to be further investigated in the future. Through quantitative literature analysis and review, this paper can help interested scholars develop a deeper understanding of the current situation and future trends in research on economic loss assessment of TCs.
This paper studies the effects of Key Control Areas (KCA) policy implemented by the Chinese government in 2012 on city development transformation, in which strict environmental regulations were imposed in KCA cities in both tropical and subtropical zone. Based on the panel data of 155 tropical and subtropical cities in China from 2000 to 2017, we use a simple Differences-in-Differences approach to estimate the effects. Results show that more draconian environmental regulation has significant positive effects on city transformation. Furthermore, the designation of key areas leads to a screening effect on firms, that is, some of them increase technology investment in green production, while other firms are not capable to shoulder the rising cost and choose to reduce production or even shut their business, which ultimately promotes the city transformation. Meanwhile, with the expansion of the service industry, the relative proportion of manufacturing has declined, which brings about the upgrading of the industrial structure, and in turn promotes the city transformation.
The nitrogen-fixing mimosid Leucaena leucocephala continues to be used for afforestation in degraded tropical forests. Yet, fast-growth and high drought stress tolerance enables L. leucocephala to outperform native species and L. leucocephala has been identified as one of the 100 most invasive species globally. This warrants development of effective control measures, including bio-controls, to prevent the spread of this species particularly across tropical islands. Here, we compare differences in key functional traits between L. leucocephala and eight dominant native species (Bridelia tomentosa, Radermachera frondosa, Lepisanthes rubiginosa, Rhaphiolepis indica, Pterospermum heterophyllum, Fissistigma oldhamii, Psychotria rubra and Cudrania cochinchinensis) in L. leucocephala invaded tropical forests of Hainan Island, China. Functional traits related to growth (photosynthesis rate, stomatal conductance and transpiration rate) and drought stress tolerance (leaf turgor loss point) were measured in wet and dry seasons to investigate whether these functional traits differed between L. leucocephala and the eight dominant native species. Our results demonstrate that L. leucocephala has significantly increased growth rates (at least two-fold) in both wet and dry seasons. Additionally, L. leucocephala shows significantly higher drought stress tolerance (lower TLP) in the dry season. These results indicate that L. leucocephala would almost certainly outperform the eight dominant native species and might successfully invade Hainan tropical forests. There is an urgent need to identify native species that have similar growth and drought stress tolerance traits to enable the development of effective strategies to control L. leucocephala on Hainan Island.
Despite efforts of law enforcement, tech companies and other stakeholders, the illegal online trade in wildlife products continues to increase. A particular problem in tackling this online illicit trade is the misdescription of item materials, making the search for internationally CITES regulated materials, such as elephant ivory, challenging. We investigated the issue of misrepresentation of materials in item descriptions by studying the trade in netsuke, carved objects, attached to the cord of the kimono, originally from 17th century Japan, that are often made of elephant ivory. The study, conducted on the online marketplace, eBay, in the United Kingdom, shows that elephant ivory is still sold in spite of eBay’s policy on ivory. While the netsuke trade is small, elephant ivory was most frequently described as cow bone. Our results also indicated that, among the items identified as elephant ivory, only a small fraction were actually detected and removed by eBay. To discourage the sale of ivory items, eBay should increase its efforts to implement its policy banning the trade in ivory. Further, eBay could consider additional restrictions on the range of words that can be used by the vendors in all of the item listing fields.
In 2013, we conducted a baseline study on the presence, distribution and occupancy of medium- to large-sized mammals in Bolivia along the San Buenaventura-Ixiamas road that runs parallel to the Madidi National Park and Natural Area of Integrated Management boundary and cuts through the Tacana Indigenous Territory and a number of neighboring private properties. Establishing a 3 km buffer on each side of the road, we studied an 865 km2 area divided into 1 km2 cells and sampled a total of 356 of these cells. In each cell, we established one 300 m transect divided into 25 m sections and registered wildlife sign, mainly footprints, from eight wildlife species or species groups. The transects were placed either along streams (75% of cells) or within forest (25% of cells). Using single-season single-species occupancy models we estimated occupancy (ψ) for Tapirus terrestris (ψ = 0.39), Pecari tajacu (ψ = 0.5), Mazama americana (ψ = 0.56), Dasyprocta spp. (ψ = 0.59), Cuniculus paca (ψ = 0.56), Leopardus spp. (ψ = 0.33), and use for Tayassu pecari (ψ = 0.17) and Panthera onca (ψ = 0.11). Occupancy and use results verified community perceived wildlife corridors between Madidi and its area of influence. We identified additional corridors along many streams crossing the San Buenaventura-Ixiamas road. This connectivity is not only important for wildlife, but also from a food security perspective for the indigenous communities that depend on wildlife as an important source of protein. The results will be used to mitigate the impact of road improvements through the identification of priority areas for maintaining connectivity between Madidi and the surrounding landscape.
Background Despite the increasing knowledge of plant-pollinator interaction networks, the effects of human-induced disturbances on them have barely been studied. We analyzed whether land-use changes modified the structure and topology of plant-hummingbird interaction networks or promoted the integration of exotic plant species.
Methods Fieldwork was carried out in two vegetation areas in Mexico: a protected tropical dry forest and nearby disturbed sites. For two years we registered hummingbird-plant interactions monthly in each area. Then, we constructed interaction matrices from these data and compared their assemblage structure.
Results The conversion of original dry forest to disturbed habitats impacted some assemblage attributes of the plant-hummingbird network. In the disturbed sites, there were more plant species, mainly exotics, and one additional hummingbird species. Most network attributes remained the same except niche width and nestedness (pattern of interactions where generalists and specialists tend to interact with generalists whereas specialist-to-specialist interactions are infrequent), which were higher in the disturbed network. The generalist core in the disturbed network contained half of the core species in the conserved network.
Implications for conservation
Exotic plants that strongly integrated into the disturbed network may exert a large influence on network dynamics in these areas. Identifying the interacting species and their role provides valuable insights for their conservation and protection. Hummingbirds attracting native plant species have a potential for practical or ornamental use, and hummingbirds presence in human-modified landscapes not only provides positive aesthetic value to people but can additionally contribute to conserving native plants and the biodiversity associated with them.
Many species in Southeast Asia have been over-hunted to supply the demand for Traditional Asian Medicine (TAM) ingredients. As access to their parts become more difficult, consumer’s demand is shifting to novel substitutes. Accurate estimation of the level of illegal wildlife trade is therefore important to ensure long term sustainability. The primary aim of this study is to provide an understanding of the current illegal wildlife trade market for TAM purposes in South Africa. The secondary aim is to explore the possibility of applying different survey methods in detecting the trade in endangered wildlife parts. As the number of criminal’s wildlife of Vietnamese origin has increased in South Africa in recent decades, we surveyed 183 traditional medicine shops in both South Africa and Vietnam between April – August 2017, using direct observation and sensitive questioning techniques to estimate the magnitude of the wildlife trade for TAM purposes. Our results show that the Randomise Response Technique resulted in highest prevalence estimates for the trade in wild animal parts, while False Consensus Bias does not appear to be effective in this study. It is clear that wild animal parts are not only being trafficked from Africa to Asia for TAM use, but Asian originated products such as bear parts might also be smuggled into South Africa for domestic consumption. We recommend that improving wildlife law enforcement and providing protection for non-native species in domestic legislation in both South Africa and Vietnam is required to ensure the survival of these species.
Cyclobalanopsis glauca is one of the most dominant species in the late succession stage of plant communities in the Guilin karst mountainous areas of China. In order to explore its role in community assembly and adaptation strategies, we quantified three continuous traits (LA, SLA and WD) for 52 woody species and documented community composition for 20 plots across different habitat conditions. We performed a trait-gradient analysis to partition species trait values between alpha and beta components within and between communities. Alpha trait components consistently varied more widely than beta components, which suggests that much of the trait variation between species was associated with different functional strategies within a shared environment. The different correlation structures for alpha and beta components reflects community assembly processes at different scales. The alpha components were largely uncorrelated with the exception of SLA and WD, while the beta components showed significant correlations along the environmental gradient. There is a significant positive correlation between LA and SLA and significant negative correlations between both LA and WD as well as between SLA and WD. These results demonstrate that slow-growing species with high resource-use efficiency gradually became the dominant species in the late successional stage for Cyclobalanopsis glauca forest and co-occurring species in the same community employ different trait assemblies.
Tropical home gardens are widely recognized as reservoirs of biodiversity. Typically, Maya home gardens have an area of intensive management and one of extensive management. In the latter, some wild plant species may find safe sites for establishment, since they exhibit a high degree of similarity (in terms in plant species composition) to the surrounding forest and are dominated by plants with fleshy fruit. Therefore, this may attract frugivorous animals, which in turn may generate some seed rain. The objective of our study was to compare seed rain in the extensively managed areas of home gardens and in the surrounding forest during the fruiting peak in a rural landscape in the Yucatan. We assessed seed rain using seed traps in two habitats: the extensively managed areas of home gardens and an adjacent tropical forest. Seed rain was more abundant, denser and more diverse in the home gardens than in the adjacent forest. Approximately one quarter of the seeds recorded are from species shared between the forest and home gardens, suggesting there is notable seed exchange between these habitats. Also 50% of the seed species exclusively found in home gardens are allochthonous, likely rare species from the forest. In general, our results suggest that home gardens—particularly their extensively managed areas—are effective seed traps for forest species.
Pollination by animals contributes to the production of nearly 87.5% of the seeds and fruits in the world. Hummingbirds are one of the main groups of pollinating birds in the Americas, and they form pollination networks with the plants they visit. Few hummingbird-plant networks have been studied in tropical dry forest, which is one of the vegetation types most affected by deforestation worldwide. In this study, we describe the characteristics of the core species of a mutualistic hummingbird-plant network in a lowland dry forest located on the Yucatan Peninsula of Mexico. The study lasted a full year, from August 2017 to June 2018. Using point counts and focal observations, we identified three species of hummingbirds that visited eight plant species. The network was highly connected and had three modules—one for each hummingbird species. The core hummingbird species was Chlorostilbon canivetii, and the key plants were Cordia dodecandra, Senna racemosa and Psittacanthus mayanus. This hummingbird-plant network is apparently driven by water availability, which determines plant phenology, which in turn, determines hummingbird activity. In the context of global extinction, the conservation of core species will be critical to maintain the interactions that support all of the species in the network.
Understanding people’s attitudes towards wildlife species is key for developing and effectively implementing conservation initiatives. Although attitudes towards different wildlife classes have been examined separately within a variety of regions, there have been no comprehensive comparisons of attitudes towards wildlife between different tropical ecoregions over large spatial scales. Here, we examined attitudes of 106 rural wage-earners from two ecoregions in the eastern Brazilian Amazon. We used generalized Linear Models (GLMs) to examine the influence of socioeconomic variables and ecoregion type on attitudes towards wildlife species, grouped into three classes (liked, disliked, and damage income). Overall we obtained attitudes regarding 57 wildlife species that were organized into 11 faunal groups (amphibians, ants, bats, birds, fishes, medium-bodied mammals, large-bodied mammals, primates, snakes, tortoises and turtles, and other invertebrates). Ecoregions where wage-earners lived was the strongest predictor of the total number of liked and disliked wildlife species. The total number of species damaging income was explained by socioeconomic variables related to the number of people living in the property and level of education. Medium and large-bodied mammals were most frequently reported both as liked and causing damage, while snakes were most frequently reported as disliked in both ecoregions. Although socioeconomic variables were important predictors to wage-earners’ attitudes towards wildlife species, the environment (ecoregion) was the strongest predictor affecting human-wildlife attitudes. Our findings contribute with information about the importance of considering differences in local attitudes across a representative spectrum of wildlife species to inform the identification of effective focal species in different tropical regions.
Land degradation exacerbates poverty and food shortages in Sub-Saharan Africa. Tree planting is traditionally used to restore degraded lands, but the tree species used are often poorly adapted to the local climate conditions. We evaluated the suitability and efficiency of three planting techniques (half-moon, standard plantation and zaï) in a semi-arid climate using seedlings from two native Senegalia species: Senegalia gourmaensis and Senegalia dudgeonii. A total of 116 nursery-grown seedlings were planted on degraded lands using these three planting techniques. Data on soil water content, seedling survival and growth rates were measured over 1.5 years. The effects of the planting techniques on these variables were significantly different (p < 0.001). The lowest water content was measured in the topsoil horizon (0–10 cm) and the highest in the deeper horizons (∼50 cm). At the end of the experiment, the survival rate of S. gourmaensis was 72.2% - 62.5% and 57.5% in half-moon, standard plantation and zaï, respectively. For S. dudgeonii, it was 50%, 62.5% and 47.5% in half-moon, standard plantation and zaï, respectively. There was a significant difference in height and collar diameter between S. gourmaensis and S. dudgeonii using the three planting techniques (p < 0.001). Based on our results, we recommend using the half-moon or standard plantation for Senegalia species. Senegalia species are suitable for planting in degraded land in semi-arid areas when using the appropriate planting technique.
The reintroduction of wild animal species into conservations areas is widely used to restore populations of species endangered with extinction. The assessment of the quality of the diet and the nutritional status of the animals is crucial to the success of herbivore reintroduction programs, given that adequate nutrition is essential to ensure the survival and fertility of ungulates. Given this, the present study investigated the quality of the diet and nutritional status of Burchell’s zebra (Equus burchelli, Smuts 1832) and blue wildebeest (Connochaetes taurinus, Burchell 1823) reintroduced into Maputo Special Reserve (MSR), in southern Mozambique. The study was conducted between July 2016 and June 2017, and the data were collected through direct observation, by driving a vehicle along the roads within the reserve that pass through the vegetation cover where zebra and wildebeest are known to occur most frequently. The composition of the diet and specific feature of the grass grazed by the two species, such as greenness (an indication of food quality) were assessed. Crude fecal protein and phosphorus were determined to evaluate the nutritional status of the two herbivore species. Both herbivores were pure grazers, consuming a diet composed entirely (100%) of grass. Aristida barbicollis was the principal component of the diets of both zebra and wildebeest and both species grazed almost entirely on green grass (91–100% of greenness). However, wildebeest consumed significantly more green grass (which has a better nutrient content) than zebra, which tolerated a considerably larger proportion of browner grass in both seasons. The levels of crude protein and phosphorus in the zebra and wildebeest fecal samples were not below threshold of nutritional stress recommended for large southern African herbivores, which indicates that neither the zebra nor the wildebeest populations in MSR are undernourished at the present time and that the quality of the forage found in the study area is not a factor limiting the persistence of the reintroduced populations of either species.
Misael D. Mancilla-Morales, Santiago Romero-Fernández, Araceli Contreras-Rodríguez, José J. Flores-Martínez, Víctor Sánchez-Cordero, L. Gerardo Herrera M., María F. López, Enrico A. Ruiz
Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel (Hydrobates melania) and the Least Storm-Petrel (Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1–FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.
This study examines views on economic benefits, local participation in wildlife management and conservation ethic among 267 residents of three chiefdoms in Mambwe district, Eastern Zambia. Results show that 68% of the residents who live in the Lupande Game Management Area are not in any way involved in community wildlife management. For those involved, the main reason advanced for participating was economic benefit (79%). Only a small minority of 17% of the residents participated due to motivations to conserve wildlife. Human-wildlife conflicts induced by wild animal crop raiding, property destruction, and loss of human life, and perceived low or non-existent economic benefits seemingly precluded the development of a conservation ethic among residents. The local chiefs asserted wildlife ownership, lamented low wildlife benefits and justified its illegal uptake. Proponents of community conservation projects could encourage pro conservation attitudes among residents by addressing human-wildlife conflicts and raising awareness on intrinsic values of wildlife.
Elsi Beatriz Recino-Reyes, Julia María Lesher-Gordillo, Salima Machkour-M’Rabet, Manuel Ignacio Gallardo-Alvarez, Claudia Elena Zenteno-Ruiz, León David Olivera-Gómez, Alejandra Valdés-Marín, Guadalupe Gómez-Carrasco, Liliana Ríos-Rodas, María del Rosario Barragán-Vázquez, Raymundo Hernández Martínez
The Meso-American slider turtle (Trachemys venusta) is a freshwater turtle that is widely distributed from Mexico to Colombia. Due to the overexploitation of populations of this species in Mexico, it has been placed within the “subject to special protection” category formulated by the Official Mexican Standard NOM-059-ECOL-2010. In the state of Tabasco, Mexico, Management Units for the Conservation of Wildlife (UMA) were created to reduce the impact of overexploitation of freshwater turtles bred in captivity. However, no genetic management plan was considered. The present study was carried out in an UMA in the state of Tabasco. We obtained the level of genetic diversity of the founder individuals of the UMA in order to develop a management plan which will optimize reproduction in the UMA. Genetic diversity was compared between captive (n = 86) and wild (n = 45) individuals using 14 microsatellite molecular markers. The genetic diversity parameter determined in this study was slightly higher for captive than for wild population (He = 0.606 and He = 0.594 respectively), reflecting the mix of genetic sources in captive group (founding individuals from different localities) and demonstrating that the captive population contains a diverse subset of alleles from representative populations. The analysis of genetic structure revealed a relationship between captive and wild populations, indicating the influence of the two principal river basins in this region on the populations structure of freshwater turtles. Finally, according to the results obtained from the relationship analysis, we recommend the use of 19 females and 13 males to constitute the appropriate breeding group, generating a potential of 247 dyads with no relationship. However, in order to improve breeding program and the genetic diversity of captive population, we suggest to introduce wild-caught individuals. These results are the first regarding genetic management in a Mexican UMA and demonstrate the importance of molecular approaches in the management and conservation of captive species.
Improved horticultural practices may help to reduce demand for wild cycads threatened by unsustainable collection. We determined the influences of leaf retention with or without anti-transpirants on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings. Root formation success for both species was greater than 95%. The experimental treatments did not influence the percentage success or the speed of root development for Z. furfuracea or Z. integrifolia. The ending dry weights of the stems, leaves, and roots were also not influenced by the experimental treatments. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species was highly successful with or without retained leaves, and horticultural application of transpiration-reducing products on retained leaves did not improve success. Our findings add to the growing body of evidence that show how the horticulture nursery industry can meet horticultural demands in an effort to stop wild harvesting of threatened plants. Conservation of cycads as a group would benefit from more horticulture studies such as this, especially if the research includes threatened species.
Phytoplankton play a fundamental role in marine food webs but are affected by both natural and anthropogenic fluctuations in environmental conditions. Here, to simulate a dynamic coastal environment, we used mesocosms to examine how different salinity levels and suspended solids concentrations (SSCs) impact a natural phytoplankton assemblage collected from a tropical estuary in Singapore. Significant differences in the phytoplankton composition between the baseline and treatments with medium and high SSC were found, but not among the three salinities tested. Differences can be attributed to nutrient limitation (particularly silicate) and the use of kaolinite for the suspended sediment. Silicate limitation is likely to have caused the observed switch in dominant genus from Skeletonema sp. to Chaetoceros sp. and the occurrence of weakly silicified genera such as Cylindrotheca. Kaolinite affected phytoplankton abundance through effects such as shading, flocculation, and nutrient adsorption. These results demonstrated how the combination of various physicochemical effects of suspended solids can influence tropical phytoplankton communities. Furthermore, as suspended solids such as kaolin can be found in the natural environment, this study showed that their potential effects should be evaluated beyond just their concentration.
Ceratozamia miqueliana is a cycad (Zamiaceae) species endemic to southeastern Mexico. It is currently listed on the International Union for Conservation of Nature (IUCN) Red List as “Critically Endangered” and under Mexican law as “Endangered”. The objective was to complement the evaluation of C. miqueliana based on criterion B of the IUCN, and the method proposed by the Mexican Norm. This information is in turn reinforced with the potential distribution model. We collected data from different herbaria and field visits and obtained the EOO and AOO using GIS and the GeoCat portal, the distribution of the species was modeled using the Maxent program. According to the IUCN guidelines (Geographic distribution, Criterion B) and Mexican law, the species could be considered Endangered and Subject to Special Protection, respectively. The comparison of AOO and EOO obtained by GIS and the GeoCat portal show that both methodologies used coincide in assigning the same categories based on geographic criteria. The integration of the potential distribution helps to identify the environmental factors that influence its habitat, in addition to identifying the ideal sites for its conservation. Is necessary to carry out evaluations of microendemic species such as Ceratozamia miqueliana from different approaches (populations, geographic aspects and habitat evaluation) to obtain more precise results. C. miqueliana must be protected by national and international laws.
Ryan T. Botts, Amy A. Eppert, Timothy J. Wiegman, Steven R. Blankenship, Abner Rodriguez, Abigail P. Wagner, Sierra E. Ullrich, Gabrielle R. Allen, Wyatt M. Garley, Ellen M. Asselin, Michael S. Mooring
An increasing body of evidence indicates that moonlight influences the nocturnal activity patterns of tropical mammals, both predators and prey. One explanation is that brighter moonlight is associated with increased risk of predation (Predation Risk hypothesis), but it has also been proposed that nocturnal activity may be influenced by the sensory ecology of a species, with species that rely on visual detection of food and danger predicted to increase their activity during bright moonlight, while species relying on non-visual senses should decrease activity (Visual Acuity hypothesis). Lack of an objective measure of “visual acuity” has made this second hypothesis difficult to test, therefore we employed a novel approach to better understand the role of lunar illumination in driving activity patterns by using the tapetum lucidum as a proxy for “night vision” acuity. To test the alternative predictions, we analyzed a large dataset from our long-term camera trap study in Costa Rica using activity overlap, relative abundance, and circular statistical techniques. Mixed models explored the influence of illumination factors (moonrise/set, cloud cover, season) and night vision acuity (tapetum type) on nocturnal and lunar phase-related activity patterns. Our results support the underlying assumptions of the predation risk and visual acuity models, but indicate that neither can fully predict lunar-related activity patterns. With diurnal human “super predators” forcing a global increase in activity during the night by mammals, our findings can contribute to a better understanding of nocturnal activity patterns and the development of conservation approaches to mitigate forced temporal niche shifts.
Waseem Razzaq Khan, Syaizwan Zahmir Zulkifli, Mohamad Roslan bin Mohamad Kasim, Martin Zimmer, Ahmad Mustapha Pazi, Nur Amira Kamrudin, Fahad Rasheed, Zikria Zafar, Roslan Mostapa, M. Nazre
Matang Mangrove Forest Reserve (MMFR) is one of the most productive and managed forests in the world. On the other hand, it has become a concern whether MMFR is being degraded as a result of exposure to industrial pollution. Industries located around MMFR dispose effluents contaminated by heavy metals. This study was conducted to analyze heavy metal contamination and risk assessment status in MMFR sediments. Sediment samples from six compartments were collected based on age and location of the mangrove plantation. Total metal digestion and modified sequential extraction were performed to estimate the concentration of heavy metals. Based on the estimation, risk assessment code, geo-accumulation index, pollution load index, and contamination factor were computed to classify the compartments according to their contamination and pollution levels. Organic matter and sediment texture (silt, clay, and sand content) were also analyzed to find its correlation with heavy metals. According to the results, high concentrations for Copper, Nickel, and Cadmium were observed in Compartment 42, while Compartment 18 and Compartment 74 showed higher concentrations for Zinc and Lead. Heavy metals showed weak positive correlation with clay and silt, but weak negative correlation with sand. For organic matter, only Zinc showed statistically significant but weak negative correlation. Risk assessment code, geo-accumulation index, pollution load index, and contamination factor categorized the compartments into unpolluted to moderately polluted. Based on the study outcomes, it can be concluded that MMFR, although acquiring industrial discharge, is not with a high risk of heavy metal contamination.
Global attention to the role of cattle production in Amazon deforestation led to the development of new public and private-sector supply chain policies designed to control deforestation in Brazil. These zero-deforestation Cattle Agreements (hereafter, CA) are between meatpacking companies and Greenpeace and other nongovernmental organizations, as well as with Brazil’s public prosecutors. However, after over a decade of concerted efforts to reduce deforestation linked to the cattle sector, the problem persists. Here, we use field surveys of ranchers, slaughterhouse managers, and key industry personnel to characterize cattle supply chain actors in southeastern Pará and their responses to the CA. We show that loopholes weaken the CA and enable ranchers to evade full compliance, and we highlight strategies and challenges for ranchers seeking to intensify production. We conclude by discussing how the findings presented in this study suggest that ongoing efforts to reduce Amazon deforestation may require both support for improved efficiency in the cattle sector and the tightening of several loopholes currently utilized by ranchers to avoid detection of ongoing deforestation.
Post-dispersal seed removal by ground-foraging frugivores promotes secondary dispersal of large seeds, reducing seed predation and increasing recruitment and regeneration. We studied how habitat disturbance influences seed removal patterns in the large-seeded palm Phytelephas aequatorialis within three habitats forming a continuum of disturbance (agroforestry system, disturbed forest, and less-disturbed forest) using seed removal experiments and camera trapping. We tested whether seed removal rates, and both richness and composition of seed remover communities varied between the habitats. On average, 15 seeds were removed under each tree in the agroforestry system over seven days, which was significantly lower compared to the disturbed forest (18) and the less-disturbed forest (19). Eight mammal species were identified removing seeds in the three habitats. On average, one mammal species removed seeds at each station in the agroforestry system, which was significantly lower than the two species observed in the two forests. The composition of seed remover communities was significantly different between the three habitats. Our results suggest that the loss of forest cover in the agroforestry system has reduced the richness of seed removers, which subsequently caused decreased removal rates. Nevertheless, this habitat could still maintain effective seed dispersal events because spiny rats were important seed removers. Our camera trap data should be taken as preliminary because we could only identify less than half of the animals responsible for seed removal. This study highlights the importance of medium- and large-sized rodents for the removal and effective dispersal of large seeds in disturbed tropical habitats.
Mélanie A. Tchoumbou, Elikwo F. N. Malange, Claire T. Tiku, Brice Tibab, Jerome Fru-Cho, Timoléon Tchuinkam, Julius Awah-Ndukum, Damian Anong Nota, Ravinder N. M. Sehgal
Birds are crucial in maintaining the balance of many ecosystems and provide various ecological services. Understanding their sensitivity to human disturbances should be prioritized in understudy areas for effective conservation practices. Using mist nets, this study characterized mostly understory bird communities (insectivorous, frugivorous, granivorous, and nectarivorous birds) in three habitat types (pristine forest, selectively logged forest, and young oil palm plantation) in the Talangaye rainforest, Southwest Cameroon. A total of 845 birds belonging to 27 families and 85 species were recorded in the three habitats after 294 h of mist netting. Overall, the mist-netted community was largely dominated by insectivores, followed by frugivores, nectarivores, granivores, and carnivores. Although mean species richness, abundance, and Simpson diversity index did not vary significantly among habitat types, mean species abundance and diversity index decreased in selectively logged forest and young oil palm plantation and species richness increased in both habitats. The species richness, abundance, and diversity index for insectivorous and frugivorous birds were lowest in the young oil palm plantations. For granivores, species richness and abundance increased following selective logging and the establishment of oil palm plantation. The highest mean species richness and diversity index in nectarivores were recorded in the young oil palm plantations. The study showed that selective logging and establishment of oil palm plantation had variable effects on the bird communities in the Talangaye rainforest. Also, the frugivorous birds appeared to be more sensitive to both types of disturbances, while the insectivores were more sensitive to habitat loss/conversion.
Given current urbanization trends, understanding the factors that affect local biodiversity is paramount for designing sound management practices. Existing evidence suggests that the assembly of urban communities is influenced by the environmental filtering of organisms based on their traits. Here, we investigate how environmental characteristics including isolation measurements affect the functional composition of avian assemblages in green spaces of Merida, Mexico, a Neotropical city. We sampled 22 sites, analyzed point-count data collected during fall migration, and characterized the habitat with regard to floristic and structural vegetation attributes, vegetation cover within green spaces, urban infrastructure, and isolation. We assessed the relationship between habitat descriptors and bird functional traits using RLQ and fourth-corner tests and compared trait–environment associations between resident and wintering species. Our results showed that functional composition of resident bird assemblages was linked to the environmental characteristics of the site, while the functional composition of wintering species was not. In particular, the degree of isolation revealed to be an important determinant of trait composition. Plant species richness, particularly native tree and shrub species, were critical for the functional composition of resident birds in green spaces. Our findings suggested shifts in body mass from less to more isolated green spaces. Specifically, we observed that large-bodied species predominated in isolated green spaces. This information is useful given the predicted increases in habitat isolation and transformation of green spaces due to urbanization.
Epiphyte is a unique component of forest diversity vulnerable to changing environments. Characterizing variations in functional traits of epiphytes across dry and wet seasons can enhance our understanding their strategies to environments. We measured and assessed variations of 14 leaf functional traits responding to water conditions for epiphytic pteridophytes (EP) and epiphytic angiosperms (EA) across dry and wet seasons in a tropical cloud forest. Results showed that leaf dry weight (LDW) and stomatal length (SL) of EP were significantly higher than EA, while leaf water content (LWC) of EA was significantly higher than EP. The SL, stomatal density (SD), upper epidermis thickness (UET), lower epidermis thickness (LET), palisade tissue thickness (PT), spongy tissue thickness (ST), and leaf thickness (LT) of EP and EA were significantly higher in wet season than dry season. The variance of stomatal and anatomical traits explained by season types (0.24–0.78) was higher than plant groups (0.0–0.25), while the variance of LDW and LWC explained by plant groups (0.12–0.40) was higher than season types (0.0–0.29). Principal component analysis and correlation analyses showed that SL, stomatal index, UET, ST, LET, and LT were the key traits reflecting epiphyte adaptation to dry season, as well as that LWC and leaf density were the key traits in wet season. Our results suggest that the different taxonomic groups exhibit divergent strategies responding to water differences. Great variations in leaf traits to dry seasons are predicted that vascular epiphytes, especially pteridophytes, are prone to disappear with drought events.
Gains achieved by conservation interventions such as payments for environmental services (PES) may be lost upon termination of the program, a problem known as permanence. However, there have been few efforts to evaluate the permanence of conservation results. This article examines the permanence of land-use changes induced by a short-term PES program implemented between 2003 and 2008 in Matiguás-Río Blanco, Nicaragua. Under this program, PES had induced substantial adoption of silvopastoral practices. To assess the long-term permanence of these changes, participants were resurveyed in 2012, 4 years after the last payment was made. We find that the land-use changes that had been induced by PES were broadly sustained in intervening years, with minor differences across specific practices and subgroups of participants. The patterns of change in the period after the PES program were completed to help us understand the reasons for the program’s success and rule out alternative explanations for the program’s success. Our results suggest that, at least in the case of productive land uses such as silvopastoral practices, PES programs can be effective at encouraging land owners to adopt environmentally beneficial practices and that the benefits will persist after payments cease.
Dulce María Galván-Hernández, Pablo Octavio-Aguilar, Cruz de Jesús Bartolo-Hernández, Mario Adolfo García-Montes, Arturo Sánchez-González, Aurelio Ramírez-Bautista, Andrew Vovides
Magnolia vovidesii has been found in a few small patches in central Veracruz, Mexico. Previous ecological studies have suggested high reproductive potential and stable population growth; however, in the last 20 years, there have been severe anthropogenic environmental impacts on the species. The main objectives of this study were (a) to document the current trend of the population, (b) to determine its spatial structure, and (c) to identify the main threats to the species in order to propose conservation and management strategies. Our results show a population in decline, caused by high mortality during early establishment stages (seeds and seedlings) and the removal of young sick trees during the reproductive stage. We found a strong spatial dependence between seedlings and reproductive individuals (young and old adults) and a weak spatial association between reproductive stages, suggesting a nursing effect, inbreeding, and pollen dependence. The main threats to the population are frequent plant removal, trails used by people, land-use change, and parasitism. These data show the urgent need to carry out prompt conservation action for the species, with special emphasis on ex situ propagation. The results of this study suggest that M. vovidesii should be transferred to the International Union for Conservation of Nature Red List category for critically endangered species.
Exploring intraspecific variation of functional traits of different sizes and ecogeographical regions is important to understand the adaptation strategies of tree populations to their environments. In this study, we explored the variation and bivariate relationships of 16 functional traits of 30 trees of Bombax malabaricum across 5 geographical regions in Hainan Island and between large- and small-sized tree populations. Principal component analysis showed that leaf thickness (LTh), guard cell length, and lower epidermis (LE) thickness were the key functional traits implicated in varying ecological strategies of B. malabaricum. A significant variation was found in the key functional traits including LE thickness, LTh, and guard cell (GCL) in populations across different ecogeographical regions. However, the LE and LTh vary significantly between the large- and small-sized trees. The LTh and LE thickness also showed an allometric relationship across different geographical regions and tree sizes. Hence, it was concluded that trees vary their ecological strategy according to their ontological developments across environments. Moreover, adaptation strategies of large-sized trees differing from small-sized ones highlight the fact that priority should be taken to conserve the trees with high age.
Crop area (CA) and agricultural management intensity (AMI) are the two main factors associated with agricultural systems that can negatively affect the diversity of animal communities. Despite existing knowledge, the effect of both factors has not been analyzed for all biological groups. In this study, we evaluated the effect of CA and AMI in two types of crop farming (intensive and semitraditional) on the diversity of tropical lizards in a mosaic of agricultural land and subdeciduous tropical forest. The results of this study show that by grouping crops, CA reduces lizard species richness and diversity, while lizard abundance is not related to either CA or AMI. However, when crops are assessed separately, AMI and CA are found to reduce richness and diversity in semitraditional crops. Lizard abundances in both types of crops are unrelated to any factor. Our results show that lizard diversity is more affected by CA than AMI; however, the magnitude of the effect depends on the type of crop farming.
Nikolay M. Luna-Kamyshev, Jorge Omar López-Martínez, Benedicto Vargas-Larreta, Gerald A. Islebe, Tulio F. Villalobos-Guerrero, Andrés Vázquez de la Rosa, Oscar F. Reyes-Mendoza, Eduardo Treviño-Garza
A challenge in community ecology is the development of ecosystem baselines, allowing the assessment of the variation in the ecological dynamics through different temporal and spatial scales. To our best knowledge, no studies have been carried out in seasonal evergreen forests of Belize to establish a baseline for future monitoring. Hence, a floristic study of the woody plant species diversity and composition was carried out at the Billy Barquedier National Park (BBNP) to develop an ecosystemic baseline for the assessment of the originally implemented conservation strategies. A thorough floristic survey was performed from May to August 2015 in 42 rectangular plots (500 m2) randomly allocated along the 100 to 500 m elevation gradient of the BBNP. Species richness, diversity, composition, and aboveground biomass were assessed. Likewise, information of a series of indicators on protection and risk situation (e.g., IUCN Red List of threatened species, CITES categories), and restoration for each relevant species are also provided. The BBNP is an important forest with 67 woody species distributed in 30 plant families. Terminalia amazona and Corozo palm Attalea cohune are the most important species in the reserve, in terms of abundance, frequency, and biomass. A clear trend between biodiversity metrics, elevation, and aboveground biomass was noted. This study contributes to understand relevant ecological topics as well as provides key elements for the management and conservation of the BBNP area and Belize.
Tropical forests are the most biodiverse ecosystems on Earth. Unfortunately, they are often degraded by large enterprises that convert large areas of continuous forest into forest mosaics or into deforested areas in order to seek economic development through infrastructure construction. This study evaluates how the assemblage of nonvolant small mammals is structured after the implementation of a bauxite mining in the Saracá-Taquera National Forest, Pará, Brazil. We tested the hypothesis that the clearings for bauxite mining produce an edge effect over the small mammal assemblage and that the size of the deforested area increases the impact’s magnitude. Data collection took place through live traps from 2010 to 2012, totaling an effort of 56,220 trap nights in both impacted and pristine areas. Generalized Linear Models revealed that the size of the mined area was the main predictor explaining species impoverishment in impacted areas. Multivariate Permutational Analysis of Variance and Multivariate Dispersion Permutation Analysis revealed differences in species composition between impacted and nonimpacted sites and that these differences are due to species turnover. We recommended that concessions for land use should be rethought, especially in protected areas and when major areas are subjected to a new economic exploitation cycle.
Soil respiration represents the largest carbon (C) flux from terrestrial ecosystems to the atmosphere. We created a study site in tropical lowland rainforest and used static chamber method to measure the temporal variations of soil respiration and their relationship with environmental factors at monthly time scale. The temporal variations of soil respiration showed a seasonal pattern related to soil temperature (p <.01) and soil moisture (p <.05). We tested different regression models to explore the relationship between soil respiration and environmental factors. Soil respiration had a better fit with soil temperature than with soil moisture in single-factor models. At different temperatures, the Q10 values from different models changed in rather different ways. We found that the mixed quadratic model composite of soil temperature and moisture had the best-fitting effect (R2 = .74) on soil respiration and could better explain the seasonal variation. In a certain soil moisture range close to 15%, soil respiration increased with soil temperature. However, soil respiration became restricted when the moisture was greatly higher or lower than this value. Furthermore, at low soil temperatures (lower than 16°C), higher soil moisture could decrease soil respiration rapidly. Thus, soil respiration in a tropical lowland rainforest is co-controlled by soil temperature and moisture. This study expands our observations of soil respiration in tropical forests and how it responds to environmental factors, which is important for reducing errors in evaluation and scaling up of soil carbon flux in climate change studies.
Negative human–wildlife interactions do not only have adverse effects on rural livelihoods but also lead to negative attitudes toward wildlife conservation. This research uses primary data collected from 221 randomly selected households in the Okavango Delta to analyze their perceptions on poaching and community involvement in anti-poaching activities. The results reveal that the majority of the respondents acknowledge the existence of poaching within their communities. Close to 50% of the respondents noted that they poach for subsistence purposes. There is a generally low participation rate in anti-poaching efforts in the study area. The study concludes that the negative attitudes of communities toward wildlife and wildlife conservation threaten wildlife sustainability in the Okavango Delta. There is a need to strike an intricate balance between wildlife conservation and improving communities’ welfare and tolerance to wildlife through designing effective institutions that are aligned to local realities.
The persistence of coat color polymorphisms—such as the coexistence of melanistic and “wild-type” coat color—is an ongoing evolutionary puzzle. We tested the predictions of Gloger’s rule and the Temporal Segregation hypothesis that propose that melanistic individuals will (a) occur more frequently in closed tropical forest versus open habitat due to camouflage and thermoregulation advantages and (b) be more active during brighter times of the circadian and lunar cycle because black pigmentation is cryptic under bright illumination. Based on 10 years of camera trap records of jaguar and oncilla from dense tropical forest in Costa Rica, we compared activity and relative abundance of non-melanistic wild-type morphs (rosetted or spotted) versus melanistic morphs. Twenty-five percent of jaguar records in dense forest were melanistic compared with the global average of 10% in both open and closed habitats; 32% of oncilla records were melanistic compared with 18% overall in Brazil. Overlap analysis indicated that melanistic jaguars were more active during daylight hours compared with non-melanistic jaguars, which were more nocturnal and crepuscular. Likewise, melanistic oncillas were significantly more diurnal than non-melanistic oncillas; melanistic oncillas were also more active during full moon, while non-melanistic oncillas were less active. These results imply that melanistic jaguar and oncilla enjoy the adaptive benefits of superior camouflage when inhabiting dense forest and accrue a fitness advantage when hunting during conditions of brighter illumination. If true, natural selection would ensure that melanistic individuals persist when dense forest is retained but may be threatened by deforestation and accelerating human presence.
Anna Stier, William D. de Carvalho, Stéphen Rostain, Francois Catzeflis, Olivier Claessens, Maël Dewynter, Doyle McKey, Karen Mustin, Marianne Palisse, Benoit de Thoisy
The Amazonian savannas of French Guiana are rare and of high ecological and cultural value but are also highly threatened. They are socioecological systems that have been coconstructed by humans and nature and today form mosaic landscapes along the country’s coast. From pre-Columbian raised fields through colonial and Créole uses to contemporary uses, they have been largely shaped and modified by human activities. They are currently threatened by changes in fire regimes, agricultural practices, invasive species, and infrastructure development. Less than 3% are protected, despite their importance for several endangered animal and plant species. A shift is required in the way we think about their conservation to create a new strategy that would be completely different from existing French environmental protection tools and adapted to the complexity of these landscapes.
Potential time lags between human-mediated disturbances and the subsequent responses of ecosystems are critical for planning and implementing conservation and restoration actions. In this context, decoupling between the temporal trajectories of ecosystems structure and functions is particularly critical. Here, we stand out the need to differentiate the temporal trajectories of ecosystem structure and functions to be considered in ecological restoration programs. In cases when ecosystem functions persist after the degradation of the ecosystem structure, and when functions do not recover at the same rate as structure, some kind of ecosystem functioning credits or debts can occur. In other situations, an ongoing loss of the ecosystem function can occur even in the absence of further disturbance. Ecosystem restoration outcomes could be optimized in regions with ecosystem functioning credit, since mitigating the decline in functioning will be more efficient than recovering functions in highly degraded conditions. Ecological restoration programs should not only focus on structure-derived indicators but they should also consider the dynamics of ecosystem functions to guide land-planning decision-making.
The success of non-native plants in their recipient environments is often attributed to their relatively lower herbivorous attack (i.e., leaf damage). However, whether non-native plants are inherently more tolerant to leaf damage than native ones remains unclear. We conducted a field experiment to test the effects of clipping (25%, 50%, and 75% leaf area loss) on growth (stem height and production of new leaves) of the natural regenerations of invasive strawberry guava Psidium cattleianum (Myrtaceae) and its closely related native, Eugenia goviala (VU, Myrtaceae,), in a degraded forest in Andasibe, Madagascar. Each clipped individual was paired with a neighboring control (0% defoliation). Survival rates after 105 days were high (>93%) for both species and were not related to clipping levels. Eugenia goviala increased stem growth by 98% at 25% clipping but exhibited no response at higher clipping levels. Clipping tended to reduce stem growth in P. cattleianum but effects were only significant at 75% defoliation (46% reduction in stem growth). Defoliation did not affect the production of new leaves but we detected a tendency for P. cattleianum to produce fewer leaves at higher clipping levels. These results indicate a higher sensitivity to defoliation in the invasive strawberry guava compared to its close native relative E. goviala, which does not support the hypothesis that non-native plant species are more tolerant to leaf damage than native ones. Heavy defoliation can represent a substitute for mechanical control of the strawberry guava. Future studies should focus on identifying suitable native herbivores as part of an integrated control program for this invasive species.
Waseem Razzaq Khan, Fahad Rasheed, Syaizwan Zahmir Zulkifli, Mohamad Roslan bin Mohamad Kasim, Martin Zimmer, Ahmad Mustapha Pazi, Nur Amira Kamrudin, Zikria Zafar, I. Faridah-Hanum, M. Nazre
Disposal of industrial wastewater has resulted in increased concentration of heavy metals (HMs) along the coastline of Malaysia. However, little is known about the accumulation capacity of HMs by Rhizophora apiculata in Matang Mangrove Forest Reserve (MMFR) Malaysia. The aim of this study is to measure the concentration of HMs in different ages of mangrove forests. In this study, 15 and 80-year old trees of Rhizophora apiculata were selected for experimentation. Thirty samples of leaves, roots and sediments were analyzed to measure the concentration of HMs in 15 and 80-year-old trees. The measured concentrations of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) in leaves, roots and sediments were used to compare bio- concentration and translocation factor between the abovementioned two age groups. Concentration of Mn came out to be significantly higher in leaves than in sediment. This suggested that Rhizophora apiculata was an efficient Mn-extractor. On the other hand, it was found less efficient in extracting heavier metals (Fe, Cu and Zn) from the sediment, as their concentration was lower in leaves and roots as compared to sediments. The translocation factor was highest for Mn, indicating high mobility of Mn from roots towards the leaves. Bio-concentration factor was also found highest for Mn (3.52) followed by Zn (1.88), Cu (1.33) and Fe (0.26). Therefore, it can be concluded that Rhizophora apiculata is more efficient in extracting Mn as compared to Zn, Cu and Fe.
Seven populations of Paphiopedilum micranthum from Southeast China were used to assess the influence of human disturbance on genetic structure through analysis with sequence-related amplified polymorphism technology. The results indicated that there was high genetic diversity at species level (p =81.25%; I =0.3709) and a significantly higher differentiation level compared to that those of other outcrossing orchid species, and that moderately disturbed populations sustained higher genetic diversity indexes than the natural populations. This study revealed that human disturbance and population size did not significantly affect the populations’ genetic diversity but aggravated their differentiation. This may suggest that the habitat had a much greater influence on genetic variation.
Cycad stem cuttings will develop adventitious roots if the open wound is first treated with a sealant to protect the exposed parenchyma tissue. The commercial pruning wound sealant that is often employed for this purpose is not available in many locations. We used commonly available products as a prophylactic sealant on Cycas edentata , Cycas micronesica , and Cycas nitida cuttings to determine efficacy for sealing the wound and enabling adventitious root formation. Success was quantified after 7 months in a sand propagation substrate. Mortality was 100% for control cuttings with no wound sealant and about 60% for cuttings with candle wax as the sealant. Cuttings that received petroleum jelly, lanolin paste, modeling clay, honeycomb wax, or commercial pruning sealant exhibited 100% survival. Success in adventitious root formation ranged from 75% to 92% among the five successful prophylactic treatments and did not differ among the species. The results indicated that four of the products we evaluated were as effective as commercial pruning sealant for treating the exposed parenchyma on Cycas stem cuttings and enabling asexual propagation success. The candle wax was less effective because it was brittle and cracked to expose the stem’s parenchyma tissue.
The Andean Ibis (Theristicus branickii) is discontinuously distributed in western South America from Ecuador to northern Chile. In Ecuador, it inhabits high elevations (>3,700 m) where it is classified as critically endangered because of its low population number caused by hunting and habitat loss. However, the population size of Andean Ibis in Ecuador is unknown, hindering the implementation of conservation actions. We performed a survey to estimate the abundance of Andean Ibis in the Ecuadorian Andes. In February 2016, and January 2017 and 2018, we conducted 11 point counts. Point counts were located in two provinces, each point count had nine 30-min visits. We recorded Andean Ibis in eight point counts, all in the Province of Napo. Detectability was explained by the amount of nontree vegetation cover and terrain slope, whereas abundance corresponded to gross primary productivity, annual mean temperature, and annual precipitation. We estimated there were 85 (95% credible interval [CI]: 63–117), 94 (95% CI: 32–125), and 134 (95% CI = 77–210) individuals of Andean Ibis in 2016, 2017, and 2018, respectively. The fact that abundance increased in the past 3 years could be explained by an increase in gross primary productivity. We suggest continuing population monitoring and adopting the sampling protocol and data analysis methods presented here as a baseline to better understand the spatiotemporal variation in abundance.
Today, the global economy presents a leaping economic network centered on coastal areas. Relying on the ocean has become a very important economic development path for many countries and regions. To coordinate and solve the contradiction between the economic development of Hainan Island and the protection of marine ecological environment, this study, based on the matter-element extension evaluation model, examines the marine ecology of Hainan Island considering the construction of a free trade port. This study uses the extension set theory to describe the advantages of the intermediate state and dynamic trend of the transformation of the assessment object to a certain level, to improve the assessment accuracy of marine ecological carrying capacity. The results show that the marine ecological carrying capacity of Hainan Island in 2016 to 2018 is relatively stable, at the transformation grade of N3, indicating that the marine ecology of Hainan Island is in a medium bearing, sub health state. Focusing on protecting marine ecology, developing a modern service industry, and developing high-tech industry can be effective in improving the ecological carrying capacity of Hainan Island.
The population of Timor deer (Rusa timorensis), an Indonesian endemic, continues to decline in its natural habitat, so captive breeding could become a source of individuals to bolster wild population. Support for captive breeding programs may be stronger if captive breeding also provided meat for human consumption. Thus, sustainable captive yields could be expected to support both conservation interests and food needs. The aim of this research is to evaluate the environmental impact, based on global warming potential (GWP), of two Timor deer breeding systems, that is, a farming system and a ranching system, in West Java, Indonesia. Life cycle assessment methodology was used for the evaluation to gain a cradle-to-gate perspective. The functional unit used was 1 kg of Timor deer live weight in captivity. The main result of the study indicated that the GWP per kg of Timor deer was estimated at 17.30 kgCO2eq (farming system) and 17.60 kgCO2eq (ranching system). The largest GWP in both systems was derived from cultivation activities and infrastructure development. In general, there is no significant difference in the GWP of the two breeding systems studied. This was due to the similar overall management adopted by the two breeding systems, especially the use of food types and infrastructure materials. Currently, the environmental dimension, especially the emissions from Timor deer breeding activities, is not a major concern, but in the future, breeding management should pay attention to the efficient use of the food and infrastructure to make it more environmentally friendly.
Coastlines are drastically altered globally due to urbanisation and climate-related issues. As a response, communities build coastal defence structures to protect people and property. Although these infrastructures fulfil engineering demands of coastal defences, the trade-off to nature includes a decrease in biodiversity able to live on these structures because of the lack of topographic complexity. Several studies have tried to increase the surface complexity on coastal defence structures through eco-engineering habitat enhancements that mimic nature. However, few of these studies have been conducted in tropical regions where effects are more pronounce due to desiccation and extreme heat. In this study, water-retaining structures (in the form of rock-pools at depths 12 cm, and 5 cm) were drill-cored into coastal defence structures (i.e. granite rock revetments) on reclaimed coastlines in Penang Island, Malaysia. We found greater species richness and an increase in community structure in the drill-cored rock pools regardless of the depth of these artificial rock-pools. Positive habitat selection also occurred within micro-habitats of this scale. The drill-cored artificial rock pools in these tidal exposed revetments also provided niche-spaces for marine organisms found in low-tide or sub-tidal areas. These findings demonstrate the potential of this eco-engineered habitat enhancement as a means of promoting biodiversity on granite rock revetments, which can be applied either during design phase of a coastal development or retrospectively.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere