GUY BRUGEROLLE, ALASTAIR G. B. SIMPSON
The Journal of Eukaryotic Microbiology 51 (1), 96-107, (1 January 2004) https://doi.org/10.1111/j.1550-7408.2004.tb00169.x
KEYWORDS: Naegleria, Percolomonas, Percolozoa, phylogeny, protist, Tetramitus, ultrastructure
The flagellar apparatus of four heterolobosean species Percolomonas descissus, Percolomonas sulcatus, Tetramitus rostratus, and Naegleria gruberi were examined. P. descissus lives in oxygen-poor water. It is a quadriflagellated cell with a ventral groove. The two pairs of basal bodies are connected to an apical structure from which the peripheral dorso-lateral microtubules and a short striated rhizoplast originate. There is one major microtubular root, R1, which originates from the posterior basal body pair and splits into left and right portions that support the sides of the ventral groove. The anterior pair of basal bodies is associated with a root of four to five microtubules that runs to the left of the groove. This organisation is similar to that previously reported for Psalteriomonas, Lyromonas, and Percolomonas cosmopolitus. Percolomonas sulcatus has two parallel pairs of basal bodies, each of which is associated with a well-developed R1 root. These roots divide to give two distinct left portions and one merged right portion that support the margins of the slit-like ventral groove. Tetramitus rostratus has two pairs of basal bodies, several rhizoplast fibres, and two R1 roots. Each R1 root supports one wall of the ventral groove. Naegleria gruberi may have two pairs of basal bodies, each associated with a microtubular root and one long rhizoplast fibre. From available data, a ‘double bikont’-like organisation of the heterolobosean flagellar apparatus is inferred, where both of the eldest basal bodies have largely ‘mature’ complements of microtubular roots. The cytoskeletal organisation of heteroloboseans is compared to those of (other) excavates. Our structural data and existing molecular phylogenies weaken the case that Percolomonas, Psalteriomonas, and Lyromonas are phylogenetically separable from other heteroloboseans, undermining many of the highest-level taxa proposed for these organisms, including Percolozoa, Striatorhiza, Percolomonada, Percolomonadea, and Lyromonadea.