Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Migratory birds use numerous strategies to successfully complete twice-annual movements between breeding and wintering sites. Context for conservation and management can be provided by characterizing these strategies. Variations in strategy among and within individuals support population persistence in response to changes in land use and climate. We used location data from 58 marked Whooping Cranes (Grus americana) from 2010 to 2016 to characterize migration strategies in the U.S. Great Plains and Canadian Prairies and southern boreal region, and to explore sources of heterogeneity in their migration strategy, including space use, timing, and performance. Whooping Cranes completed ∼3,900-km migrations that averaged 29 days during spring and 45 days during autumn, while making 11–12 nighttime stops. At the scale of our analysis, individual Whooping Cranes showed little consistency in stopover sites used among migration seasons (i.e. low site fidelity). In contrast, individuals expressed a measure of consistency in timing, especially migration initiation dates. Whooping Cranes migrated at different times based on age and reproductive status, where adults with young initiated autumn migration after other birds, and adults with and without young initiated spring migration before subadult birds. Time spent at stopover sites was positively associated with migration bout length and negatively associated with time spent at previous stopover sites, indicating Whooping Cranes acquired energy resources at some stopover sites that they used to fuel migration. Whooping Cranes were faithful to a defined migration corridor but showed less fidelity in their selection of nighttime stopover sites; hence, spatial targeting of conservation actions may be better informed by associations with landscape and habitat features rather than documented past use at specific locations. The preservation of variation in migration strategies existing within this species that experienced a severe population bottleneck suggests that Whooping Cranes have maintained a capacity to adjust strategies when confronted with future changes in land use and climate.
Maintaining a functionally connected network of high-quality habitat is one of the most effective responses to biodiversity loss. However, the spatial distribution of suitable habitat may shift over time in response to climate change. Taxa such as migratory forest landbirds are already undergoing climate-driven range shifts. Therefore, patches of climate-resilient habitat (also known as “climate refugia”) are especially valuable from a conservation perspective. Here, we performed maximum entropy (Maxent) species distribution modeling to predict suitable and potentially climate-resilient habitat in Nova Scotia, Canada, for 3 migratory forest landbirds: Rusty Blackbird (Euphagus carolinus), Olive-sided Flycatcher (Contopus cooperi), and Canada Warbler (Cardellina canadensis). We used a reverse stepwise elimination technique to identify covariates that influence habitat suitability for the target species at broad scales, including abiotic (topographic control of moisture and nutrient accumulation) and biotic (forest characteristics) covariates. As topography should be relatively unaffected by a changing climate and helps regulate the structure and composition of forest habitat, we posit that the inclusion of appropriate topographic features may support the identification of climate-resilient habitat. Of all covariates, depth to water table was the most important predictor of relative habitat suitability for the Rusty Blackbird and Canada Warbler, with both species showing a strong association with wet areas. Mean canopy height was the most important predictor for the Olive-sided Flycatcher, whereby the species was associated with taller trees. Our models, which comprise the finest-scale species distribution models available for these species in this region, further indicated that, for all species, habitat (1) remains relatively abundant and well distributed in Nova Scotia and (2) is often located in wet lowlands (a climate-resilient topographic landform). These findings suggest that opportunities remain to conserve breeding habitat for these species despite changing temperature and precipitation regimes.
Biological invasions are most practical to manage when invasive species population densities are low. Despite a potentially narrow window of opportunity for efficient management, managers tend to delay intervention because the cost of prompt action is often high and resources are limited. The Barred Owl (Strix varia) invaded and colonized the entire range of the Northern Spotted Owl (S. occidentalis caurina), but insufficient population data contributed to delays in action until the Barred Owl posed an existential threat to the Spotted Owl. The leading edge of the Barred Owl expansion has since reached the Sierra Nevada, the core range of the California Spotted Owl (S. o. occidentalis). We conducted passive acoustic surveys within 400-ha grid cells across ∼6,200 km2 in the northern Sierra Nevada and detected a 2.6-fold increase in Barred Owl site occupancy between 2017 and 2018, from 0.082 (85% confidence interval: 0.045–0.12) to 0.21 (0.14–0.28). The probability of Barred Owl site colonization increased with the amount of older forest, suggesting that Barred Owls are first occupying the preferred habitat of Spotted Owls. GPS-tagged Barred Owls (n = 10) generally displayed seasonal and interannual site fidelity over territories averaging 411 ha (range: 150–513 ha), suggesting that our occupancy estimates were not substantially upwardly biased by “double counting” individuals whose territories spanned multiple grid cells. Given the Barred Owl's demonstrated threat to the Northern Spotted Owl, we believe our findings advise the Precautionary Principle, which posits that management actions such as invasive species removal should be taken despite uncertainties about, for example, true rates of population growth if the cost of inaction is high. In this case, initiating Barred Owl removals in the Sierra Nevada before the population grows further will likely make such action more cost-effective and more humane than if it is delayed. It could also prevent the extirpation of the California Spotted Owl from its core range.
Habitat loss and altered disturbance regimes have led to declines in many species of grassland and sagebrush birds, including the imperiled Mountain Plover (Charadrius montanus). In certain parts of their range Mountain Plovers rely almost exclusively on black-tailed prairie dog (Cynomys ludovicianus) colonies as nesting habitat. Previous studies have examined Mountain Plover nest and brood survival on prairie dog colonies, but little is known about how colony size and shape influence these vital rates or patterns of habitat selection. We examined how (1) adult habitat utilization, (2) nest-site selection, and (3) nest success responded to a suite of local- and site-level variables on large prairie dog colony complexes in northeastern Wyoming. Abundance of adult Mountain Plovers was highest on points within older, “medium”-sized (100–500 ha) colonies with high cover of annual forbs and bare ground (5.8 birds km–2), but lower on extremely large (>2,000 ha) colonies (2.1 birds km–2). Nest sites were characterized by high proportions of annual forbs and bare ground and low cactus cover and vegetation height. Nest survival was higher for older nests, and nests with lower cactus cover, and decreased with increasing temperatures. Uncertainty was high for models of daily nest survival, potentially because of 2 competing sources of nest failure: nest depredation and nest abandonment or inviability of eggs. Drivers of these 2 sources of nest failure differed, with inclement weather and higher temperatures associated with nest abandonment or egg inviability. We highlight how prairie dogs alter vegetation structure and bare ground heterogeneously across the landscape, and how this in turn influences bird abundance and nest distribution at different temporal and spatial scales. Furthermore, our work reveals how partitioning the causes of nest failure during nest survival analyses enhances understanding of survival rate covariates.
Recent work has suggested that a tradeoff exists between habitat area and habitat heterogeneity, with a moderate amount of heterogeneity supporting greatest species richness. Support for this unimodal relationship has been mixed and has differed among habitats and taxa. We examined the relationship between habitat heterogeneity and species richness after accounting for habitat area in glacially formed wetlands in the Prairie Pothole Region in the United States at both local and landscape scales. We tested for area–habitat heterogeneity tradeoffs in wetland bird species richness, the richness of groups of similar species, and in species' abundances. We then identified the habitat relationships for individual species and the relative importance of wetland area vs. habitat heterogeneity and other wetland characteristics. We found that habitat area was the primary driver of species richness and abundance. Additional variation in richness and abundance could be explained by habitat heterogeneity or other wetland and landscape characteristics. Overall avian species richness responded unimodally to habitat heterogeneity, suggesting an area–heterogeneity tradeoff. Group richness and abundance metrics showed either unimodal or linear relationships with habitat heterogeneity. Habitat heterogeneity indices at local and landscape scales were important for some, but not all, species and avian groups. Both abundance of individual species and species richness of most avian groups were higher on publicly owned wetlands than on privately owned wetlands, on restored wetlands than natural wetlands, and on permanent wetlands than on wetlands of other classes. However, we found that all wetlands examined, regardless of ownership, restoration status, and wetland class, supported wetland-obligate birds. Thus, protection of all wetland types contributes to species conservation. Our results support conventional wisdom that protection of large wetlands is a priority but also indicate that maintaining habitat heterogeneity will enhance biodiversity and support higher populations of individual species.
Stopover sites provide crucial habitat for waterfowl to rest and refuel during migration. Knowledge of which land-cover types are of greatest importance to migrating waterfowl and how the surrounding landscape influences their use can inform management decisions and conservation plans to adequately meet resource requirements. Specifically, spring migration habitat is essential for waterfowl preparing for breeding yet is an understudied period of the life cycle. We placed radio-transmitters on Mallards (Anas platyrhynchos) and Green-winged Teal (Anas crecca) between January and April 2016–2017 in the Wabash River Valley of Illinois and Indiana to assess habitat use and movement patterns. Both Mallards and Green-winged Teal primarily used emergent and woody wetlands, with 89% of use points in these land-cover types even though they made up <5% of the study area. Use of both dry and flooded row crops was minimal. While habitat selection of Mallards was similar for diurnal vs. nocturnal periods, Green-winged Teal used emergent wetlands at a higher rate during the day and shifted to woody wetlands at night. In general, sites surrounded by greater amounts of open water, upland forest, and upland herbaceous/grassland cover were more likely to be used than areas surrounded by row-crop agriculture. Additionally, private and public lands enrolled in conservation easement programs (such as the Wetlands Reserve Program) were frequently used by migrating waterfowl compared to other protected or public lands. These findings highlight the importance of a landscape-level approach to conservation, specifically focusing on wetland restoration while minimizing reliance on agricultural fields to fulfill habitat needs during spring migration in the Midwest.
Woodpeckers are often focal species for informing management of recently burned forests. Snags generated by wildfire provide key nesting and foraging resources for woodpeckers, and nest cavities excavated by woodpeckers are subsequently used by many other species. Habitat suitability models applicable in newly burned forest are important management tools for identifying areas likely to be used by nesting woodpeckers. Here we present and test predictive models for mapping woodpecker nest-site habitat across wildfire locations that can be used to inform post-fire planning and salvage logging decisions. From 2009 to 2016, we monitored 313 nest sites of 4 species—Black-backed Woodpecker (Picoides arcticus), Hairy Woodpecker (Dryobates villosus), White-headed Woodpecker (D. albolarvatus), and Northern Flicker (Colaptes auratus)—from 3 wildfires in the Northern Sierra Nevada and Southern Cascades 1–5 yr after fire. Using these data, we developed habitat suitability index models that compared nest vs. non-nest sites for each species using (1) exclusively remotely sensed covariates, and (2) combinations of remotely sensed and field-collected covariates. We emphasized predictive performance across wildfire locations when selecting models to retain generalizable habitat relationships useful for informing management in newly burned locations. We identified models for all 4 species with strong predictive performance across wildfire locations despite notable variation in conditions among locations, suggesting broad applicability to guide post-fire management in the Sierra Nevada region. Top models for nest-site selection underscored the importance of high burn severity at the local scale, lower burn severity at the 1-km scale, mid-sized nest-tree diameters, and nest trees with broken tops. Models restricted to remotely sensed covariates exhibited similar predictive performance as combination models and are valuable for mapping habitat across entire wildfire locations to help delineate project areas or habitat reserves. Combination models are especially relevant for design of silvicultural prescriptions.
For most bird species, little is known about their ecology and survival between fledging and independence despite the potential for post-fledging survival to be a factor limiting population dynamics. Cerulean Warblers (Setophaga cerulea) are a declining migratory species, and full-life-cycle conservation efforts that include the post-fledging period are warranted to attempt to reverse their decline. To understand movement, habitat selection, and survival, we radio-tracked 20 fledglings throughout the dependent post-fledging period. Broods were split by their parents, typically (88%) left parental breeding territories within 12 days, and survivors moved 2.4 ± 0.7 km (mean ± SE) from their nest within the 28.1 ± 1.8 day tracking period. Fledglings were usually observed in the mid-canopy to upper canopy and selected habitat with greater mid-story cover, less basal area, and areas closer to water bodies, compared to available points, when considering data from the entire post-fledgling period. However, habitat selection varied with fledgling age. Young fledglings (0–2 days post-fledging) selected areas with greater sapling cover and less stand basal area, but as fledglings matured, they selected areas farther from canopy gaps with greater mid-story cover. Compared with nesting habitat selected by parents, fledglings used areas with smaller and more numerous trees, fewer canopy gaps, and greater mid-story cover. Survival of the entire period was 48 ± 14% and most (8/10) mortalities occurred within the first 3 days post-fledging. Evidence indicated eastern chipmunks (Tamias striatus) as the most common predator. Providing or retaining large tracts of forest is recommended to prevent the restriction of post-fledging dispersal, and managing forests to maintain a heterogeneous landscape that includes stands with numerous canopy gaps and dense understory (e.g., shelterwood harvests or late seral stage conditions) as well as stands with a dense mid-story (e.g., younger stands and riparian areas) appears to be important for this life stage.
Habitat transformation and loss is one of the greatest threats currently facing avian species. The cumulative impact of climate change on habitat loss is projected to produce disproportionate risk for endemic high-altitude species. The Southern Bald Ibis (Geronticus calvus) is an endemic high-altitude species found throughout highland grassland habitats in South Africa and Lesotho. The historical distribution has contracted notably and causal factors remain ambiguous. Furthermore, the historical population (1950–1970) was believed to be stable, but recent local surveys suggest colony declines and the current global population status remains largely unquantified. We assessed the current distribution and population status of the species through predictive modeling and trends in historical and recent colony counts across the species' range. We examined climate and habitat change as potential causal factors contributing to the historical contraction in distribution, and projected the potential impact of future climate change predicted by global circulation models. Our study confirms that Southern Bald Ibis are of conservation concern. The loss of grasslands to expanding woody vegetation through bush encroachment was the most detrimental habitat transformation type associated with decreased colony growth and colony collapse. We recommend maintaining a minimum threshold of 50% or greater intact grassland habitat surrounding colonies to reduce colony extinction risk and promote colony persistence.
Urbanization increasingly exposes birds to multiple sources of direct anthropogenic mortality. Collisions with buildings, and windows in particular, are a top bird mortality source, annually causing 365–988 million fatalities in the United States. Correlates of window collision rates have been studied at the scale of entire buildings and in relation to the surrounding landscape, and most studies have only assessed correlates for all birds combined without considering season- and species-specific risk factors. In Stillwater, Oklahoma, USA, we conducted bird collision surveys at 16 buildings to assess building structural-, vegetation-, and land cover-related collision correlates. Unlike past studies, we focused at the scale of individual building façades, and in addition to considering correlates for total collisions, we assessed correlates for different seasons and separately for 8 collision-prone species. Several façade-related features, including proportional glass coverage, façade length, and façade height, were positively associated with total collisions and collisions for most separate seasons and species. Total collisions were also greater at alcove-shaped façades than flat, curved, and portico-shaped façades. We found that collision correlates varied among seasons (e.g., surrounding lawn cover important in summer and fall, but not spring) and among species (e.g., surrounding impervious cover positively and negatively related to collisions of Painted Bunting [Passerina ciris] and American Robin [Turdus migratorius], respectively). Given the importance of glass proportion, collision reduction efforts should continue to focus on minimizing and/or treating glass surfaces on new and existing buildings. Our species- and season-specific assessments indicate that management of some collision risk factors may not be equally effective for all seasons and species. Future research, policy, and management that integrates information about collision risk for all bird species and seasons, and at multiple scales from building façades to the surrounding landscape, will be most effective at reducing total mortality from bird–window collisions.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere