BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Haplomitrium minutum (E.O.Campb.) J.J.Engel & R.M.Schust., considered to be a little-known species endemic to New Zealand, had been reported to grow on Mt. Ainodake, central Japan. However, after revision of the herbarium material corresponding to the previous record and examination of additional material, including male plants, we concluded that original determination is erroneous. Instead, these plants are merely an environmental modification of Haplomitrium hookeri (Lyell ex Sm.) Nees, widely distributed in the Northern Hemisphere. On the basis of morphological and molecular phylogenetic analyses using chloroplast DNA (rbcL and trnL–F), we excluded H. minutum from the Japanese flora. Taxonomic identity of the plants from Mt. Ainodake, morphological variation in H. hookeri depending on habitat differences, and morphological differences between H. hookeri and H. minutum are discussed. We also provide new information on morphological variations of elaters and antheridial stalks in H. minutum based on the type specimen.
Lichenicolous species are widely distributed in the Basidiomycota, and many are known to produce sclerotia or bulbils with few additional structures to permit taxonomic placement. The Cantharellales include many of these species and we here describe a new species that grows over Cladonia rangiferina and forms yellow-orange, initially immersed bulbils similar to Burgella flavoparmeliae Diederich & Lawrey, a familiar species in the order. We obtained sequences of nuLSU representing an isolated culture and herbarium specimen of the species, and initial searches in GenBank indicated it was a member of the Cantharellales. We inferred its phylogenetic placement in the order using an existing dataset that included all known lichenicolous species. Our results indicate that it is not closely related to any described lichenicolous species or to any other described bulbilliferous species in the order. Based on these results, we are now establishing a new genus and species, Neoburgoa freyi, in the Hydnaceae sensu Hibbett et al. (2014). We also introduce the new name Adamflakia for the genus Bulbilla as the latter coincides with the technical term ‘bulbilla' used in previous descriptions of bulbil-forming species and is therefore not validly published following the ICN (Art. 20.2); Adamflakia applanata comb. nov. is proposed.
Acanthothecis fontana is described as new to science based on material collected in the southern Appalachian Mountains of western North Carolina. It is most similar to A. paucispora, but differs in its smaller ascospores and apparent allopatric distribution. In addition to the description of the new species, a key is provided to the genus Acanthothecis, including the species of Fissurina with warted paraphyses, together with a tabular summary of information pertaining to ascospores and chemistry.
Ninety years after Zahlbruckner, we present the most recent update to the classification of lichen fungi in the Ascomycota and Basidiomycota to genus level, with species numbers and references to changes compared to the 2010 Outline of Ascomycota and other recent classifications. Updated statistics on global species richness of lichen fungi and species richness at family, order and class level are given. The number of accepted species is 19,387 in 995 genera, 115 families, 39 orders and eight classes. Lichenized Basidiomycota amount to 172 species (0.9% of the total), 15 genera (1.5%), five families (4.3%), five orders (12.8%) and one class (12.5%). The most speciose genera are Xanthoparmelia, Lecanora, Arthonia, Cladonia, Pertusaria, Ocellularia, Graphis, Caloplaca, Usnea and Buellia. The average number of species per genus is 19.5 and 256 genera are monospecific. Using newly defined categories, two genera (Xanthoparmelia, Lecanora) are ultradiverse (more than 500 species), 17 hyperdiverse (201–500 species) and 12 megadiverse (101–200). The largest family is Parmeliaceae, with 2,765 species and 77 genera, followed by Graphidaceae (2,161; 79), Verrucariaceae (943; 43), Ramalinaceae (916; 43) and Lecanoraceae (791; 25). The largest order is Lecanorales, with 6,231 species and 234 genera, followed by Ostropales (3,261; 138), Arthoniales (1,541, 103), Peltigerales (1,301; 67) and Caliciales (1,276; 55). The largest class is Lecanoromycetes, with 15,131 species and 701 genera, followed by Arthoniomycetes (1,541; 103), Eurotiomycetes (1,203; 63), Dothideomycetes (812; 39) and Lichinomycetes (390; 50). A total of 751 out of 995 genera (75%) have molecular data. Fifty-nine genera remain in unresolved positions at the family, order or class level. The phylogenetic position of the 39 orders containing lichenized fungi suggests 20–30 independent lichenization events during the evolution of higher Fungi, 14–23 in the Ascomycota and 6–7 in the Basidiomycota. The following names are validated: Candelariomycetidae Miądl. et al. ex Timdal & M.Westb. subcl. nov., Cystocoleaceae Locq. ex Lücking, B.P.Hodk. & S.D.Leav. fam. nov, Letrouitineae Gaya & Lutzoni subordo nov., Rhizocarpales Miądl. & Lutzoni ordo nov. and Teloschistineae Gaya & Lutzoni subordo nov. Lectotypes are designated for Clathroporinopsis M.Choisy and Protoschistes M.Choisy, making both synonyms of Gyalecta Ach., and Stromatothelium Trevis., making it a synonym of Pyrenula Ach. Members of Cyphobasidiales, which are here interpreted as hyperlichenized fungi, as well as fossil lichen fungi, are added in additional classifications in two appendices.
Chaenothecopsis claydenii is described as new from New Brunswick, Canada, and C. eugenia, also from New Brunswick, is reported for the first time in North America. Both species grow on the resin of Picea spp. in the Acadian Forest and bring to 91 the number of calicioid lichens and fungi known for the ecoregion. Diagnoses and information on the taxonomy and ecology of each species is provided, as is a worldwide key to the mycocalicioid taxa growing on conifer resin.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere