Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Ekaterina Royba, Mikhail Repin, Adayabalam S. Balajee, Igor Shuryak, Sergey Pampou, Charles Karan, Yi-Fang Wang, Olga Dona Lemus, Razib Obaid, Naresh Deoli, Cheng-Shie Wuu, David J. Brenner, Guy Garty
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2–9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Radiation-induced gene expression (GE) changes can be used for early and high-throughput biodosimetry within the first three days postirradiation. However, is the method applicable in situations such as the Alexander Litvinenko case or the Goiania accident, where diagnosis occurred in a prefinal health stage? We aimed to characterize gene expression changes in a prefinal health stage of lethally irradiated male and female rhesus macaques. Peripheral blood was drawn pre-exposure and at the prefinal stage of male and female animals, which did not survive whole-body exposure with 700 cGy (LD66/60). RNA samples originated from a blinded randomized Good Laboratory Practice study comprising altogether 142 irradiated rhesus macaques of whom 60 animals and blood samples (15 samples for both time points and sexes) were used for this analysis. We evaluated GE on 34 genes widely used in biodosimetry and prediction of the hematological acute radiation syndrome severity (H-ARS) employing quantitative real-time polymerase chain reaction (qRT-PCR). These genes were run in duplicate and triplicate and altogether 96 measurements per time point and sex could be performed. In addition, 18S ribosomal RNA (rRNA) was measured to depict the ribosome/transcriptome status as well as for normalization purposes and 16S rRNA was evaluated as a surrogate for bacteremia. Mean differential gene expression (DGE) was calculated for each gene and sex including all replicate measurements and using pre-exposure samples as the reference. From 34 genes, altogether 27 genes appeared expressed. Pre-exposure samples revealed no signs of bacteremia and 18S rRNA GE was in the normal range in all 30 samples. Regarding prefinal samples, 46.7% and 40% of animals appeared infected in females and males, respectively, and for almost all males this was associated with out of normal range 18S rRNA values. The total number of detectable GE measurements was sixfold (females) and 15-fold (males) reduced in prefinal relative to pre-exposure samples and about tenfold lower in 80% of prefinal compared to pre-exposure samples (P < 0.0001). An overall 11-fold (median) downregulation in prefinal compared to pre-exposure samples was identified for most of the 27 genes and even FDXR appeared 4–14-fold downregulated in contrast to a pronounced up-regulation according to cited work. This pattern of overall downregulation of almost all genes and the rapid reduction of detectable genes at a prefinal stage was found in uninfected animals with normal range 18S rRNA as well. In conclusion, in a prefinal stage after lethal radiation exposure, the ribosome/transcriptome status remains present (based on normal range 18S rRNA values) in 60–67% of animals, but the whole transcriptome activity in general appears silenced and cannot be used for biodosimetry purposes, but probably as an indicator for an emerging prefinal health stage.
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of “hit” cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Computed tomography (CT) imaging has been used to diagnose radiation-induced lung injury for decades. However, histogram-based quantitative tools have rarely been applied to assess lung abnormality due to radiation-induced lung injury (RILI). Here, we used first-order summary statistics to derive and assess threshold measures extracted from whole lung histograms of CT radiodensity in rhesus macaques. For the present study, CT scans of animals exposed to 10 Gy of whole thorax irradiation were utilized from a previous study spanning 2–9 months postirradiation. These animals were grouped into survivors and non-survivors based on their clinical and experimental endpoints. We quantified the change in lung attenuation after irradiation relative to baseline using three density parameters; average lung density (ALD), percent change in hyper-dense lung volume (PCHV), hyperdense volume as a percent of total volume (PCHV/TV) at 2-month intervals and compared each parameter between the two irradiated groups (non-survivors and survivors). We also correlated our results with histological findings. All the three indices (ALD, PCHV, PCHV/TV) obtained from density histograms showed a significant increase in lung injury in non-survivors relative to survivors, with PCHV relatively more sensitive to detect early RILI changes. We observed a significant positive correlation between histologic pneumonitis scores and each of the three CT measurements, indicating that CT density is useful as a surrogate for histologic disease severity in RILI. CT-based three density parameters, ALD, PCHV, PCHV/TV, may serve as surrogates for likely histopathology patterns in future studies of RILI disease progression.
Radiotherapy has become an increasingly widespread modality for treating hepatocellular cancer (HCC); however, the development of radioresistance significantly limits its effectiveness and invariably leads to tumor recurrence. Cancer stem cell (CSC) theory offers a potential explanation for tumor relapse and radioresistance, but the underlying mechanism remains unknown. Herein we investigate the role of miRNA in molecular regulation of stemness and radioresistance in HCC. Two HCC radiation-resistant cell lines (Huh7-RR and SMMC-7721-RR) were established by selecting the radioresistant subpopulation from HCC cells via clonogenic survival assays. MiRNA Sequencing was used to identify potential radiosensitivity involved miRNA in HCC-RR cells. Xenograft tumor mouse model was established for in vivo study. CSC properties were assessed using sphere formation assay and side population (SP) cells analysis. We found that miR-34a-5p was significantly downregulated in HCC-RR cells. Overexpression of miR-34a-5p counteracts CSC properties and enhances radiosensitivity in HCC. Mechanistic investigation revealed that c-MYC is the direct target of miR-34a-5p. Overexpression of miR-34a-5p reversed c-MYC-induced radioresistance. Moreover, we found that the specific molecular mechanism was that c-MYC activated CHK1 and CHK2, which are two key DNA damage checkpoint kinases, and facilitated the DNA damage response to radiation. Repression of the miR-34a-5p-cMYC-CHK1/CHK2 axis contributes to the acquisition of radioresistance in HCC cells. In summary, the miR-34a-5p-c-MYC-CHK1/CHK2 axis counteracts cancer stem cell-like properties and enhances radiosensitivity in hepatocellular cancer through repression of the DNA damage response.
Sergii Masiuk, Mykola Chepurny, Valentyna Buderatska, Olga Ivanova, Zulfira Boiko, Natalia Zhadan, Kiyohiko Mabuchi, Elizabeth K Cahoon, Mark P Little, Alexander Kukush, Tetiana Bogdanova, Victor Shpak, Galyna Zamotayeva, Mykola Tronko, Vladimir Drozdovitch
Thyroid doses from intake of radioiodine isotopes (131I, 132Te+132I, and 133I) and associated uncertainties were revised for the 13,204 Ukrainian-American cohort members exposed in childhood and adolescence to fallout from the Chornobyl nuclear power plant accident. The main changes related to the revision of the 131I thyroid activity measured in cohort members, the use of thyroid-mass values specific to the Ukrainian population, and the revision of the 131I ground deposition densities in Ukraine. Uncertainties in doses were assessed considering shared and unshared errors in the parameters of the dosimetry model. Using a Monte-Carlo simulation procedure, 1,000 individual stochastic thyroid doses were calculated for each cohort member. The arithmetic mean of thyroid doses from intake of 131I, 132Te+132I, and 133I for the entire cohort was 0.60 Gy (median = 0.22 Gy). For 9,474 subjects (71.6% of the total), the thyroid doses were less than 0.5 Gy. Thyroid doses for 42 cohort members (0.3% of the total) exceeded 10 Gy while the highest dose was 35 Gy. Intake of 131I contributed around 95% to internal thyroid exposure from radioiodine isotopes. The geometric standard deviation of individual stochastic thyroid doses varied among cohort members from 1.4 to 4.3 with an arithmetic mean of 1.6 and a median of 1.4. It was shown that the contribution of shared errors to the dose uncertainty was small. The revised thyroid doses resulted, in average, in around 40% decrease for cohort members from Zhytomyr Oblast and an increase of around 24% and 35% for the cohort members from Kyiv and Chernihiv Oblast, respectively. Arithmetic mean of TD20 doses for the cohort was around 8% less than that estimated in TD10, 0.60 Gy vs. 0.65 Gy, respectively; however, global median of TD20 doses somewhat increased compared to TD10: 0.22 Gy vs. 0.19 Gy, respectively. The difference between TD10 and TD20 was mainly due to a revision of the individual 131I thyroid activity measured in the cohort members.
Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.
The hypoxanthine-phosphoribosyltransferase (HPRT) mutation assay has been widely used to investigate gene mutations induced by radiation. Here, we developed a novel method detecting deletions of multiple exons of the HPRT gene based on real-time quantitative PCR (qPCR). Immortalized normal human fibroblasts (BJ1-hTERT) were irradiated at various doses with γ rays, subjected to the 6-thioguanine (6-TG) selection, and more than one hundred 6-TG-resistant (6-TGR) clones were isolated. High-molecular-weight genomic DNA was extracted, and real-time qPCR was performed with the nine exon-specific primers. Optimization of the primer concentration, appropriate selection of PCR enzyme and refinement of the reaction profiles enabled simultaneous quantitative amplification of each exon. We were able to identify 6-TGR clones with total deletions, which did not show any amplification of the nine exons, and partial deletion mutants, in which one or some of the nine exons were missing, within a few days. This novel technique allows systematic determination of multiple deletions of the HPRT exons induced by ionizing radiation, enabling high-throughput and robust analysis of multiple HPRT mutants.
Sushil K. Shakyawar, Nitish K. Mishra, Neetha N. Vellichirammal, Lynnette Cary, Tomáš Helikar, Robert Powers, Rebecca E. Oberley-Deegan, David B. Berkowitz, Kenneth W. Bayles, Vijay K. Singh, Chittibabu Guda
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere