Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Alternative end-joining (alt-EJ) is a DNA end resection-dependent, error-prone pathway utilized by vertebrate cells to repair DNA double-strand breaks (DSBs), but its engagement is linked to chromosomal translocations and genomic instability. Here, we report that when proliferating cells are exposed to ionizing radiation, treatment with nucleoside analogs (NAs) causes strong radiosensitization by increasing engagement of alt-EJ, while at the same time suppressing homologous recombination (HR) in S- and G2phase cells. This NA-mediated pathway shift may reflect a passive compensatory engagement of alt-EJ following HR suppression that is specific for S- and G2-phase cells, and/or the direct activation of alt-EJ throughout the cell cycle. To distinguish between these possibilities, we utilize here a cell culture model that exploits genetic and cell cycle-dependent inactivation of DSB repair pathways, to exclusively study alt-EJ and its modulation by NAs in murine and human cell lines. To this end, we allow LIG4–/–-deficient cells to accumulate in G1/G0 phase by transfer to serum-deprived media and obtain cells deficient in c-NHEJ owing to the genetic LIG4 knockout, deficient in HR owing to the absence of S- or G2-phase cells, and compromised in their ability to carry out alt-EJ owing to their accumulation in G0. We find that in these cells irradiation and treatment with the NA, β-arabinofuranosyladenine (araA), and to a lesser degree with other NAs, promptly activates suppressed alt-EJ that now functions at levels approximating those of c-NHEJ in wild-type cells. Results at high dose (20 Gy) generated using pulsed-field gel electrophoresis (PFGE) are corroborated by results at low dose (1 Gy) generated by scoring 53BP1 foci. Strikingly, araA treatment activates a normally undetectable DNA-end-resection at DSBs, which requires ATR activity, but proceeds unimpeded after CtIP knockdown. Treatment with araA increases the formation of chromosomal aberrations and enhances radiation-induced cell killing. The results support direct stimulation of resection by NAs and alt-EJ as a mechanism of their documented radiosensitizing potential. We propose that this stimulation also occurs in repair-proficient cells and that it occurs throughout the cell cycle. It may therefore be harnessed to develop protocols combining NAs with radiation to treat human cancer.
Ionizing radiation induces DNA damage to cycling cells which, if left unrepaired or misrepaired, can cause cell inactivation or heritable, viable mutations. The latter can lead to cell transformation, which is thought to be an initial step of cancer formation. Consequently, the study of radiation-induced cell transformation promises to offer insights into the general properties of radiation carcinogenesis. As for other end points, the effectiveness in inducing cell transformation is elevated for radiation qualities with high linear energy transfer (LET), and the same is true for cancer induction. In considering DNA damage as a common cause of both cell death and transformations, a worthwhile approach is to apply mathematical models for the relative biological effectiveness (RBE) of cell killing to also assess the carcinogenic potential of high-LET radiation. In this work we used an established RBE model for cell survival and clinical end points, the local effect model (LEM), to estimate the transformation probability and the carcinogenic potential of ion radiation. The provided method consists of accounting for the competing processes of cell inactivation and induction of transformations or carcinogenic events after radiation exposure by a dual use of the LEM. Correlations between both processes inferred by the number of particle impacts to individual cells were considered by summing over the distribution of hits that individual cells receive. RBE values for cell transformation in vitro were simulated for three independent data sets, which were also used to gauge the approach. The simulations reflect the general RBE systematics both in magnitude and in energy and LET dependence. To challenge the developed method, in vivo carcinogenesis was investigated using the same concepts, where the probability for cancer induction within an irradiated organ was derived from the probability of finding carcinogenic events in individual cells. The predictions were compared with experimental data of carcinogenesis in Harderian glands of mice. Again, the developed method shows the same characteristics as the experimental data. We conclude that the presented method is helpful to predictively assess RBE for both neoplastic cell transformation and tumor induction after ion exposure within a wide range of LET values. The theoretical concept requires a non-linear component in the photon dose response for carcinogenic end points as a precondition for the observed enhanced effects after ion exposure, thus contributing to a long debate in epidemiology. Future work will use the method for assessing cancer induction in radiation therapy and exposure scenarios frequently discussed in radiation protection.
We examined lethal damages of X rays induced by direct and indirect actions, in terms of double-strand break (DSB) repair susceptibility using two kinds of repair-deficient Chinese hamster ovary (CHO) cell lines. These CHO mutants (51D1 and xrs6) are genetically deficient in one of the two important DNA repair pathways after genotoxic injury [homologous recombination (HR) and non-homologous end binding (NHEJ) pathways, respectively]. The contribution of indirect action on cell killing can be estimated by applying the maximum level of dimethylsulfoxide (DMSO) to get rid of OH radicals. To control the proportion of direct and indirect actions in lethal damage, we irradiated CHO mutant cells under aerobic and anoxic conditions. The contributions of indirect action on HR-defective 51D1 cells were 76% and 57% under aerobic and anoxic conditions, respectively. Interestingly, these percentages were similar to those of the wild-type cells even if the radiosensitivity was different. However, the contributions of indirect action to cell killing on NHEJ-defective xrs6 cells were 52% and 33% under aerobic and anoxic conditions, respectively. Cell killing by indirect action was significantly affected by the oxygen concentration and the DSB repair pathways but was not correlated with radiosensitivity. These results suggest that the lethal damage induced by direct action is mostly repaired by NHEJ repair pathway since killing of NHEJ-defective cells has significantly higher contribution by the direct action. In other words, the HR repair pathway may not effectively repair the DSB by direct action in place of the NHEJ repair pathway. We conclude that the type of DSB produced by direct action is different from that of DSB induced by indirect action.
The goals of this study were to determine whether curcumin can radiosensitize human urethral scar fibroblasts (HUSFs) and inhibit the synthesis of collagen, and to explore the molecular mechanism. Here, HUSFs were established and cultured in vitro and cell counting kit-8 (CCK-8) experiment and plate clone formation assay were performed to determine the appropriate concentration of curcumin and radiation dose. The radiosensitization of curcumin was confirmed by plate clone formation assay. Cell cycle distribution was determined by flow cytometry and apoptosis rate by TdT-mediated dUTP nick-end labeling (TUNEL). Western blot was used to detect the levels of collagen I, collagen III, Smad2, Smad3, Smad4, transforming growth factor-β (TGF-β1), Beclin1 and microtubule-associated protein light chain 3 (LC3), as a means of determining the mechanism. Our findings showed that curcumin enhanced radiosensitivity of HUSFs in vitro (sensitization enhancement ratio = 2.030). Furthermore, curcumin and radiation treatments promoted the apoptosis of HUSFs and blocked the cells in G2/M phase. In addition, curcumin combined with radiation inhibited the synthesis of collagen I and collagen III through Smad4 pathway, with possible involvement of autophagy. These results suggest that curcumin could be a radiosensitizer of HUSFs, inhibit the proliferation of HUSFs and suppress fibrosis by downregulation of Smad4 via autophagy.
After radiation exposure, endothelium-dependent vasorelaxation is impaired due to impaired nitric oxide production. Endothelial dysfunction is characterized by uncoupled endothelial nitric oxide synthase activity, oxidation of the reduced cofactor tetrahydrobiopterin to dihydrobiopterin as one well recognized mechanism. Oral treatment with sepiapterin, a tetrahydrobiopterin precursor, decreased infiltrating inflammatory cells and cytokine levels in mice with colitis. We therefore tested whether a synthetic sepiapterin, PTC923, might mitigate radiation-induced cardiac and pulmonary injuries. C57L/J wild-type 6–8-week-old mice of both sexes received 5 Gy total-body irradiation (TBI), followed by a top-up dose of 6.5 Gy to the thorax (total thoracic dose of 11.5 Gy). Starting from 24 h postirradiation, mice were treated once daily with 1 mg/kg PTC923 for six days by oral gavage. Assessment of lung injury by breathing rate was measured every other week and echocardiography to assess heart function was performed at different time points (8, 30, 60, 90 and 180 days). Plasma proteins (fibrinogen, neutrophil elastase, C-reactive protein, and IL-6) were assessed as well. TBI induced a reduction in cardiac contractile reserve and an impairment in diastolic function restored by daily oral PTC923. Postirradiation lung injury was significantly delayed by PTC923. TBI mice treated with PTC923 experienced a longer survival compared to nonirradiated mice (71% vs. 40% of mice alive after 180 days). PTC923-treated mice showed a reduction in inflammatory mediators, especially IL-6 and IL-1b. In conclusion, these findings support the proposal that PTC923 is a potential mitigator of cardiac and lung injury caused by TBI.
In this work, we considered the theoretical role of low-dose radiation therapy (approximately 0.5-1.0 Gy) in the treatment of respiratory distress syndrome associated with COVID-19 infection. Monte Carlo calculations were performed to gauge the ability to deliver low-dose radiation to the thoracic mid-plane using an orthovoltage machine. In addition, the potential harm of a single dose of 0.75 Gy (whole-lung irradiation) was assessed based on the recommendations of the BEIR-VII committee of the U.S. National Research Council. Based on the results of this work, it was determined that an orthovoltage machine (minimum 300 kVp) can be used to deliver 0.75 Gy dose to the lungs while respecting cutaneous tolerance. Using data from the BEIR-VII Committee, it is evident that the apparent benefits of such radiation treatment for patients suffering from severe manifestations of the COVID-19 infectious syndrome outweigh the potential loss of life due to radiation-induced malignancy. Although the vaccination against COVID-19 has become a reality, the spread and mortality in severely ill patients remain unacceptably high. The risk of outbreaks in the future is unknown. We suggest herein that low-dose radiotherapy at the bedside should be rigorously considered as a therapeutic option since it appears to be feasible and safe in the short and long term.
As the U.S. prepares for the possibility of a radiological or nuclear incident, or anticipated lunar and Mars missions, the exposure of individuals to neutron radiation must be considered. More information is needed on how to determine the neutron dose to better estimate the true biological effects of neutrons and mixed-field (i.e., neutron and photon) radiation exposures. While exposure to gamma-ray radiation will cause significant health issues, the addition of neutrons will likely exacerbate the biological effects already anticipated after radiation exposure. To begin to understand the issues and knowledge gaps in these areas, the National Institute of Allergy and Infectious Diseases (NIAID), Radiation Nuclear Countermeasures Program (RNCP), Department of Defense (DoD), Defense Threat Reduction Agency (DTRA), and National Aeronautics and Space Administration (NASA) formed an inter-agency working group to host a Neutron Radiobiology and Dosimetry Workshop on March 7, 2019 in Rockville, MD. Stakeholder interests were clearly positioned, given the differences in the missions of each agency. An overview of neutron dosimetry and neutron radiobiology was included, as well as a historical overview of neutron exposure research. In addition, current research in the fields of biodosimetry and diagnostics, medical countermeasures (MCMs) and treatment, long-term health effects, and computational studies were presented and discussed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere