Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
FLASH radiation therapy (FLASH-RT) reference dosimetry to obtain traceability, repeatability and stability of irradiations cannot be performed with conventional dosimetric methods, such as monitor chambers or ionization chambers. Until now, only passive dosimeters have provided the necessary dosimetric data. Alanine dosimetry is accurate; however, to be used for FLASH-RT in biological experiments and for clinical transfer to humans, the reading time needs to be reduced, while preserving a maximum deviation to the reference of ±2%. Optimization of alanine dosimetry was based on the acquisition of electron paramagnetic resonance (EPR) spectra with a Bruker spectrometer. Reading parameters such as the conversion time, the number of scans, the time constant, the microwave power and the modulation amplitude of the magnetic field were optimized as a trade-off between the signal-to-noise ratio (SNR) and the reading time of one measurement using the reference 10.1 Gy alanine pellet. After optimizing the parameters, we compared the doses measured with alanine pellets up to 100 Gy with the reference doses, and then determined the number of measurements necessary to get a difference lower than ±2%. A low-dose alanine pellet of 4.9 Gy was also measured to evaluate the quality of the optimization for doses lower than 10 Gy. The optimization of the Bruker default parameters made it possible to reduce the reading time for one measurement from 5.6 to 2.6 min. That reduction was not at the cost of the SNR because it was kept comparable to the default parameters. Three measurements were enough to obtain a maximum dose deviation to the reference of 1.8% for the range of 10–100 Gy. The total reading time for the three measurements was 7.8 min (3 × 2.6 min). For lower doses such as 4.9 Gy, three measurements led to a deviation greater than 5%. By increasing the number of measurements to five, the average difference to the reference dose was reduced to less than 5% with a total reading time increased to 13.0 min. For doses between 10 Gy and 100 Gy, the optimized acquisition parameters made it possible to keep the average differences between the reference and the measured doses below ±2%, for a reading time of 7.8 min. This enabled an accurate and fast dose determination for biological preparations as part of FLASH-beam irradiations.
In the novel and promising radiotherapy technique known as FLASH, ultra-high dose-rate electron beams are used. As a step towards clinical trials, dosimetric advances will be required for accurate dose delivery of FLASH. The purpose of this study was to determine whether a built-in transmission chamber of a clinical linear accelerator can be used as a real-time dosimeter to monitor the delivery of ultra-high-dose-rate electron beams. This was done by modeling the drop-in ion-collection efficiency of the chamber with increasing dose-per-pulse values, so that the ion recombination effect could be considered. The raw transmission chamber signal was extracted from the linear accelerator and its response was measured using radiochromic film at different dose rates/dose-per-pulse values, at a source-to-surface distance of 100 cm. An increase of the polarizing voltage, applied over the transmission chamber, by a factor of 2 and 3, improved the ion-collection efficiency, with corresponding increased efficiency at the highest dose-per-pulse values by a factor 1.4 and 2.2, respectively. The drop-in ion-collection efficiency with increasing dose-per-pulse was accurately modeled using a logistic function fitted to the transmission chamber data. The performance of the model was compared to that of the general theoretical Boag models of ion recombination in ionization chambers. The logistic model was subsequently used to correct for ion recombination at dose rates ranging from conventional to ultra-high, making the transmission chamber useful as a real-time monitor for the dose delivery of FLASH electron beams in a clinical setup.
It is well known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, which is distinct from low-LET radiation wherein O2 radiolytic yield is negligible. Since O2 is a powerful radiosensitizer, this fact is of practical relevance in cancer therapy with energetic heavy ions, such as carbon ions. It has recently been discovered that large doses of ionizing radiation delivered to tumors at very high dose rates (i.e., in a few milliseconds) have remarkable benefits in sparing healthy tissue while preserving anti-tumor activity compared to radiotherapy delivered at conventional, lower dose rates. This new method is called “FLASH radiotherapy” and has been tested using low-LET radiation (i.e., electrons and photons) in various pre-clinical studies and recently in a human patient. Although the exact mechanism(s) underlying FLASH are still unclear, it has been suggested that radiation delivered at high dose rates spares normal tissue via oxygen depletion. In addition, heavy-ion radiation achieves tumor control with reduced normal tissue toxicity due to its favorable physical depth-dose profile and increased radiobiological effectiveness in the Bragg peak region. To date, however, biological research with energetic heavy ions delivered at ultra-high dose rates has not been performed and it is not known whether heavy ions are suitable for FLASH radiotherapy. Here we present the additive or even synergistic advantages of integrating the FLASH dose rates into carbon-ion therapy. These benefits result from the ability of heavy ions at high LET to generate an oxygenated microenvironment around their track due to the occurrence of multiple (mainly double) ionization of water. This oxygen is abundant immediately in the tumor region where the LET of the carbon ions is very high, near the end of the carbon-ion path (i.e., in the Bragg peak region). In contrast, in the “plateau” region of the depth-dose distribution of ions (i.e., in the normal tissue region), in which the LET is significantly lower, this generation of molecular oxygen is insignificant. Under FLASH irradiation, it is shown that this early generation of O2 extends evenly over the entire irradiated tumor volume, with concentrations estimated to be several orders of magnitude higher than the oxygen levels present in hypoxic tumor cells. Theoretically, these results indicate that FLASH radiotherapy using carbon ions would have a markedly improved therapeutic ratio with greater toxicity in the tumor due to the generation of oxygen at the spread-out Bragg peak.
In this work, we investigated the delivery of a clinically acceptable pediatric whole brain radiotherapy plan at FLASH dose rates using two lateral opposing 40-MeV electron beams produced by a practically realizable linear accelerator system. The EGSnrc Monte Carlo software modules, BEAMnrc and DOSXYZnrc, were used to generate whole brain radiotherapy plans for a pediatric patient using two lateral opposing 40-MeV electron beams. Electron beam phase space files were simulated using a model of a diverging beam with a diameter of 10 cm at 50 cm SAD (defined at brain midline). The electron beams were collimated using a 10-cm-thick block composed of 5 cm of aluminum oxide and 5 cm of tungsten. For comparison, a 6-MV photon plan was calculated with the Varian AAA algorithm. Electron beam parameters were based on a novel linear accelerator designed for the PHASER system and powered by a commercial 6-MW klystron. Calculations of the linear accelerator's performance indicated an average beam current of at least 6.25 µA, providing a dose rate of 115 Gy/s at isocenter, high enough for cognition-sparing FLASH effects. The electron plan was less homogenous with a homogeneity index of 0.133 compared to the photon plan's index of 0.087. Overall, the dosimetric characteristics of the 40-MeV electron plan were suitable for treatment. In conclusion, Monte Carlo simulations performed in this work indicate that two lateral opposing 40-MeV electron beams can be used for pediatric whole brain irradiation at FLASH dose rates of >115 Gy/s and serve as motivation for a practical clinical FLASH radiotherapy system, which can be implemented in the near future.
The observation of an enhanced therapeutic index for FLASH radiotherapy in mice has created interest in practical laboratory-based FLASH irradiators. To date, systems capable of 3D conformal FLASH irradiation in mice have been lacking. We are developing such a system, incorporating a high-current linear accelerator to produce a collimated X-ray beam in a stationary beamline design, rotating the mouse about a longitudinal axis to achieve conformal irradiation from multiple beam directions. The purpose of this work was to evaluate the reproducibility of mouse anatomy under rotation at speeds compatible with conformal FLASH delivery. Three short-hair mice and two hairless mice were immobilized under anesthesia in body weight-specific contoured plastic molds, and subjected to three rotational (up to 3 revolutions/s) and two non-rotational movement interventions. MicroCT images were acquired before and after each intervention. The displacements of 11 anatomic landmarks were measured on the image pairs. The displacement of the anatomical landmarks with any of the interventions was 0.5 mm or less for 92.4% of measurements, with a single measurement out of 275 (11 landmarks × 5 interventions × 5 mice) reaching 1 mm. There was no significant difference in the displacements associated with rotation compared to those associated with moving the immobilized mouse in and out of a scanner or with leaving the mouse in place for 5 min with no motion. There were no significant differences in displacements between mice with or without hair, although the analysis is limited by small numbers, or between different anatomic landmarks. These results show that anatomic reproducibility under rotation speed corresponding to FLASH irradiation times appears to be compatible with conformal/stereotactic irradiation in mice.
Radiation chemists have been routinely using high-dose microsecond-pulsed irradiation for almost 60 years, involving many thousands of studies, in the technique of “pulse radiolysis”. This involves dose rates broadly similar to the FLASH regimen now attracting interest in radiotherapy and radiobiology. Using the experience gained from radiation chemistry, two scenarios are examined here that may provide a mechanistic basis for any differential response in normal tissues versus tumors in FLASH radiotherapy. These are: 1. possible depletion of a chemical critical to the response to radiation, and 2. radical–radical reactions as a possible cause of effects occurring mainly with high-intensity pulsed radiation. The evidence for changes in relative levels of so-called “reactive oxygen species” produced after irradiation using FLASH versus conventional irradiation modalities is also examined.
Luis A. Soto, Kerriann M. Casey, Jinghui Wang, Alexandra Blaney, Rakesh Manjappa, Dylan Breitkreutz, Lawrie Skinner, Suparna Dutt, Ryan B. Ko, Karl Bush, Amy S. Yu, Stavros Melemenidis, Samuel Strober, Edgar Englemann, Peter G. Maxim, Edward E. Graves, Billy W. Loo Jr
Radiation therapy, along with surgery and chemotherapy, is one of the main treatments for cancer. While radiotherapy is highly effective in the treatment of localized tumors, its main limitation is its toxicity to normal tissue. Previous preclinical studies have reported that ultra-high dose-rate (FLASH) irradiation results in reduced toxicity to normal tissues while controlling tumor growth to a similar extent relative to conventional-dose-rate (CONV) irradiation. To our knowledge this is the first report of a dose-response study in mice comparing the effect of FLASH irradiation vs. CONV irradiation on skin toxicity. We found that FLASH irradiation results in both a lower incidence and lower severity of skin ulceration than CONV irradiation 8 weeks after single-fraction hemithoracic irradiation at high doses (30 and 40 Gy). Survival was also higher after FLASH hemithoracic irradiation (median survival >180 days at doses of 30 and 40 Gy) compared to CONV irradiation (median survival 100 and 52 days at 30 and 40 Gy, respectively). No ulceration was observed at doses 20 Gy or below in either FLASH or CONV. These results suggest a shifting of the dose-response curve for radiation-induced skin ulceration to the right for FLASH, compared to CONV irradiation, suggesting the potential for an enhanced therapeutic index for radiation therapy of cancer.
Persistent vasculature abnormalities contribute to an altered CNS microenvironment that further compromises the integrity of the blood-brain barrier and exposes the brain to a host of neurotoxic conditions. Standard radiation therapy at conventional (CONV) dose rate elicits short-term damage to the blood-brain barrier by disrupting supportive cells, vasculature volume and tight junction proteins. While current clinical applications of cranial radiotherapy use dose fractionation to reduce normal tissue damage, these treatments still cause significant complications. While dose escalation enhances treatment of radiation-resistant tumors, methods to subvert normal tissue damage are clearly needed. In this regard, we have recently developed a new modality of irradiation based on the use of ultra-high-dose-rate FLASH that does not induce the classical pathogenic patterns caused by CONV irradiation. In previous work, we optimized the physical parameters required to minimize normal brain toxicity (i.e., FLASH, instantaneous intra-pulse dose rate, 6.9 · 106 Gy/s, at a mean dose rate of 2,500 Gy/s), which we then used in the current study to determine the effect of FLASH on the integrity of the vasculature and the blood-brain barrier. Both early (24 h, one week) and late (one month) timepoints postirradiation were investigated using C57Bl/6J female mice exposed to whole-brain irradiation delivered in single doses of 25 Gy and 10 Gy, respectively, using CONV (0.09 Gy/s) or FLASH (>106 Gy/s). While the majority of changes found one day postirradiation were minimal, FLASH was found to reduce levels of apoptosis in the neurogenic regions of the brain at this time. At one week and one month postirradiation, CONV was found to induce vascular dilation, a well described sign of vascular alteration, while FLASH minimized these effects. These results were positively correlated with and temporally coincident to changes in the immunostaining of the vasodilator eNOS colocalized to the vasculature, suggestive of possible dysregulation in blood flow at these latter times. Overall expression of the tight junction proteins, occludin and claudin-5, which was significantly reduced after CONV irradiation, remained unchanged in the FLASH-irradiated brains at one and four weeks postirradiation. Our data further confirm that, compared to isodoses of CONV irradiation known to elicit detrimental effects, FLASH does not damage the normal vasculature. These data now provide the first evidence that FLASH preserves microvasculature integrity in the brain, which may prove beneficial to cognition while allowing for better tumor control in the clinic.
Pierre Montay-Gruel, Mineh Markarian, Barrett D. Allen, Jabra D. Baddour, Erich Giedzinski, Patrik Goncalves Jorge, Benoît Petit, Claude Bailat, Marie-Catherine Vozenin, Charles Limoli, Munjal M. Acharya
Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1–2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1–10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the “FLASH effect.” Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.
Limited availability of proton irradiators optimized for high-dose-rate studies makes the preclinical research of proton FLASH therapy challenging. We assembled two proton irradiation platforms that are capable of delivering therapeutic doses to thin biological samples at dose rates equal to and above 100 Gy/s. We optimized and tested dosimetry protocols to assure accurate dose delivery regardless of the instantaneous dose rate. The simplicity of the experimental setups and availability of custom-designed sample holders allows these irradiation platforms to be easily adjusted to accommodate different types of samples, including cell monolayers, 3D tissue models and small animals. We have also fabricated a microfluidic flow-through device for irradiations of biological samples in suspension. We present one example of a measurement with accompanying preliminary results for each of the irradiation platforms. One irradiator was used to study the role of proton dose rate on cell survival for three cancer cell lines, while the other was used to investigate the depletion of oxygen from an aqueous solution by water radiolysis using short intense proton pulses. No dose-rate-dependent variation was observed between the survival fractions of cancer cells irradiated at dose rates of 0.1, 10 and 100 Gy/s up to 10 Gy. On the other hand, irradiations of Fricke solution at 1,000 Gy/s indicated full depletion of oxygen after proton doses of 107 Gy and 56 Gy for samples equilibrated with 21% and 4% oxygen, respectively.
Extremely high-dose-rate irradiation, referred to as FLASH, has been shown to be less damaging to normal tissues than the same dose administrated at conventional dose rates. These results, typically seen at dose rates exceeding 40 Gy/s (or 2,400 Gy/min), have been widely reported in studies utilizing photon or electron radiation as well as in some proton radiation studies. Here, we report the development of a proton irradiation platform in a clinical proton facility and the dosimetry methods developed. The target is placed in the entry plateau region of a proton beam with a specifically designed double-scattering system. The energy after the double-scattering system is 227.5 MeV for protons that pass through only the first scatterer, and 225.5 MeV for those that also pass through the second scatterer. The double-scattering system was optimized to deliver a homogeneous dose distribution to a field size as large as possible while keeping the dose rate >100 Gy/s and not exceeding a cyclotron current of 300 nA. We were able to obtain a collimated pencil beam (1.6 × 1.2 cm2 ellipse) at a dose rate of ∼120 Gy/s. This beam was used for dose-response studies of partial abdominal irradiation of mice. First results indicate a potential tissue-sparing effect of FLASH.
Hualin Zhang, Xiaodong Wu, Xin Zhang, Sha X. Chang, Ali Megooni, Eric D. Donnelly, Mansoor M. Ahmed, Robert J. Griffin, James S. Welsh, Charles B. Simone II, Nina A. Mayr
The limits of radiation tolerance, which often deter the use of large doses, have been a major challenge to the treatment of bulky primary and metastatic cancers. A novel technique using spatial modulation of megavoltage therapy beams, commonly referred to as spatially fractionated radiation therapy (SFRT) (e.g., GRID radiation therapy), which purposefully maintains a high degree of dose heterogeneity across the treated tumor volume, has shown promise in clinical studies as a method to improve treatment response of advanced, bulky tumors. Compared to conventional uniform-dose radiotherapy, the complexities of megavoltage GRID therapy include its highly heterogeneous dose distribution, very high prescription doses, and the overall lack of experience among physicists and clinicians. Since only a few centers have used GRID radiation therapy in the clinic, wide and effective use of this technique has been hindered. To date, the mechanisms underlying the observed high tumor response and low toxicity are still not well understood. To advance SFRT technology and planning, the Physics Working Group of the Radiosurgery Society (RSS) GRID/Lattice, Microbeam and Flash Radiotherapy Working Groups, was established after an RSS-NCI Workshop. One of the goals of the Physics Working Group was to develop consensus recommendations to standardize dose prescription, treatment planning approach, response modeling and dose reporting in GRID therapy. The objective of this report is to present the results of the Physics Working Group's consensus that includes recommendations on GRID therapy as an SFRT technology, field dosimetric properties, techniques for generating GRID fields, the GRID therapy planning methods, documentation metrics and clinical practice recommendations. Such understanding is essential for clinical patient care, effective comparisons of outcome results, and for the design of rigorous clinical trials in the area of SFRT. The results of well-conducted GRID radiation therapy studies have the potential to advance the clinical management of bulky and advanced tumors by providing improved treatment response, and to further develop our current radiobiology models and parameters of radiation therapy design.
Abscopal effects are an important aspect of targeted radiation therapy due to their implication in normal tissue toxicity from chronic inflammatory responses and mutagenesis. Gene expression can be used to determine abscopal effects at the molecular level. Synchrotron microbeam radiation therapy utilizing high-intensity X rays collimated into planar microbeams is a promising cancer treatment due to its reported ability to ablate tumors with less damage to normal tissues compared to conventional broadbeam radiation therapy techniques. The low scatter of synchrotron radiation enables microbeams to be delivered to tissue effectively, and is also advantageous for out-of-field studies because there is minimal interference from scatter. Mouse legs were irradiated at a dose rate of 49 Gy/s and skin samples in the out-of-field areas were collected. The out-of-field skin showed an increase in Tnf expression and a decrease in Mdm2 expression, genes associated with inflammation and DNA damage. These expression effects from microbeam exposure were similar to those found with broadbeam exposure. In immune-deficient Ccl2 knockout mice, we identified a different gene expression profile which showed an early increase in Mdm2, Tgfb1, Tnf and Ccl22 expression in out-of-field skin that was not observed in the immune-proficient mice. Our results suggest that the innate immune system is involved in out-of-field tissue responses and alterations in the immune response may not eliminate abscopal effects, but could change them.
Andrew J. Johnsrud, Samir V. Jenkins, A. Jamshidi-Parsian, Charles M. Quick, Edvaldo P. Galhardo, Ruud P.M. Dings, Kieng B. Vang, Ganesh Narayanasamy, Issam Makhoul, Robert J. Griffin
The combination of radiotherapy and immunotherapy may generate synergistic anti-tumor host immune responses and promote abscopal effects. Spatial fractionation of a radiation dose has been found to promote unique physiological responses of tumors, which might promote synergy with immunotherapy. To determine whether spatial fractionation may augment immune activity, whole-tumor or spatial fractionation grid radiation treatment (GRID) alone or in combination with antibodies against immune checkpoints PD1 and CTLA-4 were tested in an immunocompetent mouse model using a triple negative breast tumor (4T1). Tumor growth delay, immunohistochemistry and flow cytometry were used to characterize the effects of each treatment type. Whole-beam radiation with immune checkpoint inhibition significantly restrained tumor growth in the irradiated tumor, but not abscopal tumors, compared to either of these treatments alone. In mice that received spatially fractionated irradiation, evidence of abscopal immune responses were observed in contralateral tumors with markedly enhanced infiltration of both antigen-presenting cells and activated T cells, which were preceded by increased systemic IFNγ production and led to eventual tumor growth delay. These studies suggest that systemic immune activation may be triggered by employing GRID to a primary tumor lesion, promoting anti-tumor immune responses outside the treatment field. Interestingly, PD-L1 was found to be upregulated in abscopal tumors from GRID-treated mice. Combined radio-immunotherapy therapy is becoming a validated and novel approach in the treatment of cancer. With the potential increased benefit of GRID to augment both local and metastatic disease responses, further exploration of GRID treatment as a part of current standards of care is warranted.
Spatially fractionated radiation therapy (SFRT) has been based on the delivery of a single high-dose fraction to a large treatment area that has been divided into several smaller fields, reducing the overall toxicity and adverse effects. Complementary microbeam studies have also shown an effective tissue-sparing effect (TSE) in various tissue types and species after spatially fractionated irradiation at the microscale level; however, the underlying biological mechanism remains elusive. In the current study, using the combination of an ex vivo mouse spermatogenesis model and high-precision X-ray microbeams, we revealed the significant TSE for maintaining spermatogenesis after spatially fractionated microbeam irradiation. We used the following ratios of the irradiated to nonirradiated areas: 50:50, 150:50 and 350:50 µm-slit, where approximately 50, 75 and 87.5% of the sample was irradiated (using center-to-center distances of 100, 200 and 400 µm, respectively). We found that the 50 and 75% micro-slit irradiated testicular tissues showed an almost unadulterated TSE for spermatogenesis, whereas the 87.5% micro-slit irradiated tissues showed an incomplete TSE. This suggests that the TSE efficiency for spermatogenesis is dependent on the size of the nonirradiated spermatogonial stem cell pool in the irradiated testicular tissues. In addition, there would be a spatiotemporal limitation of stem cell migration/competition, resulting in the insufficient TSE for 87.5% micro-slit irradiated tissues. These stem cell characteristics are essential for the accurate prediction of tissue-level responses during or after SFRT, indicating the clinical potential for achieving better outcomes while preventing adverse effects.
James W. Snider, Jason Molitoris, Susan Shyu, Tejan Diwanji, Stephanie Rice, Emily Kowalski, Cristina Decesaris, Jill S. Remick, Byongyong Yi, Baoshe Zhang, Andrea Hall, Nader Hanna, Vincent Y. Ng, William F. Regine
Spatially fractionated radiotherapy (GRID) has been utilized primarily in the palliative and definitive treatment of bulky tumors. Delivered in the modern era primarily with megavoltage photon therapy, this technique offers the promise of safe dose escalation with potential immunogenic, bystander and microvasculature effects that can augment a conventionally fractionated course of radiotherapy. At the University of Maryland, an institutional standard has arisen to incorporate a single fraction of GRID radiation in large (>8 cm), high-risk soft tissue and osteosarcomas prior to a standard fractionated course. Herein, we report on the excellent pathologic responses and apparent safety of this regimen in 26 consecutive patients.
Proton minibeam radiation therapy (pMBRT) is a new approach in proton radiotherapy, by which a significant increase in the therapeutic index has already been demonstrated in RG2 glioma-bearing rats. In the current study we investigated the response of other types of glioma (F98) and performed a comparative evaluation of tumor control effectiveness by pMBRT (with different levels of dose heterogeneity) versus conventional proton therapy. The results of our study showed an equivalent increase in the lifespan for all evaluated groups (conventional proton irradiation and pMBRT) and no significant differences in the histopathological analysis of the tumors or remaining brain tissue. The reduced long-term toxicity observed with pMBRT in previous evaluations at the same dose suggests a possible use of pMBRT to treat glioma with less side effects while ensuring the same tumor control achieved with standard proton therapy.
Spatially fractionated radiation therapy (SFRT) has shown promise in generating high tumor response and local control in the treatment of various palliative and locally advanced bulky tumors. SFRT has not yet been studied systematically in cancer of the cervix. Here we report the first series of patients receiving SFRT for advanced/bulky cervical cancer. Ten patients with far-advanced bulky cervical cancer, stage IIIB–IVA (seven squamous cell and three adeno/adenosquamous carcinomas) received lattice radiation therapy (LRT), a variant of SFRT. The LRT regimen consisted of a dose of 24 Gy in three fractions, given to an average of five high-dose spheres within the gross tumor volume (GTV). The dose in the peripheral GTV was limited to 9 Gy in three fractions, using the volumetric modulated arc therapy (VMAT) technique. LRT was followed subsequently by conventionally fractionated external beam irradiation to 44.28 Gy (range: 39.60–45.00 Gy in 1.8 Gy fractions). All patients received concurrent cisplatin chemotherapy. Tumor response was assessed clinically, by morphological imaging (CT, MRI) and 18FDG PET/CT. Tumor control and survival rates were estimated using Kaplan-Meier analysis. All patients had local control at a median follow-up of 16 months (1–77). The two-year disease-specific survival rate was 53.3%. All cancer deaths were due to metastatic failure with local control maintained. Among the three patients who died of disease, all had adeno- or adenosquamous carcinoma histology, and no deaths from disease occurred among the patients with squamous cell carcinoma (P = 0.010). There were no grade ≥3 short-term or long-term treatment-related complications. Intra-treatment morphological tumor regression was highly variable (mean: 54%, range: 6–91%). After therapy, the complete metabolic response was 88.9% (8/9), and one patient out of the nine patients with post-treatment PET-CT had partial response (11.1%). Our preliminary data suggest that LRT-based SFRT is well tolerated in patients with far-advanced bulky cervical cancer and results in favorable tumor responses and high local control. These observations confirm prior reports of favorable tumor control and toxicity outcomes with SFRT in other advanced/bulky malignancies. Our findings are corroborated by high molecular-imaging-based tumor response. These encouraging hypothesis-generating results require cautious interpretation and confirmation with larger patient cohorts, preferably through a multi-institutional controlled randomized clinical trial.
Xiaodong Wu, Naipy C. Perez, Yi Zheng, Xiaobo Li, Liuqing Jiang, Beatriz E. Amendola, Benhua Xu, Nina A. Mayr, Jiade J. Lu, Georges F. Hatoum, Hualin Zhang, Sha X. Chang, Robert J. Griffin, Chandan Guha
The concept of spatially fractionated radiation therapy (SFRT) was conceived over 100 years ago, first in the form of GRID, which has been applied to clinical practice since its early inception and continued to the present even with markedly improved instrumentation in radiation therapy. LATTICE radiation therapy (LRT) was introduced in 2010 as a conceptual 3D extension of GRID therapy with several uniquely different features. Since 2014, when the first patient was treated, over 150 patients with bulky tumors worldwide have received LRT. Through a brief review of the basic principles and the analysis of the collective clinical experience, a set of technical recommendations and guidelines are proposed for the clinical implementation of LRT. It is to be recognized that the current clinical practice of SFRT (GRID or LRT) is still largely based on the heuristic principles. With advancements in basic biological research and the anticipated clinical trials to systemically assess the efficacy and risk, progressively robust optimizations of the technical parameters are essential for the broader application of SFRT in clinical practice.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere