Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The purpose of the current study was to characterize the effects of simulated microgravity and radiation-induced changes in retina and retinal vasculature, and to assess the accompanying early changes in immune cells and hematological parameters. To better understand the effects of spaceflight, we used a combination of treatments designed to simulate both the radiation and low-gravity aspects of space conditions. To simulate the broad energy spectrum of a large solar particle event (SPE) and galactic cosmic ray (GCR) radiation, male C57BL/6J mice were exposed to whole-body irradiation using fully modulated beams of 150-MeV protons containing particles of energy from 0 to 150 MeV and a uniform dose-vs.-depth profile. The mice were also hindlimb-unloaded (HLU) by tail suspension. Mice were unloaded for 7 days, exposed to 50 cGy, unloaded for an additional 7 days and then sacrificed for tissue isolation at days 4 and 30 after the combined treatments. Increases in the number of apoptotic cells were observed in the endothelial cells of mice that received radiation alone or with HLU compared to controls at both days 4 and 30 (P < 0.05). Endothelial nitric oxide synthase (eNOS) levels were significantly elevated in the retina after irradiation only or combined with HLU compared to controls at the 30-day time point (P < 0.05). The most robust changes were observed in the combination group, suggesting a synergistic response to radiation and unloading. For hematopoietic parameters, our analysis indicated the main effects for time and radiation at day 4 after treatments (day 11 postirradiation) (P < 0.05), but a smaller influence of HLU for both white blood cell and lymphocyte counts. The group treated with both radiation and HLU showed greater than 50% reduction in lymphocyte counts compared to controls. Radiation-dependent differences were also noted in specific lymphocyte subpopulations (T, B, natural killer cells). This study shows indications of an early effect of low-dose radiation and spaceflight conditions on retina and immune populations.
Chang-Lung Lee, Andrea R. Daniel, Matt Holbrook, Jeremy Brownstein, Lorraine Da Silva Campos, Stephanie Hasapis, Yan Ma, Luke B. Borst, Cristian T. Badea, David G. Kirsch
Exposure of the gastrointestinal (GI) tract to ionizing radiation can cause acute and delayed injury. However, critical cellular targets that regulate the development of radiation-induced GI injury remain incompletely understood. Here, we investigated the role of vascular endothelial cells in controlling acute and delayed GI injury after total-abdominal irradiation (TAI). To address this, we used genetically engineered mice in which endothelial cells are sensitized to radiation due to the deletion of the tumor suppressor p53. Remarkably, we found that VE-cadherin-Cre; p53FL/FL mice, in which both alleles of p53 are deleted in endothelial cells, were not sensitized to the acute GI radiation syndrome, but these mice were highly susceptible to delayed radiation enteropathy. Histological examination indicated that VE-cadherin-Cre; p53FL/FL mice that developed delayed radiation enteropathy had severe vascular injury in the small intestine, which was manifested by hemorrhage, loss of microvessels and tissue hypoxia. In addition, using dual-energy CT imaging, we showed that VE-cadherin-Cre; p53FL/FL mice had a significant increase in vascular permeability of the small intestine in vivo 28 days after TAI. Together, these findings demonstrate that while sensitization of endothelial cells to radiation does not exacerbate the acute GI radiation syndrome, it is sufficient to promote the development of late radiation enteropathy.
Serpins are a group of serine-proteases involved in multiple signal transduction pathways in mammalian cells. In particular, Serpinb3a is involved in the lysosomal necrosis cell death pathway with components that overlap with radiation-induced apoptosis. We investigated the radiation response of Serpinb3a−/− mice compared to Serpinb3a+/+ mice on the Balb/c background. Serpinb3a−/− mice showed significant radioresistance to a dose of 8.0 Gy total-body irradiation, compared to Serpinb3a+/+ Balb/c mice. Long-term bone marrow cultures from Serpinb3a−/− mice showed increased longevity. In clonogenic survival assays, fresh bone marrow hematopoietic progenitors, as well as clonal interleukin-3 (IL-3)-dependent hematopoietic progenitor and bone marrow stromal cell lines from Serpinb3a−/− mice were radioresistant. Serpinb3a−/− mouse bone marrow-derived stromal cell lines had increased baseline and postirradiation antioxidant capacity. Serpinb3a−/− bone marrow stromal cells showed increased radiation-induced RNA transcripts for MnSOD and p21, and decreased levels of p53 and TGF-b. Both irradiated Serpinb3a−/− mouse bone marrow stromal cell lines and plasma removed from total-body irradiated mice had decreased levels of expression of stress response and inflammation-associated proteins. Abrogation of Serpinb3a may be a potential new target for mitigation of radiation effects.
Chromosome aberrations (CAs) are one of the effects of radiation exposure and can have implications for human health in the space environment, since they are related to cancer risk. In radiation research, chromosome aberrations are a convenient biomarker for carcinogenesis. To shed light on the formation and quality of chromosome aberrations in the space environment, many experiments and simulations have been performed using chromosome aberrations in human cells, induced by heavy ions, which are present in galactic cosmic rays (GCRs). In this work, the new simulation program, radiation-induced tracks, chromosome aberrations, repair and damage (RITCARD), is presented. This software program is based on the algorithm used in the NASA Radiation Track Image (NASARTI) model with some improvements. NASARTI and RITCARD are both comprised of four parts: a random walk (RW) algorithm for simulating chromosomes in a nucleus; a deoxyribonucleic acid (DNA) damage algorithm; a break repair process; and a function to assess and count chromosome aberrations. Prior to running RITCARD, the code, relativistic ion tracks (RITRACKS), is used to simulate detailed radiation track structure and calculate time-dependent differential voxel dose maps in a parallelepiped centered on a cell nucleus. The RITCARD program reads the pre-calculated voxel dose and locates the intersections between the voxels and the chromosomes that were simulated by random walk. Radiation-induced breaks occur strictly at these intersections with a probability that is a function of the voxel dose. When a break occurs in the random walk, the corresponding chromosome piece is cut into two fragments where each has a free end at the position of the break. RITCARD generates a collection of all fragments, free ends, and enlists free end pairs. In the next step, the algorithm simulates the time-dependent rejoining of free end pairs, using different probabilities for pairs originating from a given break (proper) or from different breaks (improper), which results in the formation of fragment sequences. By grouping these sequences, the program determines the number and types of aberrations, based on the same criteria used in our experiment. The new program is used to assess the yields of various types of chromosome aberrations in human fibroblast cells for several ions (1H+, 4He2+, 12C6+, 16O8+, 20Ne10+, 28Si14+, 48Ti22+ and 56Fe26+) with energies varying from 10 to 1,000 MeV/n. The results show linear and linear-quadratic dose dependence for most chromosome aberrations types. The calculation results were compared with those obtained by fluorescence in situ hybridization (FISH) experiments that were performed by our group. The simulations and experiments are in better agreement at lower LET. Regarding the simulation results, the coefficient of the linear part of the dose-dependence curve also peaks at an LET value of approximately 100 keV/lm, which evokes a relative biological effectiveness (RBE) peak found by other researchers.
Atsuko Sadakane, Benjamin French, Alina V. Brenner, Dale L. Preston, Hiromi Sugiyama, Eric J. Grant, Ritsu Sakata, Mai Utada, Elizabeth K. Cahoon, Kiyohiko Mabuchi, Kotaro Ozasa
The Life Span Study (LSS) of atomic bomb survivors has consistently demonstrated significant excess radiation-related risks of liver cancer since the first cancer incidence report. Here, we present updated information on radiation risks of liver, biliary tract and pancreatic cancers based on 11 additional years of follow-up since the last report, from 1958 to 2009. The current analyses used improved individual radiation doses and accounted for the effects of alcohol consumption, smoking and body mass index. The study participants included 105,444 LSS participants with known individual radiation dose and no known history of cancer at the start of follow-up. Cases were the first primary incident cancers of the liver (including intrahepatic bile duct), biliary tract (gallbladder and other and unspecified parts of biliary tract) or pancreas identified through linkage with population-based cancer registries in Hiroshima and Nagasaki. Poisson regression methods were used to estimate excess relative risks (ERRs) and excess absolute risks (EARs) associated with DS02R1 doses for liver (liver and biliary tract cancers) or pancreas (pancreatic cancer). We identified 2,016 incident liver cancer cases during the follow-up period. Radiation dose was significantly associated with liver cancer risk (ERR per Gy: 0.53, 95% CI: 0.23 to 0.89; EAR per 10,000 person-year Gy: 5.32, 95% CI: 2.49 to 8.51). There was no evidence for curvature in the radiation dose response (P=0.344). ERRs by age-at-exposure categories were significantly increased among those who were exposed at 0–9, 10–19 and 20–29 years, but not significantly increased after age 30 years, although there was no statistical evidence of heterogeneity in these ERRs (P = 0.378). The radiation ERRs were not affected by adjustment for smoking, alcohol consumption or body mass index. As in previously reported studies, radiation dose was not associated with risk of biliary tract cancer (ERR per Gy: –0.02, 95% CI: –0.25 to 0.30). Radiation dose was associated with a nonsignificant increase in pancreatic cancer risk (ERR per Gy: 0.38, 95% CI: <0 to 0.83). The increased risk was statistically significant among women (ERR per Gy: 0.70, 95% CI: 0.12 to 1.45), but not among men.
We developed a fully-automated dicentric chromosome assay (DCA) in multiwell plates. All operations, from sample loading to chromosome scoring, are performed, without human intervention, by the second-generation Rapid Automated Biodosimetry Tool II (RABiT-II) robotic system, a plate imager and custom software, FluorQuantDic. The system requires small volumes of blood (30 µl per individual) to determine radiation dose received as a result of a radiation accident or terrorist attack. To visualize dicentrics in multiwell plates, we implemented a non-classical protocol for centromere FISH staining at 37°C. The RABiT-II performs rapid analysis of chromosomes after extracting them from metaphase cells. With the use of multiwell plates, many samples can be screened at the same time. Thus, the RABiT-II DCA provides an advantage during triage when risk-based stratification and medical management are required for a large population exposed to unknown levels of ionizing radiation.
The production of 2-deoxyribonolactones (C1′-oxidation product), C4′-oxidized abasic sites and C5′-carbonyl terminated strand scission products was investigated in complexes of double-stranded DNA with protamine, poly-L-lysine and spermine exposed to X-ray radiation. The lesions were quantified by high-performance liquid chromatography through the release of the corresponding low-molecular-weight products 5-methylenefuran-2(5H)-one, N-(2′-hydroxy-ethyl)-5-methylene-D3-pyrrolin-2-one and furfural, respectively. All binders were found to increase the relative yield of C1′ oxidation up to 40% of the total 2-deoxyribose damage through the indirect effect versus approximately 18% typically found in homogeneous solutions by the same technique. On the contrary, the yield of C5′-oxidation was found to be suppressed almost completely, while in homogeneous solutions it constituted approximately 14% of the total. The observed change in end product distribution is attributed to free valence transfer to and from the complexing agent, although the mechanisms associated with this process remain unclear.
Ritsu Sakata, Dale L. Preston, Alina V. Brenner, Hiromi Sugiyama, Eric J. Grant, Preetha Rajaraman, Atsuko Sadakane, Mai Utada, Benjamin French, Elizabeth K. Cahoon, Kiyohiko Mabuchi, Kotaro Ozasa
As a follow-up to the comprehensive work on solid cancer incidence in the Life Span Study (LSS) cohort of atomic bomb survivors between 1958 and 1998, we report here on updated radiation risk estimates for upper digestive tract cancers. In this study, we added 11 years of follow-up (1958–2009), used improved radiation dose estimates, considered effects of smoking and alcohol consumption and performed dose-response analyses by anatomical sub-site. In examining 52 years'worth of data, we ascertained the occurrence of 394 oral cavity/pharyngeal cancers, 486 esophageal cancers and 5,661 stomach cancers among 105,444 subjects. The radiation risk for oral cavity/pharyngeal cancer, other than salivary gland, was elevated but not significantly so. In contrast, salivary gland cancer exhibited a strong linear dose response with excess relative risk (ERR) of 2.54 per Gy [95% confidence interval (CI): 0.69 to 6.1]. Radiation risk decreased considerably with increasing age at time of exposure (–66% per decade, 95% CI: –88% to –32%). The dose response for esophageal cancer was statistically significant under a simple linear, linear-quadratic and quadratic model. Both linear-quadratic and quadratic models described the data better than a simple linear model and, of the two, the quadratic model showed a marginally better fit based on the Akaike Information Criteria. Sex difference in linear ERRs was not statistically significant; however, when the dose-response shape was allowed to vary by sex, statistically significant curvature was found among males, with no evidence of quadratic departure from linearity among females. The risk for stomach cancer increased significantly with dose and there was little evidence for quadratic departure from linearity among either males or females. The sex-averaged ERR at age 70 was 0.33 per Gy (95% CI: 0.20 to 0.47). The ERR decreased significantly (–1.93 power of attained age, 95% CI: –2.94 to –0.82) with increasing attained age, but not with age at exposure, and was higher in females than males (P = 0.02). Our results are largely consistent with the results of prior LSS analyses. Salivary gland, esophageal and stomach cancers continue to show significant increases in risk with radiation dose. Adjustment for lifestyle factors had almost no impact on the radiation effect estimates. Further follow-up of the LSS cohort is important to clarify the nature of radiation effects for upper digestive tract cancers, especially for oral cavity/pharyngeal and esophageal cancers, for which detailed investigation for dose-response shape could not be conducted due to the small number of cases.
Stem cell transplantation is thought to be an effective method for radiation-induced cognitive dysfunction. However, there have been few studies performed to determine whether transplanted stem cells can integrate into hippocampus circuits. Brain-derived neurotrophic factor (BDNF) plays a critical role in brain development. Therefore, we investigated the differentiation and integration of brain-derived neurotrophic factor overexpressing neural stem cells (NSCs). We observed that these transplanted cells migrated to the subgranular zone of irradiated rats at 4 weeks after transplantation. However, control neural stem cells were disordered, distributing in the irradiated hippocampus, and showed greater astroglia differentiation tendency. Retrograde monosynaptic tracing showed that neurons derived from transplanted brain-derived neurotrophic factor overexpressing neural stem cells integrated into the circuit better than those from control cells. Brain-derived neurotrophic factor overexpressing neural stem cells s promoted the expression of brain-derived neurotrophic factor and nerve growth factor and reduced the number of activated microglia caused by radiation. Transplanted brain-derived neurotrophic factor overexpressing neural stem cells failed to improve radiation-induced cognitive dysfunction. These results indicate that brain-derived neurotrophic factor overexpressing neural stem cells suffered less from changed microenvironment after irradiation and possessed the ability to improve the host niche. Neurons derived from Brain-derived neurotrophic factor overexpressing neural stem cells showed the integration potency in the irradiated hippocampus.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere