Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Based on encouraging results from several early-phase clinical trials, there is renewed interest in the use of pharmacological ascorbate (i.e., intravenous administration resulting in >≈10 mM plasma ascorbate concentrations) in combination with standard-of-care cancer treatments including radiation and/or chemotherapy. Under normal, healthy physiological conditions, humans maintain plasma ascorbate concentrations in the range of 40–80 lM. However, in vivo antitumor activity requires supraphysiological plasma concentrations on the order of ≈20 mM. The stability of ascorbate in whole blood has been well studied. The goal of this work was to determine the appropriate handling methods of blood samples, after treatment with pharmacological ascorbate, which allow for the optimal measurement of ascorbate in plasma for dosing verification. Our findings indicate that ascorbate concentrations (mM) are relatively stable in whole blood collected in sodium heparin tubes and stored on ice (or at 4°C) for up to 24 h. After 24 h, ascorbate levels in plasma are relatively stable at 4°C for up to 72 h. At –20°C, plasma concentrations are relatively stable for 2–3 weeks, while at –80°C, ascorbate concentrations in plasma are stable for at least one month. In contrast, patient samples showed better stability when stored as whole blood compared to plasma at 4°C but increasing hemolysis over time may significantly skew ascorbate measurements. Additionally, patient samples can be reliably stored as plasma at –20°C for up to three weeks in either a frost-containing or frost-free environment. This information can guide the collection, processing and storage of clinical samples after pharmacological ascorbate infusions amenable to multi-center clinical trials.
Andy T. Kwok, Joseph E. Moore, Samuel Rosas, Bethany A. Kerr, Rachel N. Andrews, Callistus M. Nguyen, Jingyun Lee, Cristina M. Furdui, Boyce E. Collins, Michael T. Munley, Jeffrey S. Willey
Reduced weight bearing, and to a lesser extent radiation, during spaceflight have been shown as potential hazards to astronaut joint health. These hazards combined effect to the knee and hip joints are not well defined, particularly with low-dose exposure to radiation. In this study, we examined the individual and combined effects of varying low-dose radiation (≤1 Gy) and reduced weight bearing on the cartilage of the knee and hip joints. C57BL/6J mice (n = 80) were either tail suspended via hindlimb unloading (HLU) or remained full-weight bearing (ground). On day 6, each group was divided and irradiated with 0 Gy (sham), 0.1 Gy, 0.5 Gy or 1.0 Gy (n = 10/group), yielding eight groups: ground-sham; ground-0.1 Gy; ground-0.5 Gy; ground-1.0 Gy; HLU-sham; HLU-0.1 Gy; HLU-0.5 Gy; and HLU-1.0 Gy. On day 30, the hindlimbs, hip cartilage and serum were collected from the mice. Significant differences were identified statistically between treatment groups and the ground-sham control group, but no significant differences were observed between HLU and/or radiation groups. Contrast-enhanced micro-computed tomography (microCECT) demonstrated decrease in volume and thickness at the weight-bearing femoral-tibial cartilage-cartilage contact point in all treatment groups compared to ground-sham. Lower collagen was observed in all groups compared to ground-sham. Circulating serum cartilage oligomeric matrix protein (sCOMP), a biomarker for ongoing cartilage degradation, was increased in all of the irradiated groups compared to ground-sham, regardless of unloading. Mass spectrometry of the cartilage lining the femoral head and subsequent Ingenuity Pathway Analysis (IPA) identified a decrease in cartilage compositional proteins indicative of osteoarthritis. Our findings demonstrate that both individually and combined, HLU and exposure to spaceflight relevant radiation doses lead to cartilage degradation of the knee and hip with expression of an arthritic phenotype. Moreover, early administration of low-dose irradiation (0.1, 0.5 or 1.0 Gy) causes an active catabolic response in cartilage 24 days postirradiation. Further research is warranted with a focus on the prevention of cartilage degradation from long-term periods of reduced weight bearing and spaceflight-relevant low doses and qualities of radiation.
There have been some concerns about the influence of medical X rays in dose-response analysis of atomic bomb radiation on health outcomes. Among atomic bomb survivors in the Life Span Study, the association between atomic bomb radiation dose and exposures to medical X rays was investigated using questionnaire data collected by a mail survey conducted between 2007–2011, soliciting information on the history of computed tomography (CT) scans, gastrointestinal fluoroscopy, angiography and radiotherapy. Among 12,670 participants, 76% received at least one CT scan; 77%, a fluoroscopic examination; 23%, an angiographic examination; and 8%, radiotherapy. Descriptive and multivariable-adjusted analyses showed that medical X rays were administered in greater frequencies among those who were exposed to an atomic bomb radiation dose of 1.0 Gy or higher, compared to those exposed to lower doses. This is possibly explained by a greater frequency in major chronic diseases such as cancer in the ≥1.0 Gy group. The frequency of medical X rays in the groups exposed to 0.005–0.1 Gy or 0.1–1.0 Gy did not differ significantly from those exposed to <0.005 Gy. An analysis of finer dose groups under 1 Gy likewise showed no differences in frequencies of medical X rays. Thus, no evidence of material confounding of atomic bomb effects was found. Among those exposed to atomic bomb doses <1 Gy, doses were not associated with medical radiation exposures. The significant association of doses ≥1 Gy with medical radiation exposures likely produces no substantive bias in radiation effect estimates because diagnostic medical X-ray doses are much lower than the atomic bomb doses. Further information on actual medical X-ray doses and on the validity of self-reports of X-ray procedures would strengthen this conclusion.
Low-dose radiation (LDR) has been confirmed to mobilize bone marrow-derived endothelial progenitor cells (EPCs) and promote diabetic wound healing. But it is unclear whether LDR acts directly on EPCs and promotes their proliferation and migration. Given the key role of advanced glycosylation end products (AGE) in the pathogenesis of diabetes, we used AGE to induce EPC damage. We then investigated the effect of LDR on the proliferation and migration of AGE-treated EPCs and explored the underlying mechanisms. EPCs cultured in vitro were treated with different concentrations of AGE, and the cells were then exposed to different low doses and treated with a specific antagonist for CXCR4, AMD3100 (1 lmol/l). The proliferation and migration abilities of EPCs were detected using the CCK-8 and wound healing assays, respectively. The mRNA and protein expression of SDF-1 and CXCR4 in AGE-treated EPCs were measured using qPCR and Western blot analysis, respectively. The expressions of ERK and phosphorylated ERK (pERK) were detected using Western blot analysis. The results showed that 200 mg/l and 400 mg/l AGE had an inhibitory effect on the proliferation of EPCs, and this inhibitory effect was exerted in a dose- and time-dependent manner. AGE significantly reduced the migration ability of EPCs cultured in vitro. After the cells received either 50 or 75 mGy low-dose irradiation, the proliferation of EPCs and AGE-treated EPCs was clearly increased; in addition, LDR also enhanced cell migration ability, but this enhancement was counteracted by AMD3100. Results from qPCR and Western blot analysis showed that LDR increased the mRNA and protein expression of SDF-1/ CXCR4. LDR also upregulated pERK expression in EPCs and AGE-treated EPCs, but LDR-induced upregulation of pERK expression was inhibited by AMD3100. These findings indicate that LDR can directly activate the SDF-1/CXCR4 biological axis and downstream ERK signaling pathway, and promote the proliferation and migration abilities of EPCs by increasing the expression of SDF-1, CXCR4 and pERK in EPCs.
Here we report on the interventions taken to treat a patient exposed to high-dose radiation and provide a protocol for treating such patients in the future. The patient, Mr. Wang, was a 58-year-old male janitor who was accidentally exposed to a 192Ir source with an activity of 966.4 GBq or 26.1 Ci. The dose estimated to the lower right limb was 4,100 Gy, whereas the whole-body effective dose was 1.51 Gy. The diagnosis was made according to the results of the patient dose estimation and clinical manifestations. Systemic treatment included stimulating bone marrow hematopoietic cells, enhancing immunity, anti-infection and vitamin supplements. The treatment of radiation-induced skin lesions consisted of several debridements, two skin-flap transplantations and application of mesenchymal stem cells (MSCs). Skin-flap transplantations and MSCs play important roles in the recovery of skin wound. A combination of antibiotics and antimycotic was useful in reducing inflammation. The application of vacuum sealing drainage was effective in removing necrotic tissue and bacteria, ameliorating ischemia and hypoxia of wound tissue, providing a fresh wound bed for wound healing and improving skin or flap graft survival rates. The victim survived the accident without amputation, and function of his highly exposed right leg was partially recovered. These results demonstrate the importance of collaboration among members of a multidisciplinary team in the treatment of this patient.
Hakan Oesten, Cläre von Neubeck, Aline Jakob, Wolfgang Enghardt, Mechthild Krause, Stephen J. McMahon, Clemens Grassberger, Harald Paganetti, Armin Lühr
Variation in cellular characteristics may determine tumor response and, consequently, patient survival in radiation therapy. However, patient-specific prediction of cellular radiation response is currently unavailable for treatment planning. Thus, the importance of developing a novel approach based on clinically accessible parameters prior to treatment (e.g., by biopsy) is high. The goal of this study was to predict in vitro cancer cell survival through the p53mutation status and the number of chromosomes (NoC). To predict cell survival, we modified a mechanistic radiation response model incorporating DNA repair and cell death, originally designed for normal human cells. Cell-specific parameters of 24 cell lines originating from two laboratories (OncoRay, Dresden, Germany and HIMAC, Chiba, Japan) were considered for modeling. In a first step, we obtained estimates of the only unknown model input parameter genome size (GS) by fitting cell survival simulations onto experimental data. We then analyzed measured and published input model parameters (NoC, p53-mutation status and cell-cycle distribution) to assess their impact on measured and simulated parameters (modeled GS, and measured α, β, SF2 and γ-H2AX). The resulting data suggested a linear correlation between NoC and modeled GS (R2 > 0.93) allowing for estimating GS based on NoC. Applying the estimated GS resulted in predicted cell survival that matched measured data mostly within the experimental uncertainty. The measured radiobiological value β increased quadratically with the cell's modeled GS irrespective of other cell-specific parameters. The measured α and SF2 split into two groups, depending on the cells' p53-mutation status, both linearly increasing and decreasing, respectively, with modeled GS. Model predictions of foci numbers were, on average, in agreement with published γ-H2AX measurement data. In conclusion, knowledge of clinically accessible parameters (p53-mutation status and NoC) may support patient stratification in radiotherapy based on cell-specific survival prediction testable in prospective clinical trials.
In advanced radiotherapy, treatment of the tumor with high-intensity modulated fields is balanced with normal tissue sparing. However, the non-target dose delivered to surrounding healthy tissue within the irradiated volume is a potential cause for concern. Whether the effects observed are caused after exposure to out-of-field radiation or bystander effects through neighboring irradiated cells is not fully understood. The goal of this study was to determine the effect of exposure to out-of-field radiation in lymphocyte cell lines and primary blood cells. The role of cellular radiosensitivity in altering bystander responses in out-of-field exposed cells was also investigated. Target cells were positioned in a phantom in the center of the radiation field (in-field dose) and exposed to 2 Gy irradiation. Lymphocyte cell lines (C1, AT3ABR, Jurkat, THP-1, AT2Bi and AT3Bi) and peripheral blood were placed 1 cm away from the radiation field edge (out-of-field dose) and received an average dose of 10.8 ± 4.2 cGy. Double-stranded DNA damage, cell growth and gene expression were measured in the out-of-field cells. Radiosensitive AT3ABR and primary blood cells demonstrated the largest increase in γ-H2AX foci after irradiation. Exposure of normal cells to bystander factors from irradiated radiosensitive cell lines also increased DNA damage. Expression of IL-1, IL-6, TNFα and TGFβ after addition of bystander factors from radiosensitive cells showed differential effects in normally responding cells, with some evidence of an adaptive response observed. Exposure to out-of-field radiation induces DNA damage and reduces growth in radiosensitive cells. Bystander factors produced by directly irradiated cells in combination with out-of-field exposure may upregulate pro- and anti-inflammatory genes in responding cells of different radiosensitivities, with the potential of affecting the tumor microenvironment. A greater understanding of the radio-biological response in normal cells outside the primary treatment field would assist in radiation treatment planning and in reducing early and late toxicities.
Radiation-induced bystander effects (RIBE) entail a cascade of bystander signals produced by the hit cells to the neighboring cells to regulate various biological processes including DNA damage repair. However, there is little clarity regarding the effect of radiation-targeted volume (hit cell amount) on the DNA repair potential of the bystander cells. This is especially important to understand in the context of the whole organism, where the target usually consists of multiple types of cells/tissues. To address this question, model plant Arabidopsis thaliana was locally irradiated, and the DNA repair potential of bystander root-tip cells was assessed based on their radioresistance to subsequent high-dose radiation, i.e. radioadaptive responses (RAR). We found that X-ray irradiation of the aerial parts (AP) of A. thaliana seedlings (5 Gy) initiated RAR in the root-tip cells, which exhibited an alleviated repression of root growth and root cell division, and reduced amount of DNA strand breaks. We also observed an improvement in the repair efficiency of the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways in the bystander root tip cells. We further expanded the X-ray targeted volume to include the aerial parts with upper parts of the primary root and compared it with X-ray irradiated aerial parts alone. Comparative analysis revealed that RAR for these end points either disappeared or decreased; specifically, the repair efficiency of HR was significantly reduced, indicating that radiation-targeted volume negatively modulates the bystander DNA repair potential. In contrast, X-ray irradiation of upper part of the primary root alone did not induce RAR of the root tip cells. Thus, we propose that additional X-ray irradiation of upper part of the primary root reduces the bystander DNA repair potential, possibly by selectively disturbing the transport of bystander signals responsible for HR repair.
Géraldine Gonon, Carmen Villagrasa, Pascale Voisin, Sylvain Meylan, Marta Bueno, Mohamed Amine Benadjaoud, Nicolas Tang, Frank Langner, Hans Rabus, Joan-Francesc Barquinero, Ulrich Giesen, Gaëtan Gruel
Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·µm–1 at the cells' center position, or to protons (19 keV·µm–1). Statistical evaluation of nuclear foci formation (53BP1/γ-H2AX), observed using immunofluorescence and related to a particle traversal, was undertaken in a large population of cell nuclei. The biological results were adjusted to consider the factors that drive the experimental uncertainties, then challenged with results using Geant4-DNA code modeling of the ionizing particle interactions on a virtual phantom of the cell nucleus with the same mean geometry and DNA density as the cells used in our experiments. Both results showed an increase of relative frequencies of foci (or simulated DNA damage) in cell nuclei as a function of increasing LET of the traversing particles, reaching a quasi-plateau when the LET exceeded 80–90 keV·µm–1. For the LET of an alpha particle ranging from 80–90 to 170 keV·µm–1, 10–30% of the particle hits did not lead to DNA damage inducing 53BP1 or γ-H2AX foci formation.
Cameron R. MacDonald, Mark J. Bucsek, Guanxi Qiao, Minhui Chen, Lauren Evans, Daniel J. Greenberg, Taylor P. Uccello, Nicholas G. Battaglia, Bonnie L. Hylander, Anurag K. Singh, Edith M. Lord, Scott A. Gerberc, Elizabeth A. Repasky
While ionizing radiation is a major form of cancer therapy, radioresistance remains a therapeutic obstacle. We have previously shown that the mandated housing temperature for laboratory mice (∼22°C) induces mild, but chronic, cold stress resulting in increased circulating norepinephrine, which binds to, and triggers activation of, beta-adrenergic receptors (β-AR) on tumor and immune cells. This adrenergic signaling increases tumor cell intrinsic resistance to chemotherapy and suppression of the anti-tumor immune response. These findings led us to hypothesize that adrenergic stress signaling increases radioresistance in tumor cells in addition to suppressing T-cell-mediated anti-tumor immunity, thus suppressing the overall sensitivity of tumors to radiation. We used three strategies to test the effect of adrenergic signaling on responsiveness to radiation. For one strategy, mice implanted with CT26 murine colon adenocarcinoma were housed at either 22°C or at thermoneutrality (30°C), which reduces physiological adrenergic stress. For a second strategy, we used a β-AR antagonist (“beta blocker”) to block adrenergic signaling in mice housed at 22°C. In either case, tumors were then irradiated with a single 6 Gy dose and the response was compared to mice whose adrenergic stress signaling was not reduced. For the third strategy, we used an in vitro approach in which several different tumor cell lines were treated with a β-AR agonist and irradiated, and cell survival was then assessed by clonogenic assay. Overall, we found that adrenergic stress significantly impaired the anti-tumor efficacy of radiation by inducing tumor cell resistance to radiation-induced cell killing and by suppression of anti-tumor immunity. Treatment using beta blockers is a promising strategy for increasing the anti-tumor efficacy of radiotherapy.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere