Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
D. M. Sridharan, A. Asaithamby, S. M. Bailey, S. V. Costes, P. W. Doetsch, W. S. Dynan, A. Kronenberg, K. N. Rithidech, J. Saha, A. M. Snijders, E. Werner, C. Wiese, F. A. Cucinotta, J. M. Pluth
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.
Mammography is used to screen a large fraction of the population for breast cancer, and mammography quality X rays are speculated to be more damaging than the higher energy X rays used for other diagnostic procedures. The radiation dose delivered to breast cells as a result of these screening exposures may be a concern. The purpose of this current study was to determine the relative biological effectiveness (RBE) of low-energy mammography X rays for radiation-induced DNA double-strand breaks evaluated using a highly sensitive automated 53BP1 assay. Automation of the 53BP1 assay enabled the quantification and analysis of meaningful image-based features, including foci counting, within the cell nuclei. Nontumorigenic, human breast epithelial MCF-10A cells were irradiated in the low-dose range with approximately 3–30 mGy of 29 kVp mammography X rays or 137Cs (662 keV) gamma rays. The induction and resolution of the 53BP1 foci did not differ significantly between exposures to 137Cs gamma rays and 29 kVp X rays. The RBE was calculated to be 1.1 with a standard deviation of 0.2 for the initial number of radiation-induced double-strand breaks. The radiation dose from a single mammogram did not yield a significant change in the number of detectable foci. However, analysis of additional features revealed subtle differences in the distribution of 53BP1 throughout the nuclei after exposure to the different radiation qualities. A single mammogram was sufficient to alter the distribution of 53BP1 within the nuclear area, but not into discrete foci, while a dose-matched gamma exposure was not sufficient to alter the distribution of 53BP1. Our results indicate that exposure to clinically relevant doses of low-energy mammography quality X rays does not induce more DNA double-strand breaks than exposure to higher energy photons.
Hematopoietic stem cells (HSC) are essential for maintaining the integrity of complex and long-lived organisms. HSC, which are self-renewing, reconstitute the hematopoietic system through out life and facilitate long-term repopulation of myeloablated recipients. We have previously demonstrated that when mice are exposed to sublethal doses of ionizing radiation, subsets of the stem/progenitor compartment are affected. In this study we examine the role of thrombopoietin (TPO) on the regenerative capacities of HSC after irradiation and report the first demonstration of efficacy of a single injection of TPO shortly after in vivo exposure to ionizing radiation for reducing HSC injury and improving their functional outcome. Our results demonstrate that TPO treatment not only reduced the number of apoptotic cells but also induced a significant modification of their intrinsic characteristics. These findings were supported by transplantation assays with long-term HSC that were irradiated or unirradiated, TPO treated or untreated, in CD45.1/CD45.2 systems and by using luciferase-labeled HSC for direct bioluminescence imaging in living animals. Of particular importance, our data demonstrate the skull to be a highly favorable site for the TPO-induced emergence of hematopoietic cells after irradiation, suggesting a TPO-mediated relationship of primitive hematopoietic cells to an anatomical component. Together, the data presented here: provide novel findings about aspects of TPO action on stem cells, open new areas of investigation for therapeutic options in patients who are treated with radiation therapy, and show that early administration of a clinically suitable TPO-agonist counteracts the previously observed adverse effects.
Elena K. Fetisova, Margarita M. Antoschina, Varvara D. Cherepanynets, Denis S. Izumov, Igor I. Kireev, Roman I. Kireev, Konstantin G. Lyamzaev, Nikolay I. Riabchenko, Boris V. Chernyak, Vladimir P. Skulachev
We show here that mitochondria-targeted antioxidant composed of plastoquinone conjugated through hydrocarbon linker with cationic rhodamine 19 (SkQR1) protected against nuclear DNA damage induced by gamma radiation in K562 erythroleukemia cells. We also demonstrate that SkQR1 prevented the early (1 h postirradiation) accumulation of phosphorylated histone H2AX (γ-H2AX) an indicator of DNA double-strand break formation, as well as the radiation-induced increase in chromosomal aberrations. These data suggested that nuclear DNA damage induced by gamma radiation may be mediated by mitochondrial reactive oxygen species (ROS) production. We show that SkQR1 suppressed delayed accumulation of ROS 32 h after irradiation probably by inhibiting mitochondrial ROS-induced ROS release mechanisms. This suggests that mitochondria-targeted antioxidants may protect cells from the late consequences of radiation exposure related to delayed oxidative stress. We have previously reported that SkQRl is the substrate of multidrug resistance pump P-glycoproten (Pgp 170) and selectively protects Pgp 170-negative cells against oxidative stress. In line with this finding, we demonstrate here that SkQR1 did not protect Pgp170-positive K562 subline against DNA damage induced by gamma radiation. The selective radioprotection of normal Pgp 170-negative cells by mitochondria-targeted antioxidants could be a promising strategy to increase the efficiency of radiotherapy for multidrug-resistant tumors.
Scott A. Gerber, Ryan J. Cummings, Jennifer L. Judge, Margaret L. Barlow, Julee Nanduri, Doug E. Milano Johnson, James Palis, Alice P. Pentland, Edith M. Lord, Julie L. Ryan
The United States continues to be a prime target for attack by terrorist organizations in which nuclear detonation and dispersal of radiological material are legitimate threats. Such attacks could have devastating consequences to large populations, in the form of radiation injury to various human organ systems. One of these at risk organs is the cutaneous system, which forms both a physical and immunological barrier to the surrounding environment and is particularly sensitive to ionizing radiation. Therefore, increased efforts to develop medical countermeasures for treatment of the deleterious effects of cutaneous radiation exposure are essential. Interleukin-12 (IL-12) was shown to elicit protective effects against radiation injury on radiosensitive systems such as the bone marrow and gastrointestinal tract. In this article, we examined if IL-12 could protect the cutaneous system from a combined radiation injury in the form of sublethal total body irradiation and beta-radiation burn (β-burn) directly to the skin. Combined radiation injury resulted in a breakdown in skin integrity as measured by transepidermal water loss, size of β-burn lesion and an exacerbated loss of surveillant cutaneous dendritic cells. Interestingly, intradermal administration of IL-12 48 h postirradiation reduced transepidermal water loss and burn size, as well as retention of cutaneous dendritic cells. Our data identify IL-12 as a potential mitigator of radiation-induced skin injury and argue for the further development of this cytokine as a radiation countermeasure.
Recently several laboratories have reported that radiation induces senescence in endothelial cells. Senescent cells can secrete multiple growth-regulatory proteins, some of which affect tumor growth, survival, invasion or angiogenesis. The purpose of this study was to explore the mechanisms of radiation-induced senescence and its effects on angiogenesis in human umbilical vein endothelial cells (HUVECs). HUVECs were either pretreated with or without PS1145 prior to irradiation with 0–8 Gy. PS1145 is a novel, highly specific small-molecule inhibitor of nuclear factor kappa B essential modulator (NEMO). MTT assays showed that in HUVECs untreated with PS1145, there was an increase in the number of radiation-induced senescence-like endothelial cells 5 days after 8 Gy irradiation, while pretreatment with PS1145 significantly ameliorated the induction in senescence of HUVECs compared to the control group. Electrophoretic mobility shift assay (EMSA) showed that pretreatment with PS1145 inhibited the radiation-induced NF-κB activation, which regulates cell fate in response to genotoxic stress. In addition, Western blotting demonstrated less translocation of p65 from cytoplasm to nucleus. Furthermore, real-time polymerase chain reaction (PCR) showed that pretreatment with PS1145 inhibited the increase of mRNA expressions of interleukin-6 (IL-6) and p53-induced death domain (PIDD) protein, which have been show to play crucial roles in both senescence and apoptosis (P < 0.05). TUNEL staining revealed an increase in apoptotic HUVECs in the group pretreated with PS1145 after irradiation. The series of functional assays further showed that radiation-induced senescence-like HUVECs had malfunctions in migration, invasion and formation of capillary-like structures, compared with the sham-irradiated and untreated, irradiated groups. Taken together, these findings indicate that the angiogenic capacity of radiation-induced senescence-like HUVECs decreased, and that irradiation caused vascular endothelial cells to gain a senescence-like phenotype through the DSB/NEMO/NF-κB signal pathway. The data suggests that NEMO may be a critical switch that regulates cellular senescence and apoptosis caused by exposure to radiation, and provides new clues for the clinical potential of the combination of radiotherapy and angiogenesis inhibitors.
Rad9, Rad1 and Hus1 are essential genes conserved from yeast to humans. They form a heterotrimer complex (9-1-1 complex) that participates in the cell cycle checkpoint activation and DNA damage repair in eukaryotic cells. Rad9, Rad1 and Hus1 deficient cells are hypersensitive to ionizing radiation and mouse cells deleted for anyone of the three genes are highly sensitive to the killing by gamma rays. We propose that ionizing radiation-induced transcription of these genes is a mechanism by which cells respond to radiation-induced damage. In this study we used quantitative real-time RT-PCR(qPCR) to analyze the mRNA levels of Rad9, Rad1 and Hus1 in various tissues isolated from mice that were either mock irradiated or exposed to 10 Gy gamma radiation. Our results indicated that the mRNA levels of Rad9, Rad1 and Hus1 genes were very different among these tissues, and we found high natural levels of mRNA in the spleen, lung, ovary and testis of mice before exposure to radiation. The mRNA levels of the three genes were well correlated across these tissues, being high, medium or low in each of the tissues simultaneously. The mRNA levels of the three genes were analyzed at 2, 6, 12, 24 and 48 h after irradiation. In most tissues Rad9 was strongly induced at 2 and 12 h time points and Hus1 was strongly induced at 2, 12 and 48 h time points, but Rad1 was minimally induced in most of the tissues with the exception of slightly higher levels in the heart and lung tissues at the 48 h time point. These results suggest that the regulation mechanisms for the mRNA levels of the three genes in response to ionizing radiation are complex and not well orchestrated. We also detected the induction of Rad9 and Hus1 proteins in the heart and liver of the animals after irradiation, and found that Rad9 protein levels were highly induced in both the heart and liver, while the Hus1 protein levels were significantly induced only in the liver, suggesting that Rad9 and Hus1 protein levels are not regulated in a coordinated manner in response to irradiation. We then went on to measure the mRNA levels of the three genes and the Rad9 and Hus1 protein levels in the mouse liver cell line (NCTC 1469) in response to irradiation in vitro. All three genes in the cultured cells were minimally induced at mRNA level, obviously different from the highly dynamic induction in liver. Rad9 and Hus1 were significantly induced at the protein level, but the induced Rad9 protein levels were higher than the Hus1 levels. Taken together, the good correlation of the mRNA levels of Rad9, Hus1 and Rad1 genes across different tissues isolated from the animals that were mock irradiated and the lack of correlation in mRNA as well as protein levels after irradiation suggest that the 9-1-1 complex has evolved to play various physiological roles in tissues rather than dealing with high doses of gamma radiation or other genotoxic agents.
Clustered DNA damage is considered an important factor in determining the biological consequences of ionizing radiation. In this study, we successfully estimated the localization of abasic sites (APs) in DNA exposed to ionizing radiation using fluorescence resonance energy transfer (FRET) without any involvement of repair enzyme functions. A linearized plasmid (pUC19 digested by Sma I) was irradiated with: 60Co γ rays; 4He2 (2.0 MeV/u) particles; and the 12C5 (0.37 MeV/u) particles in the solid state. A donor or acceptor fluorescent probe with a nucleophilic O-amino group was used to label APs. The results showed that the 12C5 particle likely produced close APs within a track. The apparent distance calculated from the observed FRET efficiency (E) of around 0.10 was estimated to be approximately 17 base pairs. On the other hand, E values of 60Co γ rays and the 4He2 beam were less than those of the 12C5 beam, increased with increasing AP density (the average number of APs per base pair), and were slightly greater than those of randomly distributed APs. We propose that the FRET method provides a degree of localization regardless of whether an AP cluster is single-stranded or bistranded DNA damage.
Gemcitabine (difluorodeoxycytidine; dFdCyd) is a potent radiosensitizer, noted for its ability to enhance cytotoxicity with radiation at noncytotoxic concentrations in vitro and subchemotherapeutic doses in patients. Radiosensitization in human tumor cells requires dFdCyd-mediated accumulation of cells in S phase with inhibition of ribonucleotide reductase, resulting in ≥80% deoxyadenosine triphosphate (dATP) depletion and errors of replication in DNA. Less is known of the role of specific DNA replication and repair pathways in the radiosensitization mechanism. Here the role of homologous recombination (HR) in relationship to the metabolic and cell cycle effects of dFdCyd was investigated using a matched pair of CHO cell lines that are either proficient (AA8 cells) or deficient (irs1SF cells) in HR based on expression of the HR protein XRCC3. The results demonstrated that the characteristics of radiosensitization in the rodent AA8 cells differed significantly from those in human tumor cells. In the AA8 cells, radiosensitization was achieved only under short (≤4 h) cytotoxic incubations, and S-phase accumulation did not appear to be required for radiosensitization. In contrast, human tumor cell lines were radiosensitized using noncytotoxic concentrations of dFdCyd and required early S-phase accumulation. Studies of the metabolic effects of dFdCyd demonstrated low dFdCyd concentrations did not deplete dATP by ≥80% in AA8 and irs1SF cells. However, at higher concentrations of dFdCyd, failure to radiosensitize the HR-deficient irs1SF cells could not be explained by a lack of dATP depletion or lack of S-phase accumulation. Thus, these parameters did not correspond to dFdCyd radiosensitization in the CHO cells. To evaluate directly the role of HR in radiosensitization, XRCC3 expression was suppressed in the AA8 cells with a lentiviral-delivered shRNA. Partial XRCC3 suppression significantly decreased radiosensitization [radiation enhancement ratio (RER) = 1.6 ± 0.15], compared to nontransduced (RER = 2.7 ± 0.27; P = 0.012), and a substantial decrease compared to nonspecific shRNA-transduced (RER = 2.5 ± 0.42; P = 0.056) AA8 cells. Although the results support a role for HR in radiosensitization with dFdCyd in CHO cells, the differences in the underlying metabolic and cell cycle characteristics suggest that dFdCyd radiosensitization in the nontumor-derived CHO cells is mechanistically distinct from that in human tumor cells.
Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X rays and 56Fe resulted in a dose-dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere