Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Exposure to a nuclear accident or radiological attack can cause death from acute radiation syndrome (ARS), which results from radiation injury to vital organs such as the hematopoietic system. However, the U.S. Food and Drug Administration (FDA) has not approved any medical countermeasures for this specific purpose. With growing concern over nuclear terrorism, there is an urgent need to develop small molecule deliverables that mitigate mortality from ARS. One emerging modulator of hematopoietic stem/progenitor cell (HSPC) activity is glycogen synthase kinase-3 (GSK-3). The inhibition of GSK-3 has been shown to augment hematopoietic repopulation in mouse models of bone marrow transplantation. In this study, we performed an in vitro screen using irradiated bone marrow mononuclear cells (BM-MNCs) to test the effects of four GSK-3 inhibitors: CHIR99021; 6-Bromoindirubin-3′-oxime (BIO); SB415286; and SB216763. This screen showed that SB216763 significantly increased the frequency of c-Kit Lin– Sca1 (KLS) cells and hematopoietic colony-forming cells in irradiated BM-MNCs. Importantly, administration of a single dose of SB216763 to C57BL/6J mice by subcutaneous injection 24 h after total-body irradiation significantly improved hematopoietic recovery and mitigated hematopoietic ARS. Collectively, our results demonstrate that the GSK-3 inhibitor SB216763 is an effective medical countermeasure against acute radiation injury of the hematopoietic system.
Dmytro Grygoryev, Cristian Dan, Stacey Gauny, Bradley Eckelmann, Anna P. Ohlrich, Marissa Connolly, Michael Lasarev, Gianfranco Grossi, Amy Kronenberg, Mitchell S. Turker
High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.
Metformin, a biguanide drug used in the treatment of type II diabetes, was evaluated alone and in combination with amifostine, captopril, MESNA or N-acetyl-cysteine (NAC) for its ability to protect when administered 24 h after irradiation. Mouse embryo fibroblasts (MEF), human microvascular endothelial cells (HMEC) and SA-NH mouse sarcoma cells were exposed to 4 Gy in vitro. C3H mice were exposed to 7 Gy and evaluated utilizing an endogenous spleen colony assay system. Amifostine and WR1065, administered 30 min prior to irradiation, were used as positive controls. Treatment of MEF, HMEC and SA-NH cells with metformin elevated survival levels by 1.4-, 1.5- and 1.3-fold compared to 1.9-, 1.8- and 1.6-fold for these same cells treated with WR1065, respectively. Metformin (250 mg/kg) was effective in protecting splenic cells from a 7 Gy dose in vivo (protection factor = 1.8). Amifostine (400 mg/kg), administered 30 min prior to irradiation resulted in a 2.6-fold survival elevation, while metformin administered 24 h after irradiation in combination with NAC (400 mg/kg), MESNA (300 mg/kg) or captopril (200 mg/kg) enhanced survival by 2.6-, 2.8- and 2.4-fold, respectively. Each of these agents has been approved by the FDA for human use and each has a well characterized human safety profile. Metformin alone or in combination with selected sulfhydryl agents possesses radioprotective properties when administered 24 h after radiation exposure comparable to that observed for amifostine administered 30 min prior to irradiation making it a potentially useful agent for radiation countermeasures use.
Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans' compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study.
We present an application of the Giant LOop Binary LEsion (GLOBLE) model to the case of cell killing after irradiation with ultrasoft X rays. The model is based on the analysis of DSB clustering on the level of chromatin organization on a megabase pair length scale; it distinguishes between two classes of damage, characterized by either an isolated, single DSB (iDSB) or multiple, clustered DSB (cDSB) within a single giant loop. These corresponding fractions of iDSB and cDSB depend on the total number of DSB and thus on the dose as well as the yield of DSB per Gy per cell. Based on the increased yield of DSB with decreasing photon energy as reported in the literature, we demonstrate that according to the model this increased yield of DSB is sufficient to explain the increased RBE of ultrasoft X rays. Further assumptions as e.g., a higher lethality of individual DSB induced by ultrasoft X rays compared to high-energy photons, which might be a consequence of the more localized energy deposition, seem not to be a prerequisite. Since the model is also suitable to take into account local dose variations within the cell nucleus, we further analyze the impact of attenuation of low-energy photon radiation when penetrating a cell layer. We show that the inhomogenous dose distribution resulting from attenuation further increases the effectiveness and particularly affects the beta-term of the corresponding dose response curve. Finally, we compare and discuss the mechanisms of increased RBE as observed after ultrasoft X-ray irradiation with those observed after high-LET ion beam irradiation.
The stochastic modeling of the 60Co γ/fast-electron radiolysis of the ceric-cerous chemical dosimeter has been performed as a function of temperature from 25–350°C. The system used is a dilute solution of ceric sulfate and cerous sulfate in aqueous 0.4 M sulfuric acid. In this system, H• (or HO2• in the presence of dissolved oxygen) and H2O2 produced by the radiolytic decomposition of water both reduce Ce4 ions to Ce3 ions, while •OH radicals oxidize the Ce3 present in the solution back to Ce4 . The net Ce3 yield is given by G(Ce3 ) = g(H•) 2 g(H2O2) – g(•OH), where the primary (or “escape”) yields of H•, H2O2 and •OH are represented by lower case g's. At room temperature, G(Ce3 ) has been established to be 2.44 ± 0.8 molecules/100 eV. In this work, we investigated the effect of temperature on the yield of Ce3 and on the underlying chemical reaction kinetics using Monte Carlo track chemistry simulations. The simulations showed that G(Ce3 ) is time dependent, a result of the differences in the lifetimes of the reactions that make up the radiolysis mechanism. Calculated G(Ce3 ) values were found to decrease almost linearly with increasing temperature up to about 250°C, and are in excellent agreement with available experimental data. In particular, our calculations confirmed previous estimated values by Katsumura et al. (Radiat Phys Chem 1988; 32:259–63) showing that G(Ce3 ) at ∼250°C is about one third of its value at room temperature. Above ∼250°C, our model predicted that G(Ce3 ) would drop markedly with temperature until, instead of Ce4 reduction, Ce3 oxidation is observed. This drop is shown to occur as a result of the reaction of hydrogen atoms with water in the homogeneous chemical stage.
Radiation-induced primary radicals in lithium formate. A material used in EPR dosimetry have been studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-Induced EPR (EIE) techniques. In this study, single crystals were X irradiated at 6−8 K and radical formation at these and higher temperatures were investigated. Periodic density functional theory calculations were used to assist in assigning the radical structures. Mainly two radicals are present at 6 K, the well-known CO2•– radical and a protonated electron-gain product. Hyperfine coupling tensors for proton and lithium interactions were obtained for these two radicals and show that the latter radical exists in four conformations with various degrees of bending at the radical center. Pairs of CO2•– radicals were also observed and the tensor for the electron-electron dipolar coupling was determined for the strongest coupled pair, which exhibited the largest spectral intensity. Upon warming, both the radical pairs and the reduction product decay, the latter apparently by a transient species. Above 200 K the EPR spectrum was mainly due to the CO2•– (mono) radicals, which were previously characterized as the dominant species present at room temperature and which account for the dosimetric EPR signal.
Free radicals produced during cancer radiotherapy often leads to dermatitis, with the insult ranging from mild erythema to moist desquamation and ulceration. This toxicity can be dose limiting and promote chronic complications, such as fibrosis and wound recurrence. The purpose of this study was to evaluate if RTA 408, a synthetic triterpenoid that potently activates the antioxidative transcription factor Nrf2 and inhibits the proinflammatory transcription factor nuclear factor-kappa b (NF-κB), could protect skin from radiation-induced dermatitis. Mice were irradiated (10 Gy/day) on days 0–2 and 5–7, and RTA 408 (0.01%, 0.1% and 1.0%) was topically applied once daily starting on day 5 or up to day 40. Dermatitis severity was evaluated using a scale ranging from 0 (normal) to 5 (frank ulceration), as well as histologically. The mRNA expression of Nrf2 and NF-κB target genes in skin was also evaluated. RTA 408 (0.01%, 0.1% and 1.0%) reduced the percentage of animal-days with scores ≥2 by 11%, 31% and 55% and scores ≥3 by 16%, 60% and 80%, respectively. Dose-dependent improvements in the appearance of skin were also manifestly visible, with RTA 408 at 1.0% eliciting a normal macroscopic appearance by the end of the treatment period on day 40, including substantial hair regrowth. Moreover, 1.0% RTA 408 markedly reduced epidermal and collagen thickening, prevented dermal necrosis and completely alleviated skin ulcers. These improvements were associated with significant increases in Nrf2 target genes and significant decreases in NF-κB target genes. Together, these data indicate that RTA 408 represents a potentially promising new therapy for the treatment of radiation-induced dermatitis.
In the event of a nuclear incident in a heavily populated area, the surge in demand for medical evaluation will likely overwhelm our emergency care system, compromising our ability to care for victims with life-threatening injuries or exposures. Therefore, there exists a need for a rapidly deployable biological assay for radiation exposure that can be performed in the field by individuals with little to no medical training. Saliva is an attractive biofluid for this purpose, due to the relative ease of its collection and the wide array of biomolecules it contains. To determine whether the human salivary proteome is responsive to ionizing radiation exposure, we characterized the abundances of salivary proteins in humans before and after total body irradiation. Using an assay panel targeting 90 analytes (growth factors, chemokines and cytokines), we identified proteins that were significantly radiation responsive in human saliva. The responses of three proteins (monocyte chemo-attractant protein 1, interleukin 8 and intercellular adhesion molecule 1) were confirmed using independent immunoassay platforms and then verified and further characterized in 130 saliva samples from a completely independent set of 38 patients undergoing total body irradiation. The results demonstrate the potential for detecting radiation exposure based on analysis of human saliva.
The radiation risk of skin cancer by histological types has been evaluated in the atomic bomb survivors. We examined 80,158 of the 120,321 cohort members who had their radiation dose estimated by the latest dosimetry system (DS02). Potential skin tumors diagnosed from 1958 to 1996 were reviewed by a panel of pathologists, and radiation risk of the first primary skin cancer was analyzed by histological types using a Poisson regression model. A significant excess relative risk (ERR) of basal cell carcinoma (BCC) (n = 123) was estimated at 1 Gy (0.74, 95% confidence interval (CI): 0.26, 1.6) for those age 30 at exposure and age 70 at observation based on a linear-threshold model with a threshold dose of 0.63 Gy (95% CI: 0.32, 0.89) and a slope of 2.0 (95% CI: 0.69, 4.3). The estimated risks were 15, 5.7, 1.3 and 0.9 for age at exposure of 0–9, 10–19, 20–39, over 40 years, respectively, and the risk increased 11% with each one-year decrease in age at exposure. The ERR for squamous cell carcinoma (SCC) in situ (n = 64) using a linear model was estimated as 0.71 (95% CI: 0.063, 1.9). However, there were no significant dose responses for malignant melanoma (n = 10), SCC (n = 114), Paget disease (n = 10) or other skin cancers (n = 15). The significant linear radiation risk for BCC with a threshold at 0.63 Gy suggested that the basal cells of the epidermis had a threshold sensitivity to ionizing radiation, especially for young persons at the time of exposure.
Crosstalk between cancer cells and the surrounding cancer associated fibroblasts (CAFs) plays an illusive role in cancer radiotherapy. This study investigated the effect of cancer cell–cancer associated fibroblasts crosstalk on the proliferation and survival of irradiated cervical cancer cells. A pretreatment with conditioned medium from a mixed culture of CAF and HeLa cells (mixCAF) had a stronger effect on enhancing the proliferation and survival of irradiated HeLa cells compared to pretreatment with CAF conditioned medium alone. In addition, pretreatment with a mixed culture of CAF and HeLa cells conditioned medium reduced the levels of two major radiation-induced genes, GADD45 and BTG2, and phosphorylation of p38. Profiling of the growth and survival factors in the conditioned medium revealed PDGF and VEGF, and IGF2, EGF, FGF-4, IGFBPs and GM-CSF to be specifically secreted from HeLa cells and CAFs, respectively. This study demonstrated radiation protective effects of CAF-cancer cell crosstalk, and identified multiple growth factors and radiation response genes that might be involved in these effects.
In this study, we sought to determine whether low-dose ionizing radiation, previously shown to induce a systemic adaptive response in C57BL/6J mice, is capable of enhancing the rate of DNA double-strand break repair. Repair capacity was determined by measuring γ-H2AX levels in splenic and thymic lymphocytes, using flow cytometry, at different times after a challenge irradiation (2 Gy, 60Co). Irradiation with low doses (20 and 100 mGy) was conducted in vivo, whereas the challenge dose was applied to primary cultures of splenocytes and thymocytes in vitro 24 h later. Obtained kinetics curves of formation and loss of γ-H2AX indicated that cells from low-dose irradiated mice did not express more efficient DNA double-strand break repair compared to controls. Immunoblot analysis of γ-H2AX and Phospho-Ser-1981 ATM confirmed that DNA damage signaling was not modulated by preliminary low-dose radiation. Mouse embryonic fibroblasts of C57BL genetic background failed to show clonogenic survival radioadaptive response or enhanced repair of DNA double-strand breaks as evaluated by immunofluorescence microscopy of γ-H2AX foci. Our results indicate that radiation adaptive responses at systemic levels, such as increases in the tumor latency times in aging mice, may not be mediated by modulated DNA repair, and that the genetic background may affect expression of a radioadaptive response.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere