Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-)factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genome-wide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo.
A novel analytical high-performance liquid chromatography (HPLC)-based method of quantification of the yields of C4′-oxidized abasic sites, 1, in oxidatively damaged DNA has been elaborated. This new approach is based on efficient conversion of 1 into N-substituted 5-methylene-Δ3-pyrrolin-2-ones, 2, upon treatment of damaged DNA with primary amines in neutral or slightly acidic solutions with subsequent quantification of 2 by HPLC. The absolute and relative radiation-chemical yields of 1 in irradiated DNA solutions were re-evaluated using this method. The yields were compared with those of other 2-deoxyribose degradation products including 5-methylene-2(5H)-furanone, malondialdehyde, and furfural resulting from the C1′, C4′ and C5′-oxidations, respectively. The yield of free base release (FBR) determined in the same systems was employed as an internal measure of the total oxidative damage to the 2-deoxyribose moiety. Application of this technique identifies 1 as the most abundant sugar lesion in double-stranded (ds) DNA irradiated under air in solution (36% FBR). In single-stranded (ss) DNA this product is second by abundance (33% FBR) after 2-deoxyribonolactones (C1′-oxidation; 43% FBR). The production of nucleoside-5′-aldehydes (C5′-oxidation; 14% and 5% FBR in dsDNA and ssDNA, respectively) is in the third place. Taken together with the parallel reaction channel that converts C4′-radicals into malondialdehyde and 3′-phosphoglycolates, our results identify the C4′-oxidation as a prevalent pathway of oxidative damage to the sugar-phosphate backbone (50% or more of all 2-deoxyribose damages) in indirectly damaged DNA.
There is much evidence supporting the existence of bystander effects in cells that were never exposed to radiation. Directly irradiated cells and bystander cells can communicate with each other using gap junctional intercellular communication or by releasing soluble factors into the surrounding medium. Exosomes and microvesicles are also known to mediate communication between cells. The main aim of this study is to establish whether exosomes and microvesicles are involved in radiation induced bystander signaling. Human keratinocytes, HaCaT cells, were irradiated (0.005, 0.05 and 0.5 Gy) using γ rays produced from a cobalt 60 teletherapy unit. After irradiation, the cells were incubated for 1 h and the irradiated cell conditioned medium (ICCM) was harvested. Exosomes were isolated from the ICCM using ultracentrifugation. Exosomes were characterized using light scattering analysis (LSA) and scanning transmission electron microscopy (STEM). Cytotoxicity and reactive oxygen species assays and real time calcium imaging were performed either with ICCM from which exosomes and microvesicles were removed or with the exosome fraction resuspended in cell culture media. The characterization data showed a particle size distribution indicative of both exosomes (30–100 nm) and microvesicles (>100 nm) and the light scattering analysis showed increased concentration of both exosomes and microvesicles with increasing dose. Western blotting confirmed the presence of an exosomal protein marker, TSG 101. Treatment of unirradiated cells with ICCM in which exosomes and microvesicles were removed resulted in abrogation of ICCM induced effects such as reduction in viability, calcium influx and production of reactive oxygen species. Addition of exosomes to fresh media produced similar effects to complete ICCM. These results suggest a role for exosomes and microvesicles in radiation induced bystander signaling.
The development of, and results from an image analysis system are presented for automated detection and scoring of micronuclei in human peripheral blood lymphocytes. The system is part of the Rapid Automated Biodosimetry Tool, which was developed at the Center for High-Throughput Minimally Invasive Radiation Biodosimetry for rapid radiation dose assessment of many individuals based on single fingerstick samples of blood. Blood lymphocytes were subjected to the cytokinesis-block micronucleus assay and the images of cell cytoplasm and nuclei are analyzed to estimate the frequency of micronuclei in binucleated cells. We describe an algorithm that is based on dual fluorescent labeling of lymphocytes with separate analysis of images of cytoplasm and nuclei. To evaluate the performance of the system, blood samples of seven healthy donors were irradiated in vitro with doses from 0–10 Gy and dose-response curves of micronuclei frequencies were generated. To establish the applicability of the system to the detection of high doses, the ratios of mononucleated cells to binucleated cells were determined for three of the donors. All of the dose-response curves generated automatically showed clear dose dependence and good correlation (R2 from 0.914–0.998) with the results of manual scoring.
Daniela Trani, Scott A. Nelson, Bo-Hyun Moon, Jan J. Swedlow, Elizabeth M. Williams, Steven J. Strawn, Paul L. Appleton, Bhaskar Kallakury, Inke Näthke, Albert J. Fornace
Epidemiological data reveals the gastrointestinal (GI) tract as one of the main sites for low-LET radiation-induced cancers. Importantly, the use of particle therapy is increasing, but cancer risk by high-LET particles is still poorly understood. This gap in our knowledge also remains a major limiting factor in planning long-term space missions. Therefore, assessing risks and identifying predisposing factors for carcinogenesis induced by particle radiation is crucial for both astronauts and cancer survivors. We have previously shown that exposure to relatively high doses of high-energy 56Fe ions induced higher intestinal tumor frequency and grade in the small intestine of ApcMin/ mice than γ rays. However, due to the high number of spontaneous lesions (∼30) that develop in ApcMin/ animals, this Apc mutant model is not suitable to investigate effects of cumulative doses <1 Gy, which are relevant for risk assessment in astronauts and particle radiotherapy patients. However, Apc1638N/ mice develop a relatively small number of spontaneous lesions (∼3 per animal) in both small intestine and colon, and thus we propose a better model for studies on radiation-induced carcinogenesis. Here, we investigated model particle radiation increases tumor frequency and grade in the entire gastrointestinal tract (stomach and more distal intestine) after high- and low-radiation doses whether in the Apc1638N/ . We have previously reported that an increase in small intestinal tumor multiplicity after exposure to γ rays was dependent on gender in Apc1638N/ mice, and here we investigated responses to particle radiation in the same model. Phenotypical and histopathological observations were accompanied by late changes in number and position of mitotic cells in intestinal crypts from animals exposed to different radiation types.
In both humans and mice, fetal exposure to radiation fails to induce a persistent increase in the frequency of chromosome aberrations in blood lymphocytes. Such a low-level response to radiation exposure is counterintuitive in view of the generally accepted belief that a fetus is sensitive to radiation. To determine if this is a general phenomenon, both mammary epithelial cells and spleen cells were studied in rats. Fetuses of 17.5 days postcoitus were irradiated with 2 Gy of gamma rays, and mammary tissues were removed 6–45 weeks later. Subsequently, short-term cultures were established to detect translocations using the two-color FISH method. The results showed that translocation frequencies were not only elevated in rats irradiated as fetuses, but were also almost as high as those in rats that were irradiated as adults (12 weeks old, pregnant mothers or young virgins) and examined 6–45 weeks later. There was no evidence of higher sensitivity in fetal cells with respect to the induction of translocations. In contrast, translocation frequencies in spleen cells were not elevated in adult rats irradiated as fetuses but were increased after irradiation of adults as previously seen in mouse spleen cells and human T lymphocytes. In the case of irradiation of adult rats, the induced translocation frequencies were similar between spleen cells and mammary epithelial cells. If we take translocation frequency as a surrogate marker of potential carcinogenic effect of radiation, the current results suggest that fetal irradiation can induce persistent potential carcinogenic damage in mammary stem/progenitor cells but this does not contribute to the increased risk of cancer since it has been reported that irradiation of fetal rats of the SD strain does not increase the risk of mammary cancers. Possible reasons for this discrepancy are discussed.
O. Zlobinskaya, C. Siebenwirth, C. Greubel, V. Hable, R. Hertenberger, N. Humble, S. Reinhardt, D. Michalski, B. Röper, G. Multhoff, G. Dollinger, J. J. Wilkens, T. E. Schmid
The new technology of laser-driven ion acceleration (LDA) has shown the potential for driving highly brilliant particle beams. Laser-driven ion acceleration differs from conventional proton sources by its ultra-high dose rate, whose radiobiological impact should be investigated thoroughly before adopting current clinical dose concepts. The growth of human FaDu tumors transplanted onto the hind leg of nude mice was measured sonographically. Tumors were irradiated with 20 Gy of 23 MeV protons at pulsed mode with single pulses of 1 ns duration or continuous mode (∼100 ms) in comparison to controls and to a dose-response curve for 6 MV photons. Tumor growth delay and the relative biological effectiveness (RBE) were calculated for all irradiation modes. The mean target dose reconstructed from Gafchromic films was 17.4 ± 0.8 Gy for the pulsed and 19.7 ± 1.1 Gy for the continuous irradiation mode. The mean tumor growth delay was 34 ± 6 days for pulsed, 35 ± 6 days for continuous protons, and 31 ± 7 days for photons 20 ± 1.2 Gy, resulting in RBEs of 1.22 ± 0.19 for pulsed and 1.10 ± 0.18 for continuous protons, respectively. In summary, protons were found to be significantly more effective in reducing the tumor volume than photons (P < 0.05). Together with the results of previous in vitro experiments, the in vivo data reveal no evidence for a substantially different radiobiology that is associated with the ultra-high dose rate of protons that might be generated from advanced laser technology in the future.
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, 60Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
The identification of biomarkers predictive of neoadjuvant chemotherapy response in breast cancer patients would be an important advancement in personalized cancer therapy. In this study, we hypothesized that due to similarities between radiation- and chemotherapy-induced cellular response mechanisms, radiation-responsive genes may be useful in predicting response to neoadjuvant chemotherapy. Murine p53 null breast cancer cell lines representative of the luminal, basal-like and claudin-low human breast cancer subtypes were irradiated to identify radiation-responsive genes across subtypes. These murine tumor radiation-induced genes were then converted to their human orthologs, and subsequently tested as a predictor of pathologic complete response (pCR), which was validated on two independent published neoadjuvant chemotherapy datasets of genomic data with chemotherapy response. A radiation-induced gene signature consisting of 30 genes was identified on a training set of 337 human primary breast cancer tumor samples that was prognostic for survival. Mean expression of this signature was calculated for individual samples on two independent published datasets and was found to be significantly predictive of pCR. Multivariate logistic regression analysis in both independent datasets showed that this 30 gene signature added significant predictive information independent of that provided by standard clinical predictors and other gene expression-based predictors of pCR. This study provides new information for radiation-induced biology, as well as information regarding response to neoadjuvant chemotherapy and a possible means of improving the prediction of pCR.
John D. Boice, Sarah S. Cohen, Michael T. Mumma, Elizabeth Dupree Ellis, Donna L. Cragle, Keith F. Eckerman, Phillip W. Wallace, Bandana Chadda, Jennifer S. Sonderman, Laurie D. Wiggs, Bonnie S. Richter, Richard W. Leggett
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere