Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
David J. Grdina, Jeffrey S. Murley, Richard C. Miller, Helena J. Mauceri, Harold G. Sutton, Michael J. Thirman, Jian Jian Li, Gayle E. Woloschak, Ralph R. Weichselbaum
Very low doses of ionizing radiation, 5 to 100 mGy, can induce adaptive responses characterized by elevation in cell survival and reduction in micronuclei formation. Utilizing these end points, RKO human colon carcinoma and transformed mouse embryo fibroblasts (MEF), wild-type or knockout cells missing TNF receptors 1 and 2 (TNFR1–R2–), and C57BL/6 and TNFR1–R2– knockout mice, we demonstrate that intact TNF signaling is required for induction of elevated manganese superoxide dismutase (SOD2) activity (P < 0.001) and the subsequent expression of these SOD2-mediated adaptive responses when cells are challenged at a later time with 2 Gy. In contrast, amifostine's free thiol form WR1065 can directly activate NF-κB giving rise to elevated SOD2 activity 24 h later and induce an adaptive response in both MEF wild-type and TNF signaling defective TNFR1–R2– cells. Transfection of cells with SOD2 siRNA completely abolishes both the elevation in SOD2 activity and expression of the adaptive responses. These results were confirmed in vivo using a micronucleus assay in splenocytes derived from C57BL/6 and TNFR1–R2– knockout mice that were exposed to 100 mGy or 400 mg/kg amifostine 24 h prior to exposure to a 2 Gy whole-body dose. A dose of 100 mGy also conferred enhanced protection to C57BL/6 mice exposed 24 h later to 100 mg/kg of N-Ethyl-N-nitrosourea (ENU). While very low radiation doses require an intact TNF signaling process to induce a SOD2-mediated adaptive response, amifostine can induce a similar adaptive response in both TNF receptor competent and knockout cells, respectively.
Exposure of civilian populations to radiation due to accident, war or terrorist act is an increasing concern. The lung is one of the more radiosensitive organs that may be affected in people receiving partial-body irradiation and radiation injury in lung is thought to be associated with the development of a prolonged inflammatory response. Here we examined how effectively damage to the lung can be mitigated by administration of drugs initiated at different times after radiation exposure and examined response in adolescent animals for comparison with the young adult animals that we had studied previously. We studied the mitigation efficacy of the isoflavone genistein (50 mg/kg) and the salen-Mn superoxide dismutase-catalase mimetic EUK-207 (8 mg/kg), both of which have been reported to scavenge reactive oxygen species and reduce activity of the NFkB pathway. The drugs were given by subcutaneous injection to 6- to 7-week-old Fisher rats daily starting either immediately or 2 weeks after irradiation with 12 Gy to the whole thorax. The treatment was stopped at 28 weeks post irradiation and the animals were assessed for levels of inflammatory cytokines, activated macrophages, oxidative damage and fibrosis at 48 weeks post irradiation. We demonstrated that both genistein and EUK-207 delayed and suppressed the increased breathing rate associated with pneumonitis. These agents also reduced levels of oxidative damage (50–100%), levels of TGF-β1 expression (75–100%), activated macrophages (20–60%) and fibrosis (60–80%). The adolescent rats developed pneumonitis earlier following irradiation of the lung than did the adult rats leading to greater severe morbidity requiring euthanasia (∼37% in adolescents vs. ∼10% in young adults) but the extent of the mitigation of the damage was similar or slightly greater.
Nontargeted effects that result in ongoing cellular and tissue damage show genotype-dependency in murine models with CBA/Ca, but not C57BL/6, exhibiting sensitivity to induced genomic instability. In vivo, radiation exposure is associated with genotype-dependent macrophage activation, and these cells are a source of bystander signaling involving cytokines and reactive oxygen and nitrogen species. The mechanisms responsible for macrophage activation and production of damaging bystander signals after irradiation are unclear. Macrophages from CBA/Ca exhibit an M1 (proinflammatory) phenotype compared to the M2 (anti-inflammatory) phenotype of C57BL/6 macrophages. Using the murine RAW264.7 macrophage-like cell line, we show that the ability of macrophages to interact with apoptotic cells and their responses to interaction varies significantly according to macrophage phenotype. Nonstimulated and M2 macrophages induce anti-inflammatory markers arginase and TGFβ after engulfment of apoptotic cells. In contrast, M1 macrophages do not induce anti-inflammatory responses, but express the proinflammatory markers NOS2, IL-6, TNFα, superoxide and NO, able to contribute to a damaging microenvironment. Macrophages stimulated with both inflammatory and anti-inflammatory agents prior to exposure to apoptotic cells induce a mixed response. The results indicate a complex cross-talk between macrophages and apoptotic cells and demonstrate that phagocytic clearance of apoptotic cells induced by genotoxic stress can produce microenvironmental responses consistent with the induction of a chromosomal instability phenotype in sensitive CBA/Ca mice with M1 macrophage activation, but not in resistant C57BL/6 mice with M2 macrophage activation. Modulation of macrophage phenotypes may represent a novel approach for reducing the nontargeted effects of radiation.
Previous investigations have shown altered levels of complement components to be associated with radiation-induced lung disease. In this study we aimed to determine whether a deficiency in complement component 4b alters the lung response to irradiation of C57BL/6 mice. The pulmonary phenotype of C57BL/6 C4b–/– mice and their wild-type littermates was assessed following an 18 Gy single dose to the thoracic cavity. The assessed end points included, survival time postirradiation, bronchoalveolar lavage cell differential, hydroxyproline measures and histological evidence of alveolitis and fibrosis. The lung phenotype of C4b-deficient mice did not differ from that of wild-type mice in terms of survival time postirradiation, tissue hydroxyproline levels or by histological evidence of alveolitis or fibrosis. No differences in bronchoalveolar cell differential counts were evident among the irradiated mice grouped by C4b genotype. We concluded that a deficiency in C4b does not alter radiation-induced lung disease in the C57BL/6 mouse model.
Aberrant expression of microRNAs (miRNAs) is frequently associated with a variety of cancers, including breast cancer. We and others have demonstrated that radiation-induced rat mammary cancer exhibits a characteristic gene expression profile and a random increase in aberrant DNA copy number; however, the role of aberrant miRNA expression is unclear. We performed a microarray analysis of frozen samples of eight mammary cancers induced by γ irradiation (2 Gy), eight spontaneous mammary cancers and seven normal mammary samples. We found that a small set of miRNAs was characteristically overexpressed in radiation-induced cancer. Quantitative RT-PCR analysis confirmed that miR-135b, miR-192, miR-194 and miR-211 were significantly up-regulated in radiation-induced mammary cancer compared with spontaneous cancer and normal mammary tissue. The expression of miR-192 and miR-194 also was up-regulated in human breast cancer cell lines compared with noncancer cells. Manipulation of the miR-194 expression level using a synthetic inhibiting RNA produced a small but significant suppression of cell proliferation and upregulation in the expression of several genes that are thought to act as tumor suppressors in MCF-7 and T47D breast cancer cells. Our data suggest that the induction of rat mammary cancer by radiation involves aberrant expression of miRNAs, which may facilitate cell proliferation.
Our study was to elucidate the mechanisms whereby BMS-345541 (BMS, a specific IκB kinase β inhibitor) inhibits the repair of DNA double-strand breaks (DSBs) and evaluate whether BMS can sensitize MCF-7 breast cancer cells (MCF-7 cells) to ionizing radiation (IR) in an apoptosis-independent manner. In this study, MCF-7 cells were exposed to IR in vitro and in vivo with or without pretreatment of BMS. The effects of BMS on the repair of IR-induced DSBs by homologous recombination (HR) and non-homologous end-joining (NHEJ) were analyzed by the DR-GFP and EJ5-GFP reporter assays and IR-induced γ-H2AX, 53BP1, Brca1 and Rad51 foci assays. The mechanisms by which BMS inhibits HR were examined by microarray analysis and quantitative reverse transcription PCR. The effects of BMS on the sensitivity of MCF-7 cells to IR were determined by MTT and clonogenic assays in vitro and tumor growth inhibition in vivo in a xenograft mouse model. The results showed that BMS selectively inhibited HR repair of DSBs in MCF-7 cells, most likely by down-regulation of several genes that participate in HR. This resulted in a significant increase in the DNA damage response that sensitizes MCF-7 cells to IR-induced cell death in an apoptosis-independent manner. Furthermore, BMS treatment sensitized MCF-7 xenograft tumors to radiation therapy in vivo in an association with a significant delay in the repair of IR-induced DSBs. These data suggest that BMS is a novel HR inhibitor that has the potential to be used as a radiosensitizer to increase the responsiveness of cancer to radiotherapy.
Two hydroxypyridinone-containing actinide decorporation agents, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), are being developed for the treatment of internal actinide contamination by chelation therapy. Dose-response efficacy profiles in mice were established for the removal of intravenously injected 238Pu and 241Am after parenteral and oral treatment with these chelators. In both cases, presumed efficacious doses promoted substantially greater actinide elimination rates than the currently approved agent, diethylenetriamine-pentaacetic acid, considering two different interspecies scaling methods for the conversion of human doses to equivalent rodent dose levels. In addition, genotoxicity of both ligands was assessed using the Salmonella/Escherichia coli/microsome plate incorporation test and the Chinese hamster ovary cell chromosome aberration assay, showing that neither ligand is genotoxic, in the presence and absence of metabolic activation. Finally, maximum tolerated dose studies were performed in rats for seven consecutive daily oral administrations with the chelators, confirming the safety of the presumed efficacious doses for 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). The results of these studies add to the growing body of evidence that both decorporation agents have remarkable decorporation efficacy properties and promising safety toxicology profiles. These results are necessary components of the regulatory approval process and will help determine the optimal human dosing regimens for the treatment of internal radionuclide contamination.
Our understanding of cancer risk from ionizing radiation is largely based on studies of populations exposed at high dose and high dose rates. Less certain is the magnitude of cancer risk from protracted, low-dose and low-dose-rate radiation exposure. We estimated the dose-response relationship for solid cancer mortality in a cohort of 29,730 individuals who lived along the Techa River between 1950 and 1960. This population was exposed to both external γ radiation and internal 90Sr, 137Cs and other radionuclides after the release of radioactive waste into the river by the Mayak Radiochemical Plant. The analysis utilized the latest individualized doses from the Techa River Dosimetry System (TRDS) 2009. We estimated excess relative risks (ERRs) per Gy for solid cancer mortality using Poisson regression methods with 95% confidence intervals (CIs) and P values based on likelihood ratio tests. Between 1950 and 2007, there were 2,303 solid cancer deaths. The linear ERR/Gy = 0.61 (95%; CI 0.04–1.27), P = 0.03. It is estimated that approximately 2% (49.7) of solid cancers deaths were associated with the radiation exposure. Our results, based on 2,303 solid cancer deaths and more than 50 years of follow-up, support an increased risk of solid cancer mortality following protracted radiation exposure from the Techa River contamination. The wide confidence interval of our estimate reflects the challenges of quantifying and describing the shape of the dose-response relationship in the low dose range. Nevertheless, the risk estimates provide important information concerning health risks from whole-body radiation exposure that can occur from accidents that result in wide-scale environmental contamination.
We recently described the effects of low-dose γ-radiation exposures on atherosclerosis in genetically susceptible (ApoE–/–) mice with normal p53 function. Doses as low as 25 mGy, given at either early or late stage disease, generally protected against atherosclerosis in a manner distinctly nonlinear with dose. We now report the influence of low doses (25–500 mGy) on atherosclerosis in ApoE–/– mice with reduced p53 function (Trp53 /–). Single exposures were given at either low or high dose rate (1 or 150 mGy/min) to female C57BL/6J ApoE–/– Trp53 /– mice. Mice were exposed at either early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (7 months of age) and examined 2 or 4 months later. In unirradiated mice, reduced p53 functionality elevated serum cholesterol and accelerated both aortic root lesion growth and severity in young mice. Radiation exposure to doses as low as 25 mGy at early stage disease, at either the high or the low dose rate, inhibited lesion growth, decreased lesion frequency and slowed the progression of lesion severity in the aortic root. In contrast, exposure at late stage disease produced generally detrimental effects. Both low-and high-dose-rate exposures accelerated lesion growth and high dose rate exposures also increased serum cholesterol levels. These results show that at early stage disease, reduced p53 function does not influence the protective effects against atherosclerosis of low doses given at low dose rate. In contrast, when exposed to the same doses at late stage disease, reduced p53 function produced detrimental effects, rather than the protective effects seen in Trp53 normal mice. As in the Trp53 normal mice, all effects were highly nonlinear with dose. These results indicate that variations in p53 functionality can dramatically alter the outcome of a low-dose exposure, and that the assumption of a linear response with dose for human populations is probably unwarranted.
A radiation-induced bystander response, which is generally defined as a cellular response that is induced in nonirradiated cells that received bystander signals from directly irradiated cells within an irradiated cell population. In our earlier X-ray microbeam studies, bystander cell killing in normal human fibroblasts had a parabolic relationship to the irradiation dose. To elucidate the role of p53 in the bystander cell killing, the effects were assessed using human non-small cell lung cancer cells expressing wild-type or temperature-sensitive mutated p53. The surviving fraction of bystander wild-type p53 cells showed a parabolic relationship to the irradiation dose; survival was steeply reduced up to 0.45 Gy, recovered toward to 2 Gy, and remained at control levels up to 5 Gy. In contrast, in the mutated p53 cells at a nonpermissive temperature, the surviving fraction was steeply reduced up to 1 Gy and remained at the reduced level up to 5 Gy. When the mutated p53 cells were incubated at a permissive temperature, the decrease in the surviving fraction at 2 Gy was suppressed. The wild-type p53 cells were not only restrained in releasing bystander signals at 2 Gy, but were also resistant to the signals released by the mutated p53 cells. These results suggest that the X-ray-induced bystander cell killing depends on both the irradiation dose and the p53 status of the targeted cells and the bystander cells.
Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data show that from adolescence through middle age, cancer incidence increases with age. This effect is commonly attributed to a lifetime accumulation of cellular, particularly DNA, damage. However, during middle age the incidence begins to decelerate and, for many tumor sites, it actually decreases at sufficiently advanced ages. We investigated if the observed deceleration and potential decrease in incidence could be attributed to a decreased capacity of older hosts to support tumor progression, and whether HZE [high atomic number (Z), high energy (E)] radiation differentially modulates tumor progression in young vs. middle-age hosts, issues that are relevant to estimating carcinogenesis risk for astronauts. Lewis lung carcinoma (LLC) cells were injected into syngeneic mice (143 and 551 days old), which were then subject to whole-body 56Fe irradiation (1 GeV/amu). Three findings emerged: (1) among unirradiated animals, substantial inhibition of tumor progression and significantly decreased tumor growth rates were seen for middle-aged mice compared to young mice, (2) whole-body 56Fe irradiation inhibited tumor progression in both young and middle-aged mice (with greater suppression seen in case of young animals), with little effect on tumor growth rates, and (3) 56Fe irradiation suppressed tumor progression in young mice to a degree that was not significantly different than transiting from young to middle-aged. Thus, 56Fe irradiation acted similar to aging with respect to tumor progression. We further investigated the molecular underpinnings driving the radiation modulation of tumor dynamics in young and middle-aged mice. Through global gene expression analysis, the key players, FASN, AKT1 and the CXCL12/CXCR4 complex, were determined to be contributory. In sum, these findings demonstrated a reduced capacity of middle-aged hosts to support the progression phase of carcinogenesis and identify molecular factors that contribute to HZE radiation modulation of tumor progression as a function of age.
The biological activities of molecules secreted into the serum of mice chronically irradiated with γ rays at low or medium dose rate (L/MDR) have not been well studied. In this work, the bioactive molecules found in the serum of chronically irradiated mice (dose rate: 0.0181 Gy/h) were characterized by a cell-based assay (CBA) using microarrays. This technique can predict changes in cytokine levels in serum by measuring gene expression profiles and analyzing molecular signaling pathways. Gene expression in cultured mouse embryo fibroblasts (MEFs) 1 day after addition of serum from nonirradiated or irradiated mice had different profiles. A high level of expression of lipocalin2 (Lcn2) was induced in MEFs upon addition of serum from MDR irradiated mice, and Lcn2 was used as a marker for identifying secreted molecules in serum. Based on microarray analysis of molecular pathways, we predicted that the enhanced gene expression of Lcn2 in MEFs might be caused by interleukin-1 (IL-1) in the serum of the irradiated mice, and that an IL-1α antibody could completely neutralize the enhanced gene expression of Lcn2 in MEFs. The increase in IL-1α levels in the serum from the irradiated mice was confirmed by ELISA experiments. However, an increase in IL-1β could not be detected. These results indicated that IL-1α was released into the serum of mice chronically exposed to a high dose of γ-ray radiation at MDR. We therefore believe that the CBA method using microarrays will be applicable for the screening of bioactive molecules in serum, which will be useful for detecting various diseases and metabolic changes.
Skin exposure to ionizing radiation affects the normal wound healing process. We investigated the beneficial effects of a pharmacological treatment with geranylgeranylacetone (GGA) on keratinocytes using in vitro scratch wound injury assay in nonirradiated and irradiated conditions. Irradiation affected the wound closure of keratinocytes 24 h after scratch injury, whereas re-epithelialization was markedly accelerated after GGA treatment when compared to nontreated keratinocytes. We demonstrated that GGA treatment increased migration of human epidermal keratinocytes and this migratory property was not related to RhoA signaling. Interestingly, Western blot analysis revealed that GGA treatment down-regulated caspase 3 active form expression and up-regulated the activated phenotype by inducing both keratin 6 (K6) expression and interleukin-1β (IL-1β) release without modification of the differentiate phenotype. Finally, the proteomic profiling was performed on keratinocytes, showing that global protein changes occurred after irradiation of keratinocytes treated or untreated with GGA.
Exposure to radiofrequency (RF) electromagnetic fields (EMF) is continuously increasing worldwide. Yet, conflicting results of a possible genotoxic effect of RF EMF continue to be discussed. In the present study, a possible genotoxic effect of RF EMF (GSM, 1,800 MHz) in human lymphocytes was investigated by a collaboration of six independent institutes (institutes a, b, c, d, e, h). Peripheral blood of 20 healthy, nonsmoking volunteers of two age groups (10 volunteers 16–20 years old and 10 volunteers 50–65 years old) was taken, stimulated and intermittently exposed to three specific absorption rates (SARs) of RF EMF (0.2 W/kg, 2 W/kg, 10 W/kg) and sham for 28 h (institute a). The exposures were performed in a setup with strictly controlled conditions of temperature and dose, and randomly and automatically determined waveguide SARs, which were designed and periodically maintained by ITIS (institute h). Four genotoxicity tests with different end points were conducted (institute a): chromosome aberration test (five types of structural aberrations), micronucleus test, sister chromatid exchange test and the alkaline comet assay (Olive tail moment and % DNA). To demonstrate the validity of the study, positive controls were implemented. The genotoxicity end points were evaluated independently by three laboratories blind to SAR information (institute c = laboratory 1; institute d = laboratory 2; institute e = laboratory 3). Statistical analysis was carried out by institute b. Methods of primary statistical analysis and rules to adjust for multiple testing were specified in a statistical analysis plan based on a data review before unblinding. A linear trend test based on a linear mixed model was used for outcomes of comet assay and exact permutation test for linear trend for all other outcomes. It was ascertained that only outcomes with a significant SAR trend found by at least two of three analyzing laboratories indicated a substantiated suspicion of an exposure effect. On the basis of these specifications, none of the nine end points tested for SAR trend showed a significant and reproducible exposure effect. Highly significant differences between sham exposures and positive controls were detected by each analyzing laboratory, thus validating the study. In conclusion, the results show no evidence of a genotoxic effect induced by RF EMF (GSM, 1,800 MHz).
To protect workers and the public from the harmful effects of radiation exposure, it is important that regulatory bodies and advisory organizations have as complete an understanding as possible of the risks according to gender, age at exposure, time since exposure, health status and other related variables. The 2011 disaster at the Fukushima Daiichi nuclear power plant complex again alerted the world to the possibility that large groups, including many adults, can be exposed to 131I, it reminds us that it is important to understand the effect of age at exposure on cancer risk to achieve effective radiation protection and to plan for responses to future nuclear accidents or terrorist events involving radiation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere