Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Fast land use changes have strongly affected arid and semi-arid regions at a global scale, affecting food security of the inhabitants of these regions. This study evaluated the fragmentation degree in the Chihuahua´s desert region of Mexico by using data from the Landsat TM sensor. Nine scenes, taken with Landsat TM5 sensor from the years 1990, 2000, and 2012, were used for the analysis. The coverage of seven land uses (grasslands, shrubland, croplands, sandy desert vegetation, forest, water bodies, and urban areas) was obtained under supervised classification techniques and the accuracy level was evaluated through the Kappa multi-varied discrete index. The classification showed a good reliance level having global accuracies of 93, 93.2 and 90.3% for the years 1990, 2000 and 2012, respectively. The fragmentation analysis showed an increase in the number of patches, an indicator of the ecosystem degradation process. The patches number increased from 8,354.23 in 1990 to 9,658.36 in 2000 and to 11,469 in 2012. Simpson and Shannon diversity indexes proved a clear fragmentation process. During the period of 1990−2012, grasslands were the most affected vegetation type with a reduction of 30.7% in its area. Such reduction was mainly attributed to invasions of shrubland communities and to an increase in cropland areas.
The debate on species coexistence mechanisms never stops. The niche theory, neutral theory, and negative density dependence mechanism has been attracting considerable attention in recent years, but an integrated research on species coexistence mechanisms has rarely been conducted. In this study, a previous investigation at a plot in Henan Province was used as a basis to analyze the spatial structure of the community with principal coordinates of neighbor matrices (PCNM). Variance partitioning was used to analyze the effects of topography, soil, spatial, and stand density on species distribution. Results show that the community structure in the broad, medium, and fine scales generally showed a highly significant spatial structure. Topography, soil, spatial variables, and stand density explained 3.4, 11.7, 12.1 and 19.49% of species distribution, respectively. The aforementioned results suggest that spatial factor was an important factor that affects community structure. Species distribution was evidently influenced by environmental spatial heterogeneity. It had a very important function for density-dependent effects acting on species distribution. Niche theory, neutral theory, and negative density dependence mechanisms affected community building in different degrees.
Seed plant diversity is under threat due to human over-exploitation and changes in land use. There is a need to identify regions where seed plant diversity is most at risk and establish nature reserves to protect the most important species. This study collected province scale seed plant richness data and corresponding environmental, social and, economic data in China in order to assess the impact of environmental and socio-economic factors on seed plant diversity and to quantify the relative importance of climate, human disturbance, and habitat heterogeneity on the distribution of seed plant diversity. A downscaling model was established to map the spatial distribution of seed plant diversity at a 1-km resolution. The results showed that temperature and precipitation seasonality, potential evapotranspiration, humidity index, altitude range, and gross domestic product were important determinants of seed plant diversity. The relative contribution of temperature seasonality was the most important factor (explaining 29.9–36.2% of the variation). Climate, human disturbance, and habitat heterogeneity explained much of the seed plant richness and density variation (about 69.4–71.9%). A scale-down model explained 72% of seed plant richness variation and showed that the center of seed plant species diversity was mainly located in the southeast area of China in the Qing-Tibet Plateau, Yun-Gui Plateau, Hengduan Mountain region, middle of the Sichuan Basins, Taiwan island, and Hainan island. This study improves our understanding of biodiversity hotspot regions and is a useful tool for biodiversity conservation policy and nature reserve management in China.
European beech is a superior competitor among the trees of Central Europe, often growing in pure stands. We proposed a hypothesis, that once beech has reached dominance in forest community, it's recruitment could become limited due to the gradual accumulation of pathogens attacking seeds and seedlings. We employed data on seed production and germination along with a field experiment to estimate the germination success of beech in two old-growth forests. Beech produced more seeds than the co-occurring coniferous trees, but less than 1% of beechnuts germinated in the next season. In the field experiment, the percentage of decayed beechnuts was 57% in the Carpathians and 61% in the Alps. Most of the dead germinants and decayed beechnuts were infested by fungi. The average number of fungal colonies per one sample in the Carpathians was significantly higher after mast year than one year before, while the differences between the Alps and Carpathians after mast years were statistically not significant. Fungi have been isolated from practically all dead beechnuts and dead germinants. The number of beechnuts per seed trap, the number of germinants around it and the relative number of fungal colonies obtained from plastic boxes placed in the same sample plot were not significantly correlated. The mortality of germinants continued throughout the spring; the number of life germinants in the middle of May amounted to 0.87% of the initial number of beechnuts in the Carpathians and only 0.28% in the Alps. High rates of beechnut and germinant mortality could probably offset the huge reproductive effort of European beech in old-growth stands and limit the possibility to attain absolute dominance by that species. However, our hypothesis that the build-up of fungal pathogens on the forest floor old-growth stands is able to stop the regeneration of beech still needs to be tested using larger data sets.
Moderating effects of trees on the environment in their immediate proximity are considered an important force in structuring plant communities, especially in harsh environments. In the semi-arid regions of the middle Carpathian Basin, such facilitative influences are expected to become crucial for the survival of several plant species, given the current warming and drying tendencies. We used 20 × 20 m plots to analyze whether grassland species adapted to mesic conditions penetrate forest patches, where they are able to survive. Using transects and the moving split window analysis, we also investigated how far the positive effects of the forest patches extend into grasslands, and whether this enables the existence of a steppe community that cannot tolerate extreme dry conditions and unfavorable soils. We found that beside forest-related species, forest patches hosted large numbers of grassland-related species. Among them, plants of closed steppe grasslands were the most numerous, which usually cannot tolerate the harsh conditions of open sandy grasslands, and are often confined to areas with better water and soil conditions. Our results showed that there is a 5–8 m wide closed steppe zone around the forest patches. Some species that are not able to survive in open xeric sandy grasslands are restricted to this zone. Unfortunately, while considerable attention is paid to the research, protection and restoration of sandy grasslands, forest patches are usually neglected. Our results emphasize that the establishment of individual trees and groups of trees should be actively promoted, because they have considerable nature conservation benefits by supporing closed steppe species.
This study was aimed at qualifying the methane emission ability of different communities in alpine meadow, and monitoring if the dominant species from these communities could emit methane in a sand culture experiment. Using the static chamber technique and gas chromatography method, two experiments were conducted in the field and in laboratory. First, the methane flux rate was measured in plant communities: natural alpine meadows (NM), Elymus nutans pasture (EP), herbaceous community in shrub (HS), and a Poa fruticosa meadow (PS). A 3-month sand culture experiment was conducted to show the non-microbial methane emission from living plants. Average methane emission rates were estimated to be 16.83 µg m-2 h-1(range -49.3–107.8), 28.49 µg m-2 h-1 (range -55.0–96.2) and 20.91 µg m-2 h-1 (range -31.9– 145.8) for NM, EP, and PS, respectively. Methane emission rate from EP was significantly higher than from NM during the growing season. The reclaim of grassland would enhance the methane emission in this aera through this one year's measurement, but whether this conclusion suit to the whole Tibet Plateau, it remains further longer time and larger spatial scale experiments to verify it. The result of the sand culture experiment showed that some plant species emitted methane in an aerobic, nonmicrobial environment, most of herbaceous species showed a methane emission characteristic, the methane emission from plant may have a species dependent characteristic.
The present study describes natural regeneration on five permanent research plots (PRP) in juvenile growth and development phases (regrowth and advanced growth) in autochthonous beech forests in Broumovské stěny National Nature Reserve located in the Protected Landscape area in the northeast part of Czech Republic. The stands of herb-rich beech forests were studied in the optimum to break-up stage. Natural regeneration was not evenly spaced but rather was clustered. Mean regeneration density ranged from 1,472 to 44,888 recruits per ha. European beech (Fagus sylvatica L.) made up 78.5–98.0% of all regeneration. Sycamore maple (Acer pseudoplatanus L.) was also relatively abundant. Regeneration dominance and abundance responded to the mature stand canopy, soil skeleton, microrelief, ground vegetation cover, and surface characteristics. The results suggest a relationship between recruit height and microrelief in 4 out of 5 PRPs. We found statistically significant differences in height of natural regeneration (F(2,18843) = 191.8, P <0.001) on mounds (74.0 cm), on slopes (119.5 cm) and on pits (121.0 cm) due to high soil skeleton content on mounds with numerous rock outputs, minimum amount of fine earth and lower water retention, both necessary for recruit growth. In addition to the character of microrelief, the growth of natural regeneration was negatively influenced by mature stand density and canopy indicators.
Decomposition is an important carbon flux that must be accounted for in estimates of forest ecosystem carbon balance. Aim of this research is to provide estimate of fine woody debris decomposition rates for different tree species and sample sizes also taking into account the influence of specific microsite meteorological conditions on decomposition rates. In this paper we present results of the first two years of the experiment designed to last six years. Study was conducted in managed lowland oak forest in central Croatia. Decomposition rates (k) of fine woody debris (diameter 0.5–7 cm) for four species (Querus robur L., Carpinut betulus L., Alnus glutinosa Gaernt., Fraxinus angustifolia L.) in four size classes were estimated using litter bag method and mass loss equation of Olson (1963).
Overall average k in our study was 0.182 ± 0.011 year-1. Results indicate that decomposition rate is affected by the size of the debris, with the smallest diameter branches (<1 cm) decomposing is significantly faster (k = 0.260 ± 0.018, P <0.05) than the larger one. Tree species from which debris had originated also affected decomposition, although to a lesser extent, with hornbeam samples having significantly (P <0.05) higher average decomposition rate (0.229 ± 0.028), compared to that of ash samples (0.141 ± 0.022). Proportion of variability in k explained by variables ‘species’ and ‘size class’ was assessed with general linear model (R2 = 0.644) also taking into account variables like soil temperature and soil water content. Sample size class explained 22.2%; species explained only 9.4%, while soil water content and temperature combined explained 32.8% of the variance of k. Rate constants obtained within this study might be useful in modelling ecosystem carbon balance for similar lowland forest ecosystems in Europe.
The European beech is a major component of central European forests, and the eastern limit of its range lies in Poland. However, the Holocene migration of the beech is not yet finished, especially in NE Poland, so the northern distribution of the beech continues to change. The main goal of this study was to determine if the beech will reach its northern limit in the future.
The investigation was carried out in 18 beech stands in Poland. To study the status of the health of the trees, circular plots were established in grids of different sizes. The basal beech stand area ranged from 3.7 m2 ha-1 to 31.2 m2 ha-1. The density of trees exceeded a hundred trees per hectare in most of the plots (61%), and the average degree of defoliation was not greater than 60% in all of the investigated stands. Environmental conditions influenced defoliation of beech trees (Fisher's test, F = 4.0204; P <0.0001). The vitality of the beech trees varied between stands (Kruskal-Walis test, H = 139.7433, P <0.0001) and was rather good in 56% of the study plots. Seedlings and saplings were observed in all of the investigated stands, and they covered from 5 to 39% and 21 to 80% of the study plots, respectively. Spontaneous beech regeneration was widespread and differed from stand to stand as well as within stands in all of the study plots. The number of tall seedlings in most of the study plots (56%) was greater than 10,000 individuals per hectare. The factors limiting beech regeneration were stand density and herb cover, and the number of beech seed trees influenced the quantity of small seedlings. Beech tree density positively influenced the number of small seedlings, and the strength of the correlation was moderate and statistically significant (Pearson correlation, r = 0.349). Beech tree density influenced the vitality of tall and small saplings (Pearson's correlations, r = 0.673 and r = 0.361, respectively). The spontaneous regeneration and strong vitality of seedlings and saplings suggests that beech can create stable stands in the future and that it is an expansive tree species both within its continuous range and at the limit of its distribution. It is quite possible that beech will reach its north-eastern limit in Poland in the future.
The biodiversity is a core value in all ecosystems. The nitrogen (N) addition in the form of N fertilizers has effect to a wide variety of fauna living in soils. N losses from arable land should tend not only to cause water eutrophication, but also lower soil nutrient stocks and decreasing soil fertility. This study determined the effect of N soil content in conventional tillage agro-ecosystem on the soil fauna diversity in grass stripes under the sloped arable land. My objective here is to observe soil faunal taxa living in grass filter strips. The goal of this work is to describe the relationship of soil fauna to the nitrate (NO3-) content runoff from fields and captured in grass filter strips. The field work was carried out during period from May until June 2013, for soil fauna investigation the extraction in Berlese — Tullgren funnels were used. Nitratenitrogen (NO3-N) was extracted from air-dried sieved soil using a 2 M KCl solution. Altogether 2,020 specimens representing 19 arthropod groups were found in twenty study sites. Most abundant taxa found practically in each of sampling site were Collembola, Acari and the suborder of Oribatid mites. Statistical evaluations revealed that the effect of NO3- concentration in the soil on the average value of the total edaphic individual numbers was statistically significant; the same applies for the abundance of Acari mites. No significant results were find for the Oribatid mites and the Collembola family; however, there was a clear trend of increasing abundance with increasing concentrations of NO3-.
Common milkweed (Asclepias syriaca L.) has become an invasive weed in Central and Eastern Europe, where human-induced fires have also taken part in forming the landscape. There is growing evidence that plant-derived smoke enhances seed germination, especially for species from fire-prone ecosystems, via the mechanisms of dormancy-breaking, germination stimulation or both. Hence, we hypothesized that smoke promotes seed germination for common milkweed by either or both mechanisms. To test this, germination responses of A. syriaca to the application of aqueous smoke solution (smoke-water) were studied in laboratory. Seeds were either cold stratified ( 7°C, 16 days) in tap water (TW), smoke-water (SW) or were not stratified at all, and then were germinated with SW or with TW (encompassing 5 treatments: 0—TW, 0—SW, TW—TW, TW—SW and SW—TW, where the first abbreviation indicates stratification, the second germination condition). In line with our hypothesis, the low (5%) germination of seeds was enhanced by cold stratification with SW at a greater extent (increasing to 52%) than by cold stratification with TW (25%), indicating that SW contributed to dormancy-breaking of seeds for A. syriaca. In contrast, SW did not stimulate germination when it was applied during the germination phase. To our best knowledge, this is the first study demonstrating smokeenhanced germination for common milkweed, which mechanism may help this species to successfully colonize new habitats after fire. As fire frequency is expected to increase in Europe with recent climate change, these results might contribute to a more efficient control of A. syriaca in areas threatened by its invasion.
Although most grasses (including cereals) are described as epizoochoric or anemochoric, many authors have shown that grains may be dispersed via the digestive tracts of animals, i.e. are endozoochoric. Cereals have been reported from carnivores' faeces several times; nevertheless, there is no data about the fate (i.e. capacity to germinate) of these grains. The scope of this paper is to focus on the role of medium-sized carnivores as potential secondary dispersers of grains. In 2010–2011, we examined 619 faeces of badgers Meles meles, foxes Vulpes vulpes and martens Martes sp. Faeces were collected every month from June to November in Kampinos National Park (KNP). In seven cases (1.1%) we found 64 grains of a total of two species of cereals: rye, Secale cereale and oats, Avena sativa, in the faeces of red fox and martens, with the red fox samples predominant. Some of the seeds retained the capacity to germinate and to establish seedlings. In two cases, included as accompanying material, feathers of a bird were found, which may suggest secondary dispersal of cereals via carnivores' guts.
The aim of this study was to assess changes in parameters (body weight, fat stores, antler weight, serum creatinine level) describing the condition of individual roe deer males (Capreolus capreolus) in subsequent months of the hunting season. The idea was if the current timing of the buck hunting season affects the quality of specimens obtained from the population, which may result in distorting its reproduction-related processes. The study included 443 carcasses of bucks harvested in the Lublin region (Central Poland) from 2006 to 2011. The average carcass weight in May and June was significantly higher than in the other months. Perirenal fat weight and the kidney fat index (KFI) decreased with the progression of the hunting season. With regard to the average level of serum creatinine in blood, there was no definite trend in the variation of this parameter during the hunting season. However, a significantly higher average antler weight was observed in May compared to June. The shooting of a large number of bucks in the first weeks of the hunting season may cause the elimination of the best individuals in the habitat, which have established and maintained their territory and are fully prepared for reproduction. This results in a complete disruption of the social structure of the local deer population. A solution to this problem could be uniform distribution of volume harvested during the whole hunting season or postponing the hunting season for bucks until September, when the estrus season has finished, and the strongest males have passed on their valuable genes to the population.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere