BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Summer farms are seasonal enterprises in high-elevation mountain regions, established for and highly specialized in grazing ruminants. This article synthesizes studies by the Swiss AlpFUTUR research program on the profitability of and public financial support for summer farms. It highlights current challenges of Swiss pastoralism and makes recommendations for future reforms. Profitability hinges on the size of the summer farms as well as on their ability to create value added. Particularly for smaller summer farms, key value-added strategies appear to be innovative cheese production and effective direct marketing. Public financial support is substantial, and the underlying agri-environmental scheme is relatively sophisticated. Eligibility for public support is based on both action-oriented and results-oriented criteria. Direct payments consider not only the number of livestock but also the duration of their presence on the summer pastures. For each summer farm, a stocking target is defined based on the pasture's carrying capacity. However, this target does not take into account the wide variation in forage needs between different meat and milk production systems. During the last decade, there has been a decline in the number of cattle sent to summer farms. Understocking is widespread, and the abandonment of marginal pastures has increased, resulting in scrub encroachment. The remaining cattle tend to be concentrated on more productive surfaces to reduce management costs; this causes overgrazing. More attention should therefore be given to the accurate enforcement of agri-environmental standards and to regional-level agreement on which surfaces should be abandoned. Supporting traditional pastoral practices remains an explicit objective of Swiss agricultural policy. Recently introduced agri-environmental payment schemes promoting biodiversity conservation can complement the summer farm subsidies. However, implementation costs are likely to increase.
The conservation and enhancement of agrobiodiversity have been promoted by local, national, and international institutions over the last few decades. In the context of that effort, this study focused on a little-known endangered landrace grown in the Brescia pre-Alps in Northern Italy: Copafam, a variety of runner bean (Phaseolus coccineus L.). The agronomic characteristics of plants and the bromatological features of seeds harvested in 7 experimental fields, set up at different elevations in Northern Italy, were analyzed. Results showed that this landrace is most suitable for cultivation at higher elevations. As elevation increased from 110 to 1100 m above sea level, the plants became more vigorous and productive and the beans became larger and more digestible. This research not only increases knowledge of the specific landrace but can also serve as an example and stimulus for efforts to safeguard agrobiodiversity worldwide, because it suggests a number of strategies for the conservation and valorization of this particular mountain variety using existing legal and economic mechanisms for protecting agrobiodiversity.
Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata), mung bean (V. radiata), rice bean (V. umbellata), and lablab (Lablab purpureus) were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index), and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05) and nitrogen content (r = 0.98, P < 0.01). The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.
Naugad is a remote rural municipality in the mountains of far west Nepal with poor accessibility and limited economic opportunities, especially for women and marginalized communities. Promotion of the natural resource-based value chain for allo (the Himalayan nettle, Girardinia diversifolia) was identified as an innovative livelihood strategy by the local community. Value chain development started in 2014. The project was designed to focus on women and include participation by the private sector. This paper analyzes the impact of the project, especially on women's lives, using primary and secondary data. A community-owned enterprise was established with private-sector support from the South Asian Association of Regional Cooperation's Business Association of Home Based Workers (SABAH) Nepal. The enterprise now has 82 members (69 of them women), with 150 households benefiting directly and indirectly. SABAH Nepal provided training in sustainable harvesting and processing techniques and promotes the products in high-end international markets. A buyback guarantee scheme provides security to local artisans. The quality and range of allo products have increased markedly, as has the share in benefits for local people. Skills training and visits to trade fairs have helped women build their capacity and take a leading role in the value chain process. The community-owned enterprise members have earned up to NPR 4000 per month from sewing, more than the local rate for day labor and sufficient to cover general household expenses. More than 25 women entrepreneurs have started microbusinesses related to allo. Allo has become an important economic asset, transforming the lives of mountain women in this village area. The approach has potential for scaling up across the subtropical to temperate areas of the Himalayan region in Bhutan, China, India, Myanmar, and Nepal.
A questionnaire survey was conducted to understand how a mountain ecosystem in northern Bhutan is perceived by local yak herders to be changing under climate warming. One hundred elderly herders were selected using a 2-stage sampling. The questionnaire sought information on herders' awareness and perceptions of weather patterns, climate changes, and their impact on vegetation, herding practices, and livelihoods. Most study participants were aware of global warming. They perceived that global warming has led to warmer and longer vegetation growing periods, increased rainfall, decreased water availability, more frequent droughts, the ascent of snow lines, and an increase in flash floods and landslides. Many herders also perceived that vegetation is growing faster, new vegetation is gradually becoming established in formerly barren lands, and meadows have been encroached on by rhododendrons, which has reduced grassland size and caused a decline in forage availability and quality. Warming was perceived to have caused difficulties in herding and transhumant migration. It was also perceived to have caused a decrease in milk production and increase in livestock predation, which affected the livelihoods of herders who rely on yak. The study concluded that yak herders' perceptions provide critical signs of warming and their vulnerability to changing climatic conditions in the alpine environment.
Although the eastern Himalayas have high plant biodiversity, we know very little about plant invasions in the region. This study is the first to examine non-native plant distribution in a popular eastern Himalayan national park. A total of 61 non-native plant species were found in roadside plant communities, which are frequently disturbed by hikers, pack animals, and recreational vehicles. These species were annual or biennial herbs, most of which originated in America or Europe. Non-native plant richness varied with the degree of anthropogenic disturbance. Specifically, greater numbers of non-native species were found at road heads and ends, which are generally subject to intense human activity. The average number of non-native species also varied according to the type of road and road use, with more present along motor roads and horse-riding trails than along hiking trails. These results highlight the role of vehicles and pack animals as dispersal vectors and provide a foundation for future invasion management decisions. To prevent the spread of non-native plants from park roads to the adjacent landscape, we also recommend the development of educational and monitoring programs that encourage tourist participation in conservation efforts.
Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum) was dominant in biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species, Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of shortwave infrared wavelengths, is needed.
Arid regions in valleys of southwestern China have steep topography and fragile ecosystems, making them a critical and challenging management issue in this region. A substantial amount of the research on these arid regions in valleys took place in the 1980s; less work has been done since the start of the 21st century. Knowledge of the boundaries of arid lands within these valleys can provide basic data and a scientific foundation, and comparing and analyzing the characteristics of different valleys will help policymakers match management regimes to local conditions, assuring sustainability in these fragile areas. Using remote-sensing data, we extracted the boundaries of the arid regions within these valleys. We then calculated land cover, elevation, slope, and aspect data for the study area. Our results describe the basic features of these valleys; they occur between 23°23′ and 33°19′N and between 97°03′ and 104°43′E, with a total area of 33,391.60 km2 at elevations between 254 and 5707 m. The arid regions in valleys have slopes ranging from 0 to 87.17°, with a mean of 25.77°, and a slightly greater area and proportion of sunny aspects than of shady aspects. The main land covers in the arid regions in valleys are grasslands and shrublands. Our results indicate that (1) the arid regions within these valleys have expanded significantly, and their vegetation consists largely of grasses or shrubs; (2) the study area consists of interlaced mountains and valleys, with a terrain consisting of diverse slopes and aspects; and (3) the land cover gradually transitions from grassland to shrub, and elevation and slope decrease from northwest to southeast.
The Afromontane Research Unit (ARU) at the University of the Free State's Qwaqwa campus in South Africa has a steadily growing reputation as a leading research unit on sustainable development in Afromontane regions. Learning from international experts, researchers in this unit have focused on multi- and transdisciplinary scientific approaches to the challenges faced by montane communities. The ARU is therefore strongly attuned to the global research focus on complex systems approaches, as it acknowledges that the Sustainable Development Goals cannot be reached by a “business as usual” approach.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere