Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Hunting regulations for grizzly bears (Ursus arctos) in much of Alaska since 1980 increasingly were designed to reduce bear abundance in the expectation such regulations would lead to increased harvests by hunters of moose (Alces alces) and caribou (Rangifer tarandus). Regulations were liberalized during 1980– 2010 primarily in the area we termed the Liberal Grizzly Bear Hunting Area (hereafter Liberal Hunt Area) which encompassed 76.2% of Alaska. By 2010, these changes resulted in longer hunting seasons (100% of Liberal Hunt Area had seasons > 100 days, 99.7% > 200 days, and 67.8% > 300 days), more liberal bag limits (99.1% of the Liberal Hunt Area with a bag limit ≥ 1/yr and 10.1% with a bag limit > 2/yr), and widespread waiver of resident tag fees (waived in 95.7% of the Liberal Hunt Area). During 1995–2010, there were 124 changes that made grizzly bear hunting regulations more liberal and two making them more conservative. The 4-year mean for grizzly bear kills by hunters increased 213% between 1976–1980 (387 grizzly bears) and 2005–2008 (823 grizzly bears). Since 2000, long-term research studies on grizzly populations in the Liberal Hunt Area have been terminated without replacement. Management of large predators by the State of Alaska is constrained by a 1994 state statute mandating “intensive management” in areas classified as important for human consumptive use of ungulates. Current grizzly bear management in the Liberal Hunt Area is inconsistent with the recommendations of the National Research Council's 1997 report on predator management in Alaska. Current attitudes, policies and absence of science-based management of grizzly bears in Alaska are increasingly similar to those that resulted in the near extirpation of grizzly bears south of Canada in the 19th and 20th centuries. If current trends continue, they increase risks to portions of the largest and most intact population of grizzly bears in North America.
Saltwater crocodiles (Crocodylus porosus) in the Northern Territory of Australia were protected in 1971, after a severe population decline resulting from 26 yr of intense commercial hunting. By that time wild saltwater crocodiles were rarely sighted anywhere and they were commercially extinct in areas where they had once been abundant. Standardized monitoring by spotlight surveys started in 1975 and provided relative density indices over time (1975–2009) as a unique record of the post-protection recovery of a wild crocodilian population. We examined the survey data for populations at 12 major tidal rivers, individually and as a single subpopulation. The pattern of recovery in the subpopulation in both abundance and biomass was approximated by logistic curves, predicting 5.26 non-hatchling crocodiles weighing 387.64 kg sighted per kilometer of river in 2010. We predicted potential carrying capacity as 5.58 non-hatchling crocodiles (5.73% higher than 2010) weighing 519.0 kg (25.31% higher than 2010). Individual rivers showed largely different abundance and biomass among rivers. The statistical model that best described the recovery in individual rivers was not always logistic. However, where it was logistic, expected carrying capacity of different rivers showed considerable variation in abundance and biomass. The variation indicates different habitat quality among the rivers. Recovery occurred despite various consumptive uses, particularly a widespread egg-harvest program, which has been an integral part of the incentive-driven conservation program for saltwater crocodiles in the Northern Territory since 1983. We suggest that the saltwater crocodile population of the Northern Territory is achieving full recovery from uncontrolled hunting in 1945–1971. Although saltwater crocodiles are considered an important natural resource, their increase in number, size, and distribution is posing management issues for public safety. Continuation of human-crocodile conflict management through public education and strategic removal of problem crocodiles will be essential.
Environmental temperatures affect nearly all aspects of ectotherm physiology, including terrestrial salamanders. Therefore, habitat disturbances that alter temperature regimes may interact with physiological processes to affect energy budgets of salamanders or constrain surface activity and possibly lead to changes in population-level parameters. We hypothesized that warmer surface temperatures following harvesting of canopy trees could cause surface-active salamanders to expend more energy for metabolism, potentially leaving a smaller proportion of the energy budget available for reproduction or storage. From 2006 to 2008, we quantified temperature regimes of salamander refugia in a field experiment replicated at 4 sites that included plots subjected to a timber harvest and plots not manipulated during this time period. At each site, we quantified temperature regimes in regenerating forest stands which, approximately 10 years earlier, experienced a range of harvest intensity from shelterwood to silvicultural clearcut. Further, we compared energetic parameters including 1) calories required to maintain homeostasis across an active season, 2) abundance of available potential energy (i.e., invertebrate prey), and 3) a measure of growth and storage (i.e., body condition index) among silvicultural treatments for surface-active salamanders. For surface-active eastern red-backed salamanders (Plethodon cinereus), mean calories required for maintenance were approximately 33% greater in recently harvested forest compared to unharvested controls, but body condition was inconsistent among treatments, and invertebrate abundances were similar among treatments but differed by study site. In contrast, we did not detect a treatment effect in any energetic metric 8–14 growing seasons after harvesting. Given that surface-active salamanders in recently harvested forest may be forced to restrain behaviors associated with foraging and mating or trade-off growth or reproduction for increased basic maintenance costs, energetics may be an important but overlooked short-term contributor to observed changes in abundances, reproductive demography, or surface activities after timber harvesting. Managing for both the rapid recovery of understory vegetation and retention of large stumps and logs may help mitigate warming of microclimate for salamanders and should be considered further.
We examined associations between annual reproduction and climate for 6 populations of individually marked northern spotted owls (Strix occidentalis caurina) in Washington and Oregon. We used an information-theoretical approach and mixed models to evaluate statistical models representing a priori hypotheses about the effects of weather and climate on reproduction. Reproduction was higher for adult than subadult owls and declined as the proportion of spotted owl territories with barred owl (Strix varia) detections increased. Similar to other spotted owl studies, we found that reproduction was negatively associated with cold, wet winters and nesting seasons at 3 of 6 study areas. In addition, we identified new relationships between reproduction, annual precipitation, storms, and regional climate cycles. For 3 of 6 areas, we found a quadratic relation between precipitation (rain and snow) and reproduction, with the number of young fledged per pair per year declining as precipitation in the previous year deviated from average levels. A meta-analysis conducted across all 6 areas indicated that reproduction at the regional level had a quadratic association with total winter snowfall in the preceding winter and was positively related to temperatures during the previous summer and fall. The amount of annual variation in reproduction accounted for by weather and climate varied widely across the 6 areas (4–79%), whereas variation in weather and climate across owl territories accounted for little of the spatial variation in reproduction (0–4%). Our results suggest that across the range of the species climate factors affecting prey abundance may have a greater effect on reproduction than direct effects of weather on nestlings.
We analyzed the population dynamics of a burrowing owl (Athene cunicularia) colony at Mineta San Jose International Airport in San Jose, California, USA from 1990–2007. This colony was managed by using artificial burrows to reduce the occurrence of nesting owls along runways and within major airport improvement projects during the study period. We estimated annual reproduction in natural and artificial burrows and age-specific survival rates with mark-recapture techniques, and we estimated the relative contribution of these vital rates to population dynamics using a life table response experiment. The breeding colony showed 2 distinct periods of change: high population growth from 7 nesting pairs in 1991 to 40 pairs in 2002 and population decline to 17 pairs in 2007. Reproduction was highly variable: annual nesting success (pairs that raised ≥1 young) averaged 79% and ranged from 36% to 100%, whereas fecundity averaged 3.36 juveniles/pair and ranged from 1.43 juveniles/pair to 4.54 juveniles/pair. We estimated annual adult survival at 0.710 during the period of colony increase from 1996 to 2001 and 0.465 during decline from 2002 to 2007, but there was no change in annual survival of juveniles between the 2 time periods. Long-term population growth rate (λ) estimated from average vital rates was λa= 1.072 with λi = 1.288 during colony increase and λd = 0.921 (Δλ = 0.368) during decline. A life table response experiment showed that change in adult survival rate during increasing and declining phases explained more than twice the variation in growth rate than other vital rates. Our findings suggest that management and conservation of declining burrowing owl populations should address factors that influence adult survival.
We used a 30-year study of breeding Swainson's hawks (Buteo swainsoni) in northern California to examine correlates of adult apparent survival using multistate models in Program MARK. Specifically, we examined age-related patterns in adult apparent survival and how adult survival was correlated with average annual nest productivity, annual reproductive output, western juniper (Juniperus occidentalis) density around nest sites, distance to agriculture, and amount of agriculture within a territory. Annual estimates of adult survival varied from 0.85 to 0.9 (SE = 0.02). There were no indications of senescence or other patterns of age-related changes in adult apparent survival. Adult survival was inversely correlated with average reproductive output, with individuals producing >2 offspring having decreased survival, reflecting a possible trade-off between reproduction and survival. Conversely, reproduction in any year was positively correlated with survival, providing evidence of individual quality influencing adult survival. The distance an individual had to travel to agriculture, where most individuals forage, was negatively related to survival. Primary productivity within the average Swainson's hawk territory was positively correlated with adult survival. Our results indicate that individuals may have higher survival and fitness in areas with high proportions of irrigated agriculture that provides high prey densities, particularly alfalfa.
Understanding survival and cause-specific mortality of native and translocated animals can help biologists design more effective recovery programs. We estimated survival rates for 181 native mountain quail (Oreortyx pictus) in west-central Idaho from 1992 to 1996 and for 199 translocated mountain quail in western Idaho and eastern Washington in 2005 and 2006. Spring—summer survival of native birds over 4 yr ranged from 0.210 (SE = 0.116) to 0.799 (SE = 0.103) and fall-winter survival in 2 yr was 0.523 (SE = 0.089) and 0.244 (SE = 0.084). Annual survival rates were 0.418 (SE = 0.088) and 0.174 (SE = 0.065). Springsummer survival rate of translocated birds was 0.215 (SE = 0.044) in 2005 and 0.059 (SE = 0.021) in 2006. We modeled biweekly survival as a function of sex, age, movement rate, native versus translocated status, and linear time trend, and then we added year and 3 weather covariates (mean biweekly precipitation and maximum and minimum temperatures). Year and climate variables improved the a priori top model which included movement rate and native versus translocated status. Higher mortality rates due to predation coincided with movements to breeding habitat in late winter, periods of higher temperatures in the spring and summer, and periods of higher precipitation and colder temperatures during the fall-winter seasons. High movement rates of native birds in winter to avoid snow and by translocated birds when dispersing may have led to greater exposure to predators and consequently lower survival rates. Mountain quail can experience low and variable survival, stressing the potential need for multiple years of releases in restoration efforts in the eastern portion of their range. More attention is needed to identify optimal habitat (including nest sites) for restoring mountain quail populations to reduce movements, lower mortality risks, and provide conditions for withstanding periods of unfavorable weather.
To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P < 0.001, r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data.
Duckling survival is an important component of mallard (Anas platyrhynchos) recruitment and population growth, yet many factors regulating duckling survival are poorly understood. We investigated factors affecting mallard duckling survival in the drift prairie of northeastern North Dakota, 2006–2007. Mammalian meso-predators were removed by trapping on 4 92.3 km2 study sites and another 4 study sites served as controls. We monitored 169 broods using telemetry and periodic resighting, and we modeled cumulative survival to 30 days of age (Ŝ30d) using the nest survival module in Program MARK. Duckling survival was not affected by predator removal (Ŝ30d-Control = 0.208, 85% CI: 0.182–0.234; Ŝ30d-Trapped = 0.183, 85% CI: 0.155–0.211) and was only weakly negatively correlated with duckling density. Duckling survival was higher in 2007 (Ŝ30d-2007 = 0.264, 85% CI: 0.193–0.355) than 2006 (Ŝ30d-2006 = 0.157, 85% CI: 0.084–0.252) and increased with total seasonal and semipermanent wetland area and declined with perennial cover in the surrounding landscape. Broods that hatched earlier in the season (especially in 2006) and ducklings that were heavier at hatch also had higher survival. Our estimates of duckling survival are among the lowest reported for mallards and contradict previous research in Saskatchewan that found predator removal increased duckling survival. However, our results are consistent with other studies suggesting that earlier hatch date, increased wetland availability, and better duckling condition lead to increased survival. Management actions that increase wetland density, improve nest success early in the season, and potentially target brood-specific predators such as mink (Neovison vison) would likely lead to higher duckling survival.
Periodic treatment of established stands of dense nesting cover (DNC) is a recommended practice to maintain cover quality, but little information exists on the magnitude and duration of treatment effects on nesting waterfowl. During 1998–2001, we examined the effect of management treatments on vegetative characteristics and waterfowl nest success and density in fields of DNC seeded to introduced and native grass and forb mixes in the parklands of Saskatchewan and Manitoba. We measured vegetation height—density and litter depth within fields and located and monitored 1,927 duck nests within 33–42 fields/yr ranging in size from 6 ha to 62 ha. We considered a series of models examining the influence of grass type and management treatment (GTMT) and years post-management (YPM) on vegetative characteristics, nest success, and nest density while including covariates potentially affecting these response variables. Visual obstruction and litter depth were lowest in native-burned fields and greatest in introduced-hayed fields. Visual obstruction was low the year following management, peaked 2–3 YPM, and remained at intermediate levels through ≥6 YPM. Litter depth remained low for the first 3 YPM and increased thereafter. Nest success and nest density varied little among GTMT. Nest success was high (14.3%) the year following a management treatment, low (6.5%) at 2 YPM, and moderate thereafter. Nest success decreased with percent cropland in the surrounding landscape. Nest density was 0.7 nests/ha the first year following management, increased to approximately 1.3 nests/ha in years 2–3, and declined back to approximately 0.7 nests/ha for ≥6 YPM. Nest density decreased with field size and increased with the area of small wetlands, percent cropland, and percent wetland within surrounding landscapes. Nest density tracked vegetation density as expected and our results indicate a possible trade-off between nest density and nest success. Given ancillary data on small mammal and insect prey in our study fields, and evidence from other studies, we speculate that DNC fields may act as prey reservoirs during years of peak vegetative density with a consequent reduction in nest survival. Therefore, management to increase waterfowl production based on our results needs to consider the interaction of treatment effects, competing habitats, and surrounding landscape composition.
KEYWORDS: adaptive management, Amphispiza belli, California Channel Islands, global climate change, island endemic, population viability analysis, San Clemente sage sparrow
Threats to a species' persistence are likely to change as conservation measures reduce some threats, while natural and anthropogenic changes increase others. Despite a variety of potential underlying mechanisms, extinction threats will be manifested through one of the 3 components of population dynamics: reducing population growth potential, increasing population variability, or lowering the population ceiling. Consequently, effective management can be guided by monitoring programs and population models that examine each of these components. We examined the potential for a coupled monitoring and modeling effort to guide management of species-at-risk while accounting for evolving risks using the case study of the threatened San Clemente sage sparrow (Amphispiza belli clementeae). Originally listed due to a low population ceiling imposed by severe habitat loss, we found that the major threat to San Clemente sage sparrow persistence has shifted to low population growth potential driven by high juvenile mortality. We further found that successful mitigation of high juvenile mortality will shift the primary threat to drought frequency, which is predicted to increase on San Clemente Island as a consequence of global climate change. The latter shift is a consequence of the boom-bust ecology exhibited by San Clemente sage sparrows in response to rainfall—likely a common characteristic of short-lived terrestrial vertebrates in arid environments. Our ability to successfully recover this species hinges on a comprehensive monitoring and modeling program incorporating all 3 components of population dynamics informing changes in management priorities to reflect shifting threats. Our study indicates that the next critical step to recovering sage sparrows is to understand and mitigate the causes of high juvenile mortality. In response to these predictions, the United States Navy has funded a radio-telemetry study to determine the cause(s) of juvenile mortalities.
We studied moose (Alces alces) survival, physical condition, and abundance in a 3-predator system in western Interior Alaska, USA, during 2001–2007. Our objective was to quantify the effects of predator treatments on moose population dynamics by investigating changes in survival while evaluating the contribution of potentially confounding covariates. In May 2003 and 2004, we reduced black bear (Ursus americanus) and brown bear (U. arctos) numbers by translocating bears ≥240 km from the study area. Aircraft-assisted take reduced wolf (Canis lupus) numbers markedly in the study area during 2004–2007. We estimated black bears were reduced by approximately 96% by June 2004 and recovered to within 27% of untreated numbers by May 2007. Brown bears were reduced approximately 50% by June 2004. Late-winter wolf numbers were reduced by 75% by 2005 and likely remained at these levels through 2007. In addition to predator treatments, moose hunting closures during 2004–2007 reduced harvests of male moose by 60% in the study area. Predator treatments resulted in increased calf survival rates during summer (primarily from reduced black bear predation) and autumn (primarily from reduced wolf predation). Predator treatments had little influence on survival of moose calves during winter; instead, calf survival was influenced by snow depth and possibly temperature. Increased survival of moose calves during summer and autumn combined with relatively constant winter survival in most years led to a corresponding increase in annual survival of calves following predator treatments. Nonpredation mortalities of calves increased following predator treatments; however, this increase provided little compensation to the decrease in predation mortalities resulting from treatments. Thus, predator-induced calf mortality was primarily additive. Summer survival of moose calves was positively related to calf mass (β > 0.07, SE = 0.073) during treated years and lower (β = -0.82, SE = 0.247) for twins than singletons during all years. Following predator treatments, survival of yearling moose increased 8.7% for females and 21.4% for males during summer and 2.2% for females and 15.6% for males during autumn. Annual survival of adult (≥2 yr old) female moose also increased in treated years and was negatively (β = -0.21, SE = 0.078) related to age. Moose density increased 45%, from 0.38 moose/ km2 in 2001 to 0.55 moose/km2 in 2007, which resulted from annual increases in overall survival of moose, not increases in reproductive rates. Indices of nutritional status remained constant throughout our study despite increased moose density. This information can be used by wildlife managers and policymakers to better understand the outcomes of predator treatments in Alaska and similar environments.
We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74– 0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy.
Harvest data (e.g., number of animals harvested, trapper effort) are an important source of information for state wildlife agencies to manage harvested furbearers. These data provide evidence to support adapting harvest regulations when necessary. Setting appropriate harvest regulations for fishers (Martes pennanti) and American martens (Martes americana) is critical, as these species often exist at low densities, are sensitive to timber-management practices and trapper-harvest, and experience some level of interspecific predation and competition in sympatric populations. We estimated effects of management (e.g., number of fishers or martens harvested per trapper per season [harvest limit], season length) and extrinsic (e.g., weather, pelt prices) factors on regulated harvests of fishers and martens in the Upper Peninsula of Michigan during 1996–2007. We used generalized linear mixed models in an information-theoretic approach (quasi-likelihood adjusted Akaike Information Criterion [QAIC]) to discern which factors most strongly influenced fisher and marten harvests. For harvest of fishers, the 3 QAIC-best models included harvest limit, season length, and number of trappers, suggesting that regulatory changes within the ranges tested may be implemented to influence harvest. The QAIC-best model (harvest limit) contained 26% of the weight of evidence, and using an independent subset of data, showed no difference between model predictions and harvest data. In contrast, harvest of martens was not strongly influenced by any factors we tested. Possible reasons for a lack of measurable effects while modeling harvest of martens include a low harvest limit (i.e., 1 marten) or incidental harvest of martens by fisher or bobcat (Lynx rufus) trappers. Knowledge of influences on harvest will lead to informed decision-making when managers are setting harvest regulations, particularly for low-density furbearers.
Data from wildlife disease surveillance programs are used to inform implementation of disease control (e.g., vaccination, population reduction) in space and time. We developed an approach to increase detection of raccoon rabies in raccoons (Procyon lotor) and skunks (Mephitis mephitis) of Québec, Canada, and we examined the implications of using this approach for targeted surveillance. First we modeled the probability of sampling a rabid animal relative to environmental characteristics of sampling locations. Rabid animals were more likely to be found in low-lying flat landscapes that had higher proportions of corn-forest edge habitat and hay agriculture, and that were within 20 km of one or more known rabies cases. From the model, we created 2 complementary risk maps to identify areas where rabid animals were most likely to be sampled. One map accounted for habitat and known rabies case locations, and can be used to define an infection zone from which surveillance can be targeted along the periphery to determine if disease is continuing to spread. The other map only accounted for habitat and can be used to locate areas most likely to contain rabid animals when the disease is present. In a further analysis we compared the 2 most successful methods for detecting raccoon rabies in Québec, given the disease was present. Government trapping operations (active surveillance) detected more cases in the short-term, but citizen notification (passive and enhanced) was more effective after 12 trapping days from which the initial rabies case was found. Our approach can benefit wildlife and public health agencies wanting to assess the disease status of regions by targeting surveillance to habitats most likely to contain infected animals and by defining the duration over which sampling methods are effective.
Wildlife water development can be an important habitat management strategy in western North America for many species, including both pronghorn (Antilocapra americana) and mule deer (Odocoileus hemionus). In many areas, water developments are fenced (often with small-perimeter fencing) to exclude domestic livestock and feral horses. Small-perimeter exclosures could limit wild ungulate use of fenced water sources, as exclosures present a barrier pronghorn and mule deer must negotiate to gain access to fenced drinking water. To evaluate the hypothesis that exclosures limit wild ungulate access to water sources, we compared use (photo counts) of fenced versus unfenced water sources for both pronghorn and mule deer between June and October 2002–2008 in western Utah. We used model selection to identify an adequate distribution and best approximating model. We selected a zero-inflated negative binomial distribution for both pronghorn and mule deer photo counts. Both pronghorn and mule deer photo counts were positively associated with sampling time and average daily maximum temperature in top models. A fence effect was present in top models for both pronghorn and mule deer, but mule deer response to small-perimeter fencing was much more pronounced than pronghorn response. For mule deer, we estimated that presence of a fence around water developments reduced photo counts by a factor of 0.25. We suggest eliminating fencing of water developments whenever possible or fencing a big enough area around water sources to avoid inhibiting mule deer. More generally, our results provide additional evidence that water development design and placement influence wildlife use. Failure to account for species-specific preferences will limit effectiveness of management actions and could compromise research results.
Proper management of threatened species requires knowledge of population sizes and structures, however current techniques to gather this information are generally impractical and costly and can be stressful on the animals. Non-invasive methods that can produce high quality and accurate results are better alternatives. In winter 2010, we collected blood and fecal samples from 2 reindeer (Rangifer tarandus) populations (Kaamanen, Finland and Svalbard, Norway) to investigate the feasibility of using fecal progesterone metabolites to help estimate the reproductive status, the sex, and the age structures of the populations. We first examined the relationship between plasma progesterone and fecal progesterone metabolite concentrations. We further assessed whether fecal progesterone metabolite levels would clearly differ among calf, yearling, and adult and between pregnant and non-pregnant females. We quantified fecal progesterone metabolites (using enzyme immunoassay) and plasma progesterone (using radio immunoassay) of females and males of different ages from the 2 herds. We found in both populations that fecal progesterone metabolite levels reflected plasma progesterone concentrations. However, the range of fecal progesterone metabolite concentration was much wider in Finland than in Svalbard, possibly due to differences in diet or body condition. We determined a threshold value of 1.31 ng/ml plasma progesterone and 2025.93 ng/g dried fecal progesterone metabolites to identify pregnant reindeer from non-pregnant animals with 100% accuracy. We found a significant difference in fecal progesterone metabolite concentrations only between calves and yearlings/adults in Finland. We could not differentiate among males, non-pregnant adults, or calves of either sex; therefore identification of sex may have to rely on the use of DNA techniques. Our results suggest that hormone concentration, in combination with fecal DNA and pellet morphometry techniques, may provide important population parameters and is a valuable tool for the monitoring of reindeer and may have an application for threatened populations of woodland caribou throughout the winter and early spring.
Movements of male white-tailed deer (Odocoileus virginianus) are of great concern with respect to spread of chronic wasting disease (CWD) across landscapes because most yearlings males disperse and adult males have higher prevalence of CWD than do females and younger deer. We radiocollared and monitored 85 male white-tailed deer in the middle Missouri River Valley of eastern Nebraska and western Iowa, USA from 2004 to 2008. Average size (±SE) of fixed-kernel annual home ranges (95%) and core areas (50%) for resident deer were 449 (±32) ha and 99 (±7) ha, respectively. Resident deer exhibited a high-degree of fidelity to their home ranges. Mean overlap between consecutive annual home ranges and core areas was 81% and 74%, respectively. Average dispersal distance was 17.7 ± 4.5 km (range = 3–121 km) for 22 radio-marked and 6 ear-tagged yearlings. Mean spring dispersal distance (25 km) was 150% greater than fall (10 km). Dispersal direction from Desoto National Wildlife Refuge (DNWR) was bimodal on a northwest to southeast axis that followed the Missouri River corridor. Of 22 yearlings that dispersed 18 (82%) established adult home ranges within the river valley. Dispersal movements of yearling males represent the greatest risk for rapid spread of diseases from infected source populations. Disease management efforts in riparian habitats should target male fawns and yearling males for removal in areas within or immediately adjacent to river corridors.
We evaluated the biological and socio-economic effects of statewide limitation of mule deer (Odocoileus hemionus) hunting licenses, which began in Colorado in 1999. We implemented a before-after-control-impact (BACI) analysis of annual helicopter sex and age class surveys, collected as part of the Colorado Division of Wildlife's routine monitoring, to assess changes in adult male/adult female ratios and fawn/adult female ratios in response to this change in harvest management. Following statewide limitation and reduction of license sales (1999–2006), we observed increases in adult male/adult female ratios of 7.39 (SE = 2.36) to 15.23 (SE = 1.22) adult males per 100 adult females in moderately limited areas and of 17.55 (SE = 3.27) to 21.86 (SE = 2.31) adult males per 100 adult females in highly limited areas. We simultaneously observed reductions in fawn/adult female ratios in newly limited areas by as much as 6.96 (SE = 2.19) fawns per 100 females, whereas in areas that had previously been limited we observed stabilization of fawn/adult female ratios at levels lower than levels observed under the unlimited harvest management structure. An immediate decline of $7.86 million in annual revenue stemmed from the change in harvest management, but revenue subsequently rebounded. This study provides preliminary evidence of potential effects that other state and provincial wildlife management agencies may face as they consider shifting mule deer harvest management towards limited license scenarios.
Although it is known that chronic wasting disease (CWD) can be transmitted by both direct animal-to-animal contact and contact with contaminated environments, the relative role of each mechanism in the spread of CWD in free-ranging populations has yet to be defined. We investigated patterns of interaction between mule deer (Odocoileus hemionus) in order to understand how factors such as season and landscape may influence patterns of disease spread in these populations. Using location data from male and female Global Positioning System (GPS)-collared mule deer in 5 study areas located in and around a CWD-endemic zone in southern Saskatchewan, Canada, we quantified close proximity events, or events involving both spatial and temporal overlap of individuals. We defined close proximity events as occurrences in which 2 deer were located <25 m apart at the same point in time. We looked at seasonal variation in the probability of close proximity events, as well as landscape factors associated with these events when compared to areas of shared space use, or spatial overlap alone. Overall probability of an individual GPS-collared deer being located in close proximity to another GPS-collared deer was 0.092 (n = 107). The early gestation (16 Dec– 31 Mar) and late gestation (1 Apr–15 May) seasons had the highest probability of close proximity events occurring, and same-sex pairs were more likely to be found in close proximity than between-sex pairs during all seasons aside from the rut (1 Nov–15 Dec). High probability of close proximity events during the gestation seasons agrees with the tendency of mule deer to aggregate into large groups during late winter and suggests that this may be an important time period for CWD transmission to occur. Close proximity events occurred more in cropland and wetland than expected based on availability, whereas close proximity events occurred less than expected in grassland. The opposite was true for spatial overlap between individuals, which occurred more than expected in areas of low elevation and rugged terrain and in grassland or shrub-wood habitats. These results suggest that cropland may be a higher risk habitat for direct and indirect CWD transmission between individuals and that, although coulees and other areas of rugged topography are less likely to be associated with close proximity events, those areas may be more likely to contain environmental contamination in CWD-affected areas due to common use by multiple deer.
Sharpshooting is a proven management technique to lower white-tailed deer (Odocoileus virginianus) densities in areas where hunting is precluded. A donation program that allows for the consumptive use of these culled deer is often necessary to gain public approval for such a program. We culled 40 deer in Indiana using sharpshooting methods (head and neck shot placement) and radiographed the carcasses to determine if lead fragmentation spread throughout the skeletal muscle system. In 30 deer where shot placement was between the cranium and fourth cervical vertebrae, we observed no lead fragments in any thoracic or crural muscle tissue. Of 10 deer where shot placement was between the fifth and seventh cervical vertebrae, 8 deer experienced lead fragments in the extensor spinae muscle. Deer culled with highly frangible bullets via sharpshooting in the cranium or upper cervical spine have minimal risk of experiencing lead fragmentation in the thoracic or crural muscle systems. Deer shot in the lower neck may experience lead fragmentation in the anterior extensor spinae muscle, and up to 40 cm of that muscle should be removed before consumption.
Closed-canopy upland hardwood stands often lack diverse understory structure and composition, limiting available nutrition for white-tailed deer (Odocoileus virginianus) as well as nesting and foraging structure for other wildlife. Various regeneration methods can positively influence understory development; however, non-commercial strategies are needed to improve available nutrition in many stands, as some contain timber that is not ready to harvest and others are owned by landowners who are not interested in harvesting timber. Applications of herbicide and prescribed fire have improved availability of food and cover for deer and other wildlife in pine (Pinus spp.) systems. However, this strategy has not been evaluated in hardwood systems. To evaluate the influence of fire and herbicide treatments on available deer forage in upland hardwood systems, we measured forage availability and calculated nutritional carrying capacity (NCC) at 14% crude protein mixed diet, following 7 silvicultural treatments, including controls, in 4 mixed upland hardwood stands July–September 2007 and 2008. We compared NCC among forest treatments and within 4 paired warm-season forage food plots to evaluate the usefulness of food plots in areas where forests are managed. Nutritional carrying capacity estimates (deer days/ha) were greatest following canopy reduction with prescribed fire treatments in both years. Understory herbicide application did not affect species composition or NCC 1 year or 2 years post-treatment. Production of forage plantings exceeded that of forest treatments both years with the exception of early-maturing soybeans and retention cut with fire 2 years post-treatment. We encourage land managers to use canopy reducing treatments and low-intensity pre-scribed fire to increase available nutrition and improve available cover where needed in upland hardwood systems. In areas where deer density may limit understory development, high-quality forage food plots may be used to buffer browsing while strategies to reduce deer density and stimulate the forest understory are implemented.
We evaluated use of 6 wildlife underpasses (UP) using video camera surveillance along State Route 260 in Arizona, USA. We documented wildlife use and compared successful UP crossings by various species and among UP. From 2002 to 2008, we recorded visits by 15,134 animals of 21 species (16 wildlife, 5 domestic) resulting in 72.4% crossing through UP. Elk (Cervus elaphus) accounted for 68% of recorded animals, white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus) accounted for 13% and 6%, respectively. As elk and white-tailed deer were the only species adequately represented across all UP, we used logistic regression to further evaluate factors associated with successful use of UP. To evaluate habituation over time we limited this analysis to 5 UP monitored for >4 yr. For elk, structural attributes and placement, season, time of day, and months monitored were associated with successful elk UP crossing in year 1, however, by year 4 only structural attributes and placement were significant, suggesting that UP structure and placement likely were of primary importance for successful elk passage. By year 4, probabilities of crossing at 4 of 5 UP converged on >0.70, indicating that given sufficient time to allow habituation, most UP we evaluated appeared to be effective for elk, regardless of structural attributes or placement. For deer, only structural attribute and placement were significant, and aside from one structure did not increase in probability of a successful crossing over time. The overall number of animals and species that crossed SR 260 via UP underscores efficacy of UP in promoting multi-species permeability. Long-term monitoring allows wildlife and highway managers to evaluate adaptation to wildlife crossing structures by different species. Results from this study add to our knowledge of mitigating the impact of highways on wildlife.
Estimating diet is often an important step in understanding and managing the impacts of ungulates, particularly for non-native species, but there is uncertainty about whether rumen contents should be assessed using macroscopic or microhistological methods or both. Introduced sambar deer (Cervus unicolor) have a large and increasing distribution in south-east Australia, and there is concern about their impacts on native and non-indigenous plant species. We estimated the diets of 102 sambar deer harvested during 2007–2009 using macroscopic and microhistological rumen analysis techniques. We identified 105 plant species in the diets of sambar deer, 61 identified with both techniques and 22 identified only macroscopically or only microhistologically. Rumen species richness was 70% greater using the microhistological technique. Estimates of taxonomic (i.e., monocot and dicot) and functional (i.e., fern, shrub—tree, forb, climber, grass, and grass-like) group composition by the 2 techniques were similar. Shrubs—trees dominated the diet (macroscopic, 49.7%; microhistological, 52.7%), followed by grasses (macroscopic, 22.7%; microhistological, 17.5%) and ferns (macroscopic, 20.6%; microhistological, 22.2%). We identified 9 non-indigenous plant species, 2 of which we identified using only the microhistological technique. We detected seeds of the weed blackberry (Rubus fruticosus aggregate), sometimes in large amounts, only with the macroscopic technique, whereas we detected foliage of that species with both techniques. Both techniques classified sambar deer as an intermediate mixed feeder closer to a concentrate selector—browser than a bulk and roughage feeder. However, both techniques detected seasonal differences in the percentages of taxonomic and functional groups in the diet; sambar deer were more grazers in autumn and more browsers in spring. Our results indicate that both macroscopic and microhistological techniques may need to be used when it is important to identify plant species in the diet, as is often the case for non-native ungulates. However, either technique can be used to estimate broader taxonomic and functional diet composition, including feeding type.
We undertook a 2-year (2002–2004) mark—recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands.
Considerable uncertainty often exists in estimates of demographic parameters based on data collected from harvested furbearer species. We used molecular genetic techniques to estimate rates of error in 2 methods of sex determination of harvested bobcats (Lynx rufus): manual examination of the carcass (field sex) and laboratory-based maximum canine root area (MRA sex). Error rates were high for both sexing techniques, and were associated with age and an age—sex interaction for the field and MRA sexing methods, respectively. These findings do not support the use of the field methods for identifying sex of harvested bobcats. The MRA method may be effective for determining sex of older bobcats but is limited by considerable overlap between sexes in juveniles and yearlings. If critical demographic parameters are estimated from harvest data, efforts should be made to identify and reduce rates of error before data are used to assess population status.
KEYWORDS: abundance estimation, Alexander Archipelago, black bear, components of variance, mark-recapture, microsatellites, Southeast Alaska, tetracycline biomarker, Ursus americanus
We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics.
Few tracking studies consider seasonal changes in ability to re-sight wildlife, despite potential for biases in sightability to mislead our interpretation of models of movement and abundance. We developed seasonal sightability models based on visual observations of radio-collared elk (Cervus elaphus) in Manitoba, Canada, through 6 seasons. We located 377 elk 8,862 times using aerial telemetry from 2002 to 2009. We tested the hypothesis that sites where we were able to visually observe radio-collared elk during aerial telemetry differed from sites where collared elk were known to be present but could not be sighted. Relationships varied with season and elk sightability was influenced by forest type, habitat openness, distance to edge, and time of day. Our results confirm that observers have the highest probability of detecting elk in early and late winter. However, factors such as day length, which increases by 64% during this period, suggest that fewer impediments to detection exist in late winter. Our findings reinforce the need to account for seasonal as well as spatial changes in habitat-specific sightability models.
Non-invasive collection of tissue samples to obtain DNA for microsatellite genotyping required to estimate population size has been used for many wildlife species but rarely for ungulates. We estimated mountain goat (Oreamnos americanus) population size on a mountain complex in southwestern British Columbia by identification of individuals using DNA obtained from fecal pellet and hair samples collected during 3 sampling sessions. We identified 55 individuals from 170 samples that were successfully genotyped, and estimated a population of 77 mountain goats (SE = 7.4). Mean capture probability was 0.38 (SE = 0.037) per session. Our technique provides one of the first statistically rigorous estimates of abundance of an ungulate species using DNA derived primarily from fecal pellets. Our technique enables managers to obtain minimum counts or population estimates of ungulates in areas of low sightability that can be used for conservation and management.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere