BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
This essay documents and examines the historical circumstances and events surrounding the discovery of the mode of transmission of yellow fever virus in Cuba. Close scrutiny of the articles published by Walter Reed and his colleagues in 1900, 1901 and 1902 reveals their limitations as historic documents. Fortunately, other sources of information from that period survive in letters and documents written by individuals involved in the quest for the mode of transmission. Examination and comparison of those sources of information unveiled a fascinating story which reveals that misunderstandings engendered by published articles accorded merit where it was not fully due.
This essay documents and examines the historical circumstances and events surrounding the discovery of the mode of transmission of yellow fever virus in Cuba. Close scrutiny of the articles published by Walter Reed and his colleagues in 1900, 1901 and 1902 reveals their limitations as historic documents. Fortunately, other sources of information from that period survive in letters and documents written by individuals involved in the quest for the mode of transmission. Examination and comparison of those sources of information unveiled a fascinating story which reveals that misunderstandings engendered by published articles accorded merit where it was not fully due.
Cutaneous leishmaniasis (CL) is highly endemic in the Cukurova region, located on the crossroads of main refugee routes from the Middle East to Europe on the eastern Mediterranean part of Turkey. Our purpose was to investigate the phenotypic variation of Phlebotomus tobbi, the known vector of CL in the region, during one active season. Sand flies and microclimatic data were collected monthly from May to October, 2011, from five locations in six villages in the study area. A geometric morphometric approach was used to investigate wing morphology. Shape analyses revealed that males collected in May and June comprised one group, while specimens collected in August, September, and October formed a second group. Specimens from July were found to be distributed within these two groups. A similar distribution pattern was observed for females, but specimens from October were represented as the third district group. Significant size variation was detected for both sexes between months. Wing size and temperature were negatively correlated for females, but there was no temperature effect for males. Wing size of both sexes was increased in correlation to increasing relative humidity. Males were found to have smaller wings with increasing population density.
Cutaneous leishmaniasis (CL) is highly endemic in the Cukurova region, located on the crossroads of main refugee routes from the Middle East to Europe on the eastern Mediterranean part of Turkey. Our purpose was to investigate the phenotypic variation of Phlebotomus tobbi, the known vector of CL in the region, during one active season. Sand flies and microclimatic data were collected monthly from May to October, 2011, from five locations in six villages in the study area. A geometric morphometric approach was used to investigate wing morphology. Shape analyses revealed that males collected in May and June comprised one group, while specimens collected in August, September, and October formed a second group. Specimens from July were found to be distributed within these two groups. A similar distribution pattern was observed for females, but specimens from October were represented as the third district group. Significant size variation was detected for both sexes between months. Wing size and temperature were negatively correlated for females, but there was no temperature effect for males. Wing size of both sexes was increased in correlation to increasing relative humidity. Males were found to have smaller wings with increasing population density.
Aedes albopictus is an important vector of several diseases including dengue- and Chikungunya fever and is a potential vector of Zika-fever. The invasion dynamics of Aedes albopictus was reconsidered by comparing the temperature-related development of the mosquito with the observed real geographical distribution in Florida and in Italy. The potential number of generations and the annual dispersal distances of the mosquito were calculated for the estimates. The estimated total dispersals are 3.6–4.6 km/year/generation in Italy and 4.6–5.3 km/year/generation in Florida, values that are at least five to six times higher than those derived from release and recapture studies and from the previously measured flying distances of female Asian tiger mosquitoes. Subtracting the calculated dispersal distances with the known active dispersal of female Ae. albopictus, the passive dispersal component of the total dispersal distances was found to be 2.8–4.1 km/year/generation in Italy and 3.8–4.8 km/year/generation in Florida. Our results confirm that the active dispersal of female mosquitoes plays a secondary role in determining the rate of areal expansion and, in contrast, passive factors may play a primary role. It was concluded, based on similar average values of the passive dispersal distances of the mosquito in Florida and Italy, that at large spatial scales the anthropogenic component can be well estimated.
Aedes albopictus is an important vector of several diseases including dengue- and Chikungunya fever and is a potential vector of Zika-fever. The invasion dynamics of Aedes albopictus was reconsidered by comparing the temperature-related development of the mosquito with the observed real geographical distribution in Florida and in Italy. The potential number of generations and the annual dispersal distances of the mosquito were calculated for the estimates. The estimated total dispersals are 3.6–4.6 km/year/generation in Italy and 4.6–5.3 km/year/generation in Florida, values that are at least five to six times higher than those derived from release and recapture studies and from the previously measured flying distances of female Asian tiger mosquitoes. Subtracting the calculated dispersal distances with the known active dispersal of female Ae. albopictus, the passive dispersal component of the total dispersal distances was found to be 2.8–4.1 km/year/generation in Italy and 3.8–4.8 km/year/generation in Florida. Our results confirm that the active dispersal of female mosquitoes plays a secondary role in determining the rate of areal expansion and, in contrast, passive factors may play a primary role. It was concluded, based on similar average values of the passive dispersal distances of the mosquito in Florida and Italy, that at large spatial scales the anthropogenic component can be well estimated.
An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito-free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.
An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito-free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.
Pulsed disturbances of larval mosquito sites are likely to have a direct negative effect on mosquitoes but may also have indirect effects due to the alteration of community structure. These altered communities may become attractive to gravid mosquitoes searching for oviposition sites when the disturbances decrease the abundance of mosquito antagonists such as competitors, which often results in an increase in mosquito food resources. However, flash flood disturbances in intermittent riverbeds can also remove mosquito food resources such as algae, so that the net effect of flash floods could be either to increase or decrease mosquito abundance. We conducted an outdoor mesocosm experiment to assess the effects of flash floods on mosquito oviposition habitat selection and larval abundance during the post-disturbance period of community recovery. Mesocosms were artificially flooded. Mosquito oviposition, immature abundance, invertebrate species diversity, chlorophyll a, and abiotic parameters were monitored. Our results showed that the flash flood negatively affected phytoplankton and zooplankton, leading to a decrease of mosquito oviposition in flooded mesocosms compared to non-flooded mesocosms. More broadly, this study indicates how disturbances influence mosquito oviposition habitat selection due to the loss of food resources in ephemeral pools, and it highlights the importance of considering the effects of disturbances in management, habitat restoration, and biodiversity conservation in temporary aquatic habitats.
Pulsed disturbances of larval mosquito sites are likely to have a direct negative effect on mosquitoes but may also have indirect effects due to the alteration of community structure. These altered communities may become attractive to gravid mosquitoes searching for oviposition sites when the disturbances decrease the abundance of mosquito antagonists such as competitors, which often results in an increase in mosquito food resources. However, flash flood disturbances in intermittent riverbeds can also remove mosquito food resources such as algae, so that the net effect of flash floods could be either to increase or decrease mosquito abundance. We conducted an outdoor mesocosm experiment to assess the effects of flash floods on mosquito oviposition habitat selection and larval abundance during the post-disturbance period of community recovery. Mesocosms were artificially flooded. Mosquito oviposition, immature abundance, invertebrate species diversity, chlorophyll a, and abiotic parameters were monitored. Our results showed that the flash flood negatively affected phytoplankton and zooplankton, leading to a decrease of mosquito oviposition in flooded mesocosms compared to non-flooded mesocosms. More broadly, this study indicates how disturbances influence mosquito oviposition habitat selection due to the loss of food resources in ephemeral pools, and it highlights the importance of considering the effects of disturbances in management, habitat restoration, and biodiversity conservation in temporary aquatic habitats.
Ixodes lividus (Koch, 1844) ticks are specific parasites of the sand martin Riparia riparia (L.). The distribution range of I. lividus covers Europe (being absent from the Mediterranean area) and Asia. However, until now there have been no reports on the presence of this tick in Lithuania. A total of 47 nests were collected in three different colonies of sand martins in the central part of Lithuania and 46.8% of them were infested with ticks. In total, 2,770 ticks were found and identified as I. lividus based on morphological characteristics. Larvae were the predominant stage, representing 99.6% of all collected ticks. The taxonomic identification of I. lividus was confirmed by sequence analysis of the tick mitochondrial 16S rRNA gene. Phylogenetic analysis of 16S rRNA sequences indicates six genotypes of I. lividus transported by the sand martin in the Baltic region. The detection of genotypes like those reported from other European regions pointed to the importance of avian migratory connections, which are associated with the dispersal of I. lividus and the related tick-borne pathogens in the Baltic region. This study represents the first record of I. lividus from sand martin nests in Lithuania.
Ixodes lividus (Koch, 1844) ticks are specific parasites of the sand martin Riparia riparia (L.). The distribution range of I. lividus covers Europe (being absent from the Mediterranean area) and Asia. However, until now there have been no reports on the presence of this tick in Lithuania. A total of 47 nests were collected in three different colonies of sand martins in the central part of Lithuania and 46.8% of them were infested with ticks. In total, 2,770 ticks were found and identified as I. lividus based on morphological characteristics. Larvae were the predominant stage, representing 99.6% of all collected ticks. The taxonomic identification of I. lividus was confirmed by sequence analysis of the tick mitochondrial 16S rRNA gene. Phylogenetic analysis of 16S rRNA sequences indicates six genotypes of I. lividus transported by the sand martin in the Baltic region. The detection of genotypes like those reported from other European regions pointed to the importance of avian migratory connections, which are associated with the dispersal of I. lividus and the related tick-borne pathogens in the Baltic region. This study represents the first record of I. lividus from sand martin nests in Lithuania.
Triatomine classification is based on morphological characteristics. Studies have been conducted to improve their identification by observing many characteristics. However, there are problems of differentiating among highly interrelated species and new criteria are required. The purpose of this study was to determine the morphological differences in the external female genitalia of M. pallidipennis, M. longipennis, M. picturatus, M. bassolsae, M. mazzottii, and M. phyllosomus in order to distinguish among species using scanning electron microscopy. Observations were made of the dorsal, posterior, lateral, and ventral views of the female external genitalia for each species. In the six species we studied, relevant differences were observed in the dorsal view of the X segment, as well as the IX, VIII, and VII tergites. In the posterior and lateral view, the most visible differences were registered in the gonocoxite size of the segments VIII, IX, and X. Finally, in the ventral view of the VII sternite, differences among species were observed in the size of the inflection in the top and upper corner. Our results show that it was possible to differentiate among the triatominae species for each of the four views by using a scanning electron microscope to analyze morphological characteristics of the VII, VIII, IX, and X abdomen segments.
Triatomine classification is based on morphological characteristics. Studies have been conducted to improve their identification by observing many characteristics. However, there are problems of differentiating among highly interrelated species and new criteria are required. The purpose of this study was to determine the morphological differences in the external female genitalia of M. pallidipennis, M. longipennis, M. picturatus, M. bassolsae, M. mazzottii, and M. phyllosomus in order to distinguish among species using scanning electron microscopy. Observations were made of the dorsal, posterior, lateral, and ventral views of the female external genitalia for each species. In the six species we studied, relevant differences were observed in the dorsal view of the X segment, as well as the IX, VIII, and VII tergites. In the posterior and lateral view, the most visible differences were registered in the gonocoxite size of the segments VIII, IX, and X. Finally, in the ventral view of the VII sternite, differences among species were observed in the size of the inflection in the top and upper corner. Our results show that it was possible to differentiate among the triatominae species for each of the four views by using a scanning electron microscope to analyze morphological characteristics of the VII, VIII, IX, and X abdomen segments.
The ground adulticiding program in densely populated Harris County has been employed on the basis of virus-positive mosquitoes almost exclusively using the ‘rotation of chemicals best practices’ stratagem. To evaluate its effectiveness, 15 comparative field cage testing events were conducted from 2011–2015 using seven wild population samples from repeatedly collected locations of Culex quinquefasciatus Say and a laboratory susceptible Sebring strain colony reared to adults. A 3 × 3 plot design was employed for exposure to ultra-low volume applications of malathion and synergized permethrin. No significant differences were found in mortality rate among testing dates, year, row placement, or relative humidity. Mortality was significantly different between adulticides (p<0.001) with mean mortality rates for malathion 96.42% (±7.95%) and permethrin 92.38% (±14.04). There was a significant temperature difference for permethrin (p<0.001) but none for malathion (p=0.644). Mosquito population mortality was statistically different by study operational area (p<0.011) and chemical (p<0.001). Susceptible colony adults used as positive controls downwind strongly aided determination of efficacy and resistance to each adulticide, providing evidence of individual application coverage, though comparative analysis was done with overall mortalities by normal methodology.
The ground adulticiding program in densely populated Harris County has been employed on the basis of virus-positive mosquitoes almost exclusively using the ‘rotation of chemicals best practices’ stratagem. To evaluate its effectiveness, 15 comparative field cage testing events were conducted from 2011–2015 using seven wild population samples from repeatedly collected locations of Culex quinquefasciatus Say and a laboratory susceptible Sebring strain colony reared to adults. A 3 × 3 plot design was employed for exposure to ultra-low volume applications of malathion and synergized permethrin. No significant differences were found in mortality rate among testing dates, year, row placement, or relative humidity. Mortality was significantly different between adulticides (p<0.001) with mean mortality rates for malathion 96.42% (±7.95%) and permethrin 92.38% (±14.04). There was a significant temperature difference for permethrin (p<0.001) but none for malathion (p=0.644). Mosquito population mortality was statistically different by study operational area (p<0.011) and chemical (p<0.001). Susceptible colony adults used as positive controls downwind strongly aided determination of efficacy and resistance to each adulticide, providing evidence of individual application coverage, though comparative analysis was done with overall mortalities by normal methodology.
The establishment of habitats for immature Ae. aegypti is regulated by biotic and abiotic factors and interactions between these factors. This study aimed to determine the effects of physico-chemical variables and planktonic algae on immature Ae. aegypti habitats in 101 water tanks (50 of them containing Ae. aegypti pupae and/or larvae) in Girardot, Colombia. Physical data were collected from the water tanks (volume, capacity, material, detritus, and location), along with the physico-chemical variables (temperature, pH, conductivity, redox potential, dissolved oxygen, percentage of oxygen saturation, nitrates, nitrites, and orthophosphates). The richness and abundance of the planktonic organisms were also measured. A chi-square test showed that the occurrence of detritus was greater and the container volume was smaller in the tanks that were positive for larvae. Only Cyanobacteria had a positive correlation with the abundance of immature-stage Ae. aegypti. The results could be important for understanding the vector ecology and envisaging its probable control in the domestic water tanks of Girardot.
The establishment of habitats for immature Ae. aegypti is regulated by biotic and abiotic factors and interactions between these factors. This study aimed to determine the effects of physico-chemical variables and planktonic algae on immature Ae. aegypti habitats in 101 water tanks (50 of them containing Ae. aegypti pupae and/or larvae) in Girardot, Colombia. Physical data were collected from the water tanks (volume, capacity, material, detritus, and location), along with the physico-chemical variables (temperature, pH, conductivity, redox potential, dissolved oxygen, percentage of oxygen saturation, nitrates, nitrites, and orthophosphates). The richness and abundance of the planktonic organisms were also measured. A chi-square test showed that the occurrence of detritus was greater and the container volume was smaller in the tanks that were positive for larvae. Only Cyanobacteria had a positive correlation with the abundance of immature-stage Ae. aegypti. The results could be important for understanding the vector ecology and envisaging its probable control in the domestic water tanks of Girardot.
The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia.
The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia.
Morphological characters can be used to distinguish the vast majority of triatomine species, but the existence of high levels of phenotypic plasticity and recently diverged species can lead to erroneous determinations. To approach this problem, we analyzed the male and female morphologies of the scutella of Triatoma barberi, T. dimidiata, T. lecticularia, T. mexicana, T. recurva, T. rubida, and two sub-species, T. protracta protracta and T. protracta nahuatlae. Scutellum samples were observed by scanning electron microscopy and subjected to morphological analysis and morphometric investigation using a canonical discriminant analysis. The results revealed differences primarily in central depression shape, posterior process, and vestiture. We observed clear dimension-based differences in scutellum morphometry in all the taxa under study, providing sound evidence for species and subspecies differentiation. On the other hand, there is no difference between sexes in T. lecticularia, T. protracta protracta, and T. protracta nahuatlae. Our methodology can be implemented to differentiate species of the genus Triatoma.
Morphological characters can be used to distinguish the vast majority of triatomine species, but the existence of high levels of phenotypic plasticity and recently diverged species can lead to erroneous determinations. To approach this problem, we analyzed the male and female morphologies of the scutella of Triatoma barberi, T. dimidiata, T. lecticularia, T. mexicana, T. recurva, T. rubida, and two sub-species, T. protracta protracta and T. protracta nahuatlae. Scutellum samples were observed by scanning electron microscopy and subjected to morphological analysis and morphometric investigation using a canonical discriminant analysis. The results revealed differences primarily in central depression shape, posterior process, and vestiture. We observed clear dimension-based differences in scutellum morphometry in all the taxa under study, providing sound evidence for species and subspecies differentiation. On the other hand, there is no difference between sexes in T. lecticularia, T. protracta protracta, and T. protracta nahuatlae. Our methodology can be implemented to differentiate species of the genus Triatoma.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two-way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two-way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.
Malaria is an important public health problem in Thailand, especially along international borders. In this study, we conducted a longitudinal entomological survey in six villages and rubber plantation sites to address the spatio-temporal abundance and behavior of malaria vectors in Ubon Ratchathani Province along the Thailand-Laos border. Adult female mosquitoes were collected by human landing collections (indoor and outdoor) and by cattle bait collections twice per year, during rainy and dry seasons. Mosquitoes were morphologically identified and sibling species were determined by allele-specific PCR. Of the 10,024 Anopheles, 9,328 (93.1%) and 696 (6.9%) were collected during the rainy and dry seasons, respectively. A total of 9,769 (97.5%) and 255 (2.5%) was collected on cattle and human baits, respectively. Very few primary and secondary malaria vectors were collected, consisting of 12 specimens of An. dirus, eight An. minimus, and seven An. aconitus. Of the 152 specimens of the Maculatus Group, only three were identified to An sawadwongporni by molecular methods. The others were 112 An. rampae, a non-vector, that were not amplified or were misidentified as other non-vectors. The very low density of primary malaria vectors found in the study villages suggests that entomological risk and malaria transmission is higher in neighboring forest areas. Further studies on malaria vector distribution, as well as human behaviors, are needed to understand malaria transmission dynamics in the province and to develop suitable vector control methods.
Malaria is an important public health problem in Thailand, especially along international borders. In this study, we conducted a longitudinal entomological survey in six villages and rubber plantation sites to address the spatio-temporal abundance and behavior of malaria vectors in Ubon Ratchathani Province along the Thailand-Laos border. Adult female mosquitoes were collected by human landing collections (indoor and outdoor) and by cattle bait collections twice per year, during rainy and dry seasons. Mosquitoes were morphologically identified and sibling species were determined by allele-specific PCR. Of the 10,024 Anopheles, 9,328 (93.1%) and 696 (6.9%) were collected during the rainy and dry seasons, respectively. A total of 9,769 (97.5%) and 255 (2.5%) was collected on cattle and human baits, respectively. Very few primary and secondary malaria vectors were collected, consisting of 12 specimens of An. dirus, eight An. minimus, and seven An. aconitus. Of the 152 specimens of the Maculatus Group, only three were identified to An sawadwongporni by molecular methods. The others were 112 An. rampae, a non-vector, that were not amplified or were misidentified as other non-vectors. The very low density of primary malaria vectors found in the study villages suggests that entomological risk and malaria transmission is higher in neighboring forest areas. Further studies on malaria vector distribution, as well as human behaviors, are needed to understand malaria transmission dynamics in the province and to develop suitable vector control methods.
Weekly changes in adult Anopheles species were monitored at Camp Humphreys (CH), Ganghwa Island (GH), and Warrior Base (WB), from May–October, 2009–2010 to explore the relationship between Plasmodium vivax development and vector dynamics in the Republic of Korea (ROK). Adult females were trapped and dissected to determine parity for estimating longevity, mortality, and birthrate. A degree-day (DD) method was used to estimate the extrinsic incubation period (EIP) of P. vivax and duration of the gonotrophic cycle and other life stages. Anopheles sinensis was the predominant species, with satellite data showing peak abundance occurring after the period of maximum greenness. Abundance peaks were location dependent, comprised nulliparous and parous females, and timing could not be fully explained by DD estimation. Parity showed synchronicity between locations and years and was highest for September and lowest during maximum greenness. Mosquito longevity was predicted to exceed the EIP (when malaria transmission is possible) during weeks 29, 31, 34, and near the end of the season. Area-wide changes in parity suggest a common cause; information on local larval habitat and agricultural practices may explain location-specific effects. DD estimates of EIP and parity could be used to predict when conditions are suitable for P. vivax transmission.
Weekly changes in adult Anopheles species were monitored at Camp Humphreys (CH), Ganghwa Island (GH), and Warrior Base (WB), from May–October, 2009–2010 to explore the relationship between Plasmodium vivax development and vector dynamics in the Republic of Korea (ROK). Adult females were trapped and dissected to determine parity for estimating longevity, mortality, and birthrate. A degree-day (DD) method was used to estimate the extrinsic incubation period (EIP) of P. vivax and duration of the gonotrophic cycle and other life stages. Anopheles sinensis was the predominant species, with satellite data showing peak abundance occurring after the period of maximum greenness. Abundance peaks were location dependent, comprised nulliparous and parous females, and timing could not be fully explained by DD estimation. Parity showed synchronicity between locations and years and was highest for September and lowest during maximum greenness. Mosquito longevity was predicted to exceed the EIP (when malaria transmission is possible) during weeks 29, 31, 34, and near the end of the season. Area-wide changes in parity suggest a common cause; information on local larval habitat and agricultural practices may explain location-specific effects. DD estimates of EIP and parity could be used to predict when conditions are suitable for P. vivax transmission.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere