BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Two specimens of Metaconularia manni (Roy, 1935) from the lower Middle Silurian Scotch Grove Formation (eastern Iowa) exhibit well-defined, relict soft parts replicated in silica. One of these specimens bears phosphatic periderm, whereas the other specimen is a mold. Present within the erect, undistorted apical region of the specimen preserving periderm, on opposite sides of the peridermal cavity, are two small, elongate masses of silica located near the midlines of two of the four faces. Present in the central portion of the other specimen, at a somewhat greater distance from the apex, are five pairs of hollow, elongate, keeled pouch-like bodies (hereafter pouches), the long axes of which converge on the center of the fossil. Each pair of pouches is associated with a short, narrow, gently curved or broadly U-shaped tube, also composed of silica. Additionally, two of the pouch/tube combinations are associated with a pair of rectilinear furrows that correspond to the paired internal carinae that straddled the conulariid's facial midlines. We interpret the paired pouches and short tubes in the moldic specimen as relic conulariid soft parts homologous, respectively, to the interradial gonads and retractor muscles of extant, stauromedusan and polypoid scyphozoan cnidarians. Unlike most conulariids, which exhibit four faces, this individual had five faces, an aberrant morphology known in one other conulariid. The two small masses in the other specimen are more difficult to interpret, but they, too, could be relic gonads or longitudinal muscles. These interpretations suggest that, as in certain extant scyphozoans, at least one conulariid lost the free-living, sexual medusoid life phase.
A diverse and well-preserved radiolarian assemblage from the Malongulli Formation, New South Wales, Australia, contains 13 species representing 10 genera and six families. One new genus, Wiradjuri, is introduced to accommodate pre-Devonian single-shelled entactiniid taxa, and one new species, Secuicollacta malongulliensis, is recorded together with some previously described forms. The microstructures of the “rotasphaerid structure/primary unit” and the “ectopic spicule” are investigated to validate their roles as fundamental units in the Secuicollactidae, together with comprehensive documentation of the previously enigmatic Pseudorotasphaera internal skeleton.
The results of this investigation suggest that, among all radiolarian genera that survived the Late Ordovician Mass Extinction event (LOME) and transitioned into the Silurian, Secuicollacta, Haplotaeniatum, and Palaeoephippium maintained stable body plans during the transition and were more successfully established. The selective advantages these lineages had during the LOME were most likely spontaneous outcomes of the mode of structural development involving sequential skeletogenesis and a tendency to evolve toward simpler body plans.
The phylum Bryozoa had long been the only major phylum unknown from the Cambrian and by inference the Cambrian Explosion of biodiversity. When described in 2010 as a late Cambrian cryptostome bryozoan, Pywackia baileyi Landing in Landing et al., 2010 became the oldest known bryozoan (early Cambrian bryozoans have since been described). Controversy remains about the phylum-level identification of Pywackia Landing in Landing et al., 2010—one study proposed an interpretation of Pywackia as an octocoral. No previous studies of the skeletal microstructure of Pywackia have employed the analysis of petrographic thin sections and high-magnification scanning electron microscopy. These two methods, with the addition of data from previous studies, are employed in this analysis of skeletal microstructure, a feature often important for higher-level taxonomic identification. Although many candidate groups were considered, Pywackia's distinctive pillar and laminae, porous skeleton like many Cnidaria, topology of the body walls, and growth of modules are consistent with a cnidarian affinity. Pywackia skeletons with primary microstructure were 100% phosphate mineral and were collected from a setting of pervasive phosphatic replacement, which leaves uncertainty as to the original skeletal composition. Pywackia is not assigned here to a cnidarian class and likely represents an early, rare, short-lived cnidarian evolutionary group.
Living disc-like hydrozoans such as the by-the-wind sailor and the blue button are often stranded in large numbers on beaches. These animals are delicate and rare as fossils as they require exceptional conditions for preservation. Here we describe a new example from the Bertie Group of upper New York State and Ontario (∼420 Ma), which is famous for the remarkably preserved sea scorpions (eurypterids) that occur there. The new hydrozoan, which gets up to 17 cm across and is the second-oldest example known, adds an important new member to this assemblage. It floated on the surface of the ocean and was occasionally incorporated into layers rich in eurypterids and other fossils.
Fossil capitate hydrozoans require exceptional conditions for preservation. Here we describe Bertratis ciurcae new genus, new species from the Silurian (Pridoli) of southern Ontario and upper New York State, where it occurs in association with a diverse assemblage of eurypterids. Only the float (pneumatophore) is well preserved, surviving as a thick carbonaceous compression. The new taxon is the largest fossil capitate reported, reaching a width of 17 cm, and the third Porpita-like example known from the Paleozoic. It was a rare pelagic component of the biota of the well-known Bertie Group Lagerstätten.
Lobopodians are an iconic group of animals from the Paleozoic that includes Hallucigenia and Opabinia, as well as living animals such as tardigrades and velvet worms. They would also eventually give rise to the first arthropods by developing a hard, sclerotized exoskeleton. During the Cambrian, a rare subset of lobopodians possessed large swimming flaps, sometimes alongside ventral walking limbs. A new, large-bodied pelagic lobopodian from the Cambrian of Nevada is described, possessing more swimming flaps than any other lobopodian or radiodont.
Lobopodians are an iconic and diverse group of animals from the Cambrian, which alongside radiodonts, present an important window into the evolution of arthropods and the development of Paleozoic ecosystems. Of these, a rare few species outside of Radiodonta possess lateral swimming flaps. The recent discovery of Utahnax provided much-needed insight into the evolution of swimming flaps, suggesting that the ventrolateral flaps of Kerygmachela evolved independently from other flap-bearing lobopodians and radiodonts. Here a new pelagic lobopodian species is described, Mobulavermis adustus new genus new species, the first lobopodian to be reported from the Cambrian-age Pioche Shale of Nevada. Mobulavermis adustus was large and possessed more ventrolateral flap pairs than any other known lobopodian or radiodont. It is found to be a close relative of both Kerygmachela and Utahnax, allowing the establishment of the new lobopodian family Kerygmachelidae new family. In addition, an indeterminate euarthropod fossil from the Pioche Formation is described in brief, and the recently described Chengjiang species Parvibellus avatusLiu et al., 2022, thought to have been related to the “gilled lobopodians,” is reinterpreted as a juvenile siberiid lobopodian.
Julien Kimmig, Stephen Pates, Rhiannon J. LaVine, L.J. Krumenacker, Anna F. Whitaker, Luke C. Strotz, Paul G. Jamison, Val G. Gunther, Glade Gunther, Matt Witte, Allison C. Daley, Bruce S. Lieberman
The Cambrian (Miaolingian; Wuliuan) Spence Shale Lagerstätte of northern Utah and southern Idaho is one of the most diverse Burgess Shale-type deposits of Laurentia. It yields a diverse fauna consisting of abundant biomineralized and locally abundant soft-bodied fossils, along a range of environments from shallow-water carbonates to deep-shelf dark shales. Panarthropods are the dominant component throughout the deposit, both in time and space, but whereas the trilobites and agnostoids are abundant, most of the soft-bodied taxa are only known from very few specimens. Additionally, the knowledge of soft-bodied panarthropods is currently largely limited to locations in the Wellsville Mountains of northeastern Utah. This contribution describes 21 new soft-bodied panarthropods from six locations, including the first occurrences of soft-bodied panarthropods in the High-Creek, Smithfield Creek, Spence Gulch, and Two-Mile Canyon localities. Additionally, we report the presence of bradoriids— i.e., Branchiocaris pretiosaResser, 1929, Perspicaris? dilatusRobison and Richards, 1981, Naraoia? sp. indet., Thelxiope cf. T. palaeothalassiaSimonetta and Delle Cave, 1975, and Tuzoia guntheriRobison and Richards, 1981—for the first time from the Spence Shale Lagerstätte; the first reported occurrence outside of the Burgess Shale for Thelxiope cf. T. palaeothalassia; and the first Wuliuan occurrence of Tuzoia guntheri. We also report on a new hurdiid carapace element and additional specimens of Buccaspinea cooperi? Pates et al., 2021, Dioxycaris argentaWalcott, 1886, Hurdia sp. indet., and Tuzoia retiferaWalcott, 1912. This new material improves our understanding of the panarthropod fauna of the Spence Shale Lagerstätte and substantially increases our understanding of the distribution of the described taxa in time and space.
There are very few articles dedicated to the study of crustacean remains in the marine sediments of the Mesozoic despite the widespread distribution of such remains in Central European Russia. This research is the first general study on decapods of the Ryazan region of Central European Russia and is focused on the Callovian of that area. The Ryazan region is renowned for its large number of outcrops and high concentration of well-preserved marine decapod fossils. Two genera and five species of crustaceans are identified for the first time from Central European Russia. In addition, diagnostic signs of previously noted taxa are factually discussed.
The decapod crustaceans of Central European Russia have been the subject of studies since the nineteenth century, and the only species, Eryma quadriverrucatumTrautschold, 1866 (Erymidae), has been found in the Callovian to the Oxfordian of that region. The present paper discusses the new exceptional findings of Solenoceridae, Glypheidae, and Mecochiridae from the upper Callovian sites of the Ryazan Region. The previously reported presence of Archeosolenocera sp. is confirmed in detail; Glypheopsis aff. G. etalloni (Oppel, 1861) and Eumorphia sp. are noticed for the first time for this area. Modern identification of erymids is reported: Eryma aff. E. ventrosum (von Meyer, 1835), E. ornatum (Quenstedt, 1858), and Stenodactylina insignis (Oppel, 1862) are noted in addition to E. quadriverrucatum. These findings address the gaps in the fragmented knowledge about the decapod fauna of Central European Russia and exhibit a differentiation of the local Russian decapod assemblage from those of Western Europe. The decapod community of the Ryazan region is considered to be associated with soft substrates of upper sublittoral zone.
Blastoid, ‘cystoid,’ and crinoid fossils (phylum Echinodermata) are described for Silurian strata of west-central Ohio. These fossils are from the Cedarville Member of the Laurel Limestone, which is a dolostone rock. All that is preserved in the dolostone are molds and casts of these echinoderms. In the Midcontinent, these rocks were formed in a series of reef and reef-related environments, but the poor preservation of the fossils has hampered their understanding. Crinoids were an important faunal element in these Silurian strata, so this paper is an important step in developing an understanding of these ancient seas. Eleven taxa are described in this fauna, with two new crinoid species.
A diverse echinoderm fauna lived in reef and non-reef Silurian facies of the upper Midwestern USA. However, these faunas are dominantly preserved in dolostones with moldic preservation, and fossils from dolostone facies have not been documented to the extent of Silurian crinoids in nondolostone strata. Herein, an echinoderm fauna is described from the dolostones of the Cedarville Member of the Laurel Limestone (Wenlock, Homerian) from the Pepcon Cement Quarry in west-central Ohio. The described fauna contains blastoids, hemicosmitoids, and crinoids, including Troosticrinus subcylindricus (Hall and Whitfield, 1875); Caryocrinites sp. indet.; an unidentifiable diplobathrid camerate; Periechocrinus tennesseensis (Hall and Whitfield, 1875); Periechocrinus egani? (Miller, 1881); Stiptocrinus farringtoni (Slocom, 1908); Calliocrinus primibrachialisBusch, 1943; Calliocrinus poepplemani new species; Calliocrinus hadros new species; and Lecanocrinus sp. indet. Generic concepts for the Eucalyptocrinitidae are clarified; and, surprisingly, Eucalyptocrinites Goldfuss, 1831 is absent from this fauna. Additionally, lectotypes and paralectotypes are designated for Periechocrinus tennesseensis and Calliocrinus primibrachialis.
Evidence from the earliest-known crinoids (Tremadocian, Early Ordovician), called protocrinoids, is used to hypothesize initial steps by which elements of the calyx evolved. Protocrinoid calyces are composed of extraxial primary and surrounding secondary plates (both of which have epispires along their sutures) that are unlike those of more crownward fossil and extant crinoids in which equivalent calycinal plating is strongly organized. These reductions inspired several schemes by which to name the plates in these calyces. However, the primary-secondary systems seen in protocrinoids first appeared among Cambrian stem radial echinoderms, with primaries representing centers around which secondaries were sequentially added during ontogeny. Therefore, the protocrinoid calyx represents an intermediate condition between earliest echinoderms and crownward crinoids. Position and ontogeny indicate certain primaries remained as loss of secondaries occurred, resulting in abutting of primaries into the conjoined alternating circlets characteristic of crinoids. This transformative event included suppression of secondary plating and modification or, more commonly, elimination of respiratory structures. These data indicate subradial calyx plate terminology does not correspond with most common usage, but rather, supports an alternative redefinition of these traditional expressions. Extension and adoral growth of fixed rays during calyx ontogeny preceded conjoined primaries in earliest crinoids. Restriction with modification or elimination of calyx respiratory structures also accompanied this modification. Phylogenetic analyses strongly support crinoid origination from early pentaradiate echinoderms, separate from blastozoans. Accordingly, all Tremadocian crinoids express a distinctive aggregate of plesiomorphic and apomorphic commonalities; all branch early within the crinoid clade, separate from traditional subclass-level clades. Nevertheless, each taxon within this assemblage expresses at least one diagnostic apomorphy of camerate, cladid, or disparid clades.
Fossil soft-bodied worms such as nematodes are rare, and, because they often have few features preserved, difficult to interpret. A number of worm-like specimens from the late Carboniferous Mazon Creek fossil site were originally identified as a species of free-living nematode, called Nemavermes mackeei, which was among the oldest and largest fossil free-living nematodes. Here we reinvestigate these specimens, and determine that they encompass multiple species, including worms (but not free-living nematode worms) and cyclostome fish. In particular, some of these specimens belong to a new species of cyclostome fish, which we name Squirmarius testai.
Nemavermes mackeeiSchram, 1973, found in the Mazon Creek fossil site and the Bear Gulch Limestone, was described initially as a free-living marine nematode. Here we investigate 13 specimens of N. mackeei from the Mazon Creek to reassess its morphology and identity, and also two specimens originally identified as Gilpichthys greeneiBardack and Richardson, 1977. Based on the extensive morphological variation among these specimens, N. mackeei encompasses multiple species that are only distantly related. The holotype of N. mackeei is a proboscis of Tullimonstrum gregariumRichardson, 1966, making N. mackeei a junior synonym of T. gregarium. However, the other specimens that we investigated could not be attributed to T. gregarium. We name a new species from these specimens: Squirmarius testai new genus new species, a cyclostome. One specimen is likely a juvenile G. greenei. Other specimens were not identified during this study but represent a variety of vermiform bilaterians.
For a long time, the evolution of West Siberian zokors remained poorly covered. In this paper, we present a description of the evolution of the West Siberian zokor lineage (Myospalacinae, Rodentia) from the late early Pleistocene to the present along with descriptions of two new species and one subspecies (Myospalax myospalax krukoveri n. ssp., Myospalax convexus n. sp., Prosiphneus razdoleanensis n. sp.) ancestral to the extant Myospalax myospalax (Siberian zokor). We also reveal differences in the ontogeny of molars of modern species that were not previously detailed. These differences, together with paleontological data, indicate that in the West Siberian lineage, peramorphosis occurred in the structure of the chewing surface (with the exception of the lower m1), whereas in all other zokor lineages, there was pedomorphosis. On the basis of this pattern, we propose to split the genus Myospalax, with the separation of Myospalax myospalax and its rootless ancestral forms (Myospalax myospalax krukoveri and Myospalax convexus) into a separate genus.
Zokors (Myospalacinae) continue to be the center of systematics discussions. Phylogenetic schemes based on molecular data do not always agree with each other, nor can phylogenetic schemes based on paleontological material be complete due to the only-partial description of West Siberian zokors. This paper tries to fill this gap and presents a description of the West Siberian lineage from the late early Pleistocene to the present, together with an analysis of molar development in other zokor lineages. We describe two new species and one subspecies (Myospalax myospalax krukoveri n. ssp., Myospalax convexus n. sp., Prosiphneus razdoleanensis n. sp.) ancestral to the extant Myospalax myospalaxLaxmann, 1769. We also reveal differences in the ontogeny of molars of modern species that were not previously detailed. These differences, together with paleontological data, indicate that in the West Siberian lineage, peramorphosis occurred in the structure of the chewing surface (with the exception of the lower m1), whereas in all other zokor lineages, there was pedomorphosis. On the basis of these results, we suggest a new view on the systematics of Myospalacinae.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere