Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the 1930s, R. A. Cooley noted that Dermacentor occidentalis (Acarina: Ixodidae) and Dermacentor andersoni were closely related and could hybridize. Decades later, James Oliver discovered that crosses of Dermacentor variabilis, D. andersoni, and D. occidentalis could, on occasion, produce hybrids. A recent molecular analysis (both mtDNA and nDNA) in our laboratory revealed that certain specimens of Dermacentor andersoni nested with Dermacentor parumapertus. Does this close relationship, along with the mito-nuclear discordance we have observed, mean D. andersoni and D. parumapertus are a single species? By contemporary taxonomic criteria, this seems improbable based on their distinctly different morphologies, host associations, and ecologies. This paper explores ideas related to mito-nuclear discordance, hybridization, and introgression (primarily) not only in these two species but also other members of the genus Dermacentor. Both D. andersoni and D. parumapertus can be found on the same hosts and have sympatric distributions, so introgression of genetic material by occasional cross-mating between these two species is possible. Further, the difficulty in applying specific species concepts in ticks has been recently pointed out and a unified agreement on an integrative species concepts could clearly be useful in this situation. With the discovery of D. parumapertus as a potential vector of Rickettsia parkeri and the historically recognized role of D. andersoni in transmission of Rickettsia rickettsii, understanding the specific status of each lineage of these species (and others in the genus) is extremely important from a public health perspective.
In the selection of oviposition sites female mosquitoes use various cues to assess site quality to optimize survival of progeny. The presence of conspecific larvae influences this process. Interactive effects of oviposition site selection were studied in the malaria mosquito Anopheles coluzzii Coetzee & Wilkerson in dual- and no-choice assays, by exposing single gravid mosquitoes to oviposition cups containing 1) larvae of different developmental stages, 2) larvae-conditioned water (LCW), and 3) cups where visual cues of conspecific larvae were absent. Early-stage conspecific larvae had a positive effect on the oviposition response. By contrast, late stages of conspecific larvae had a negative effect. Oviposition choice was dependent on larval density. Moreover, in oviposition cups where larvae were hidden from view, late-stage larvae had a significant negative effect on oviposition suggesting the involvement of olfactory cues. LCW had no effect on oviposition response, indicating involvement of chemicals produced by larvae in vivo. It is concluded that the presence of larvae in a breeding site affects the oviposition response depending on the development stage of the larvae. These responses appear to be mediated by olfactory cues emitted by the larval habitat containing live larvae, resulting in the enhanced reproductive fitness of the females.
House flies (Musca domestica L.) are mechanical vectors of food-borne pathogens including Salmonella spp., Escherichia coli O157:H7, and Shigella spp., resulting in increased risk of diarrheal disease in areas where flies are abundant. Movement of house flies into food crops may be increased by the presence of honeydew-producing insects feeding on these crops. Using gas chromatography-electroantennogram detection (GC-EAD) and gas chromatography-mass spectrometry (GC-MS), volatile odors that elicited house fly antennal response were identified from naval orange (Osbeck) (Sapindales: Rutaceae) and Marsh grapefruit (Macfad.) (Sapindales: Rutaceae) leaves infested with whitefly (Hemiptera: Aleyrodidae) and from whole faba (L.) (Fabales: Fabaceae) bean plants infested with aphids (Hemiptera: Aphididae). Volatiles identified included benzaldehyde, butyl hexanoate, β-caryophyllene, Δ3-carene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenyl acetate, myrcene, limonene, linalool, and naphthalene. This was followed by semifield bioassays of volatile blends and individual volatiles to determine house fly attraction to these volatiles. Although fly capture rates in the semifield setting were low, benzaldehyde and (Z)-3-hexenyl acetate were consistently attractive to house flies as individual compounds and as components of volatile blends.
Dengue fever is a vector-borne infectious disease that spreads swiftly and threatens human lives in several tropical countries. Most of the strategies employed for the control of Aedes albopictus (Skuse) involve synthetic chemicals. The indiscriminate use of synthetic chemicals has led to the development of resistance and is unsafe for human and environmental health. Therefore, there is a need to develop ecologically safe tactics, such as the use of the entomopathogenic fungus (EPF) Metarhizium anisopliae (Metchnikoff 1879) (Met-11.1). The following study investigated the effectiveness of EPF-Met-11.1 on different demographic parameters of Ae. albopictus. Mortality bioassays showed 92.5% mortality when adult Ae. albopictus were treated with M. anisopliae. Metarhizium anisopliae absorbs the hemolymph sugar which results in retarded development. Metarhizium anisopliae LC50 not only affected the parental generation (F0) but also affected the demographic parameters of the offspring (F1). Transgenerational results (F1) with Met-11.1 showed decreased net reproductive rates (Ro), intrinsic rates of increase (r), and mean generation times (T) compared to those of uninfected controls. The larval developmental duration in the treatment group was 8.22 d, compared to 8.00 d in the control. There was a significant decrease in mean fecundity in the treated group (208.87 eggs) compared to that of the control group (360.27 eggs), and adult longevity was also significantly reduced in the treated group. Therefore, it is concluded that M. anisopliae can have lasting effects on the developmental parameters of Ae. albopictus, indicating that it can be an integral part of mosquito control strategies.
The location and consumption of carrion by arthropods is a process that can be potentially distinguished temporally based on the makeup of the associated community. In fact, succession on carrion is a continuum of different generalist and specialist arthropods entering and leaving the system. Blow flies commonly associated with vertebrate remains are considered specialists due to their reliance on carrion as a source of food for offspring and protein for females. However, this specialization may come at a price; increased competition for resources and greater risk of local extinction. The present study examined the effects of the presence or absence of intraspecific colonization, carcass age, and exposure time on the colonization and oviposition responses of the specialist, primary colonizer, the secondary screw worm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). Carcass age, exposure time, and colonization status significantly influenced the ovipositional response of C. macellaria. This species exhibited an oviposition preference for aged carcasses, with a tendency for higher oviposition after 8-h exposure time, but no preference between previously colonized or uncolonized carcasses. Mean egg hatch rate was also shown to be influenced by the aforementioned factors, with mean hatch rates varying between 81.26 and 90.97% across various treatments. These results provide insight into mechanisms driving succession on carrion, as well as highlight the variation observed in successional studies for the targeted species. Investigators relying on arthropod succession to indicate a time of colonization should proceed with caution in relying solely on the assumption primary colonizers only arrive and colonize fresh carrion.
Age determination of necrophagous flies serves as an important tool for postmortem interval (PMI) estimation in forensic investigations. Drugs or toxins in cadavers may alter the developmental time of larvae, and lead to deviation in PMI estimation. Methamphetamine (MA), as one of the most abused psychostimulant drugs in Asia and North America, is often involved in forensic entomotoxicological cases. This study investigated the effects of MA (0, 45, 90, and 180 ng/mg) on the developmental rate, morphology, and survival of Aldrichina grahami (Aldrich, 1930). The results showed that 1) the developmental time to reach the pupal instar was statistically slower for the larvae reared on rabbit mince containing MA than for the control; 2) the mean length of the larvae exposed to MA concentrations was longer than those of the control; 3) the mean weight of the pupae exposed to the highest concentration of MA was significantly lighter than those of the control; 4) the GC–MS method can detect the content of MA in A. grahami immatures and empty puparia (EP).
Flesh flies are major primary consumers of carrion and are commonly found on human remains. Due to this latter feeding habit, their development rates can be used to provide temporal information in forensic investigations. This is usually done by referencing published flesh fly development datasets. Flesh flies are typically assumed to be strictly viviparous and datasets reporting their development rates therefore start at the first larval instar. However, an increasing number of studies has identified oviposition by flesh flies, including the forensically relevant species Blaesoxipha plinthopyga Wiedemann. To assess the impact of egg-laying behavior on casework, oviparity rates and time before larval hatching were assessed under controlled laboratory conditions that reflect common casework conditions in Harris County, Texas. We demonstrated systematic deposition of viable eggs but at a very variable rate between samples. Similarly, the duration between oviposition and larval hatching was highly variable, with some eggs taking more than a day to hatch after deposition. These results highlight the need to account for embryonic development in forensic investigations including B. plinthopyga and advocates for the re-evaluation of the assumed strict viviparity of the Sarcophagidae.
Necrophagous insects play an important role in the decomposition of vertebrate carrion. The documented colonization, development, and succession of blow flies (Diptera: Calliphoridae) and other arthropods on decomposing carcasses make their communities relevant for use in decomposition ecology and forensic investigations. This relevance relies on the local pool of species available to colonize a carcass, but such community level survey data are not always available. The objective of this research was to conduct a baseline survey of adult Calliphoridae communities from urban–rural land use types in the Great Lakes region. To test how adult blow fly distribution varies with changing landscape in Mid-Michigan, sampling with baited jars and hanging traps was implemented over the summer months of June, July, and August 2017. To determine how blow fly communities differed in urban to rural land cover, seven cities were selected with site locations ranging from high intensity developed areas to cultivated crop fields. Over 97,000 individual flies were captured represented by 11 Calliphoridae species. The adult Calliphoridae communities were primarily structured by land use type and month of collection, with these two factors interacting, suggesting that the effect of location varied by time of year. The two most abundant species, Phormia regina (Meigen) and Lucilia sericata (Meigen), cumulatively comprised 88.5% adult flies from Mid-Michigan. These findings provide a baseline database of Great Lakes Calliphoridae, with potential use in forensic research and casework.
Lyme disease is the most commonly reported vector-borne disease in the United States, and the number of cases reported each year continues to rise. The complex nature of the relationships between the pathogen (Borrelia burgdorferi sensu stricto), the tick vector (Ixodes scapularis Say), multiple vertebrate hosts, and numerous environmental factors creates challenges for understanding and predicting tick population and pathogen transmission dynamics. LYMESIM is a mechanistic model developed in the late 1990s to simulate the life-history of I. scapularis and transmission dynamics of B. burgdorferi s.s. Here we present LYMESIM 2.0, a modernized version of LYMESIM, that includes several modifications to enhance the biological realism of the model and to generate outcomes that are more readily measured under field conditions. The model is tested for three geographically distinct locations in New York, Minnesota, and Virginia. Model-simulated timing and densities of questing nymphs, infected nymphs, and abundances of nymphs feeding on hosts are consistent with field observations and reports for these locations. Sensitivity analysis highlighted the importance of temperature in host finding for the density of nymphs, the importance of transmission from small mammals to ticks on the density of infected nymphs, and temperature-related tick survival for both density of nymphs and infected nymphs. A key challenge for accurate modeling of these metrics is the need for regionally representative inputs for host populations and their fluctuations. LYMESIM 2.0 is a useful public health tool that downstream can be used to evaluate tick control interventions and can be adapted for other ticks and pathogens.
Raymundo Ordoñez-Sierra, Carlos Alberto Mastachi-Loza, Carlos Díaz-Delgado, Angela P. Cuervo-Robayo, Carlos Roberto Fonseca Ortiz, Miguel A. Gómez-Albores, Imelda Medina Torres
Dengue is the most important viral disease transmitted by mosquitoes, predominantly Aedes (Stegomyia) aegypti (L.) (Diptera:Culicidae). Forty percent of the world's population is at risk of contracting the disease, and a large area of Mexico presents suitable environmental conditions for the life cycle of Ae. aegypti. In particular, the Central Mexican Highlands have a high population density, increasing the risk of transmission and propagation of dengue. In the present study, the potential distribution of Ae. aegypti was modeled under an ecological niche approach using the maximum entropy technique with the aim of determining the spatial risk distribution of dengue. The final model of five variables (minimum temperature of the coldest month |Bio6|, precipitation of the wettest month |Bio13|, precipitation seasonality |Bio15|, the normalized difference vegetation index (NDVI), and relative humidity) contributed to more than 90% of the model's performance. The results of the potential distribution model were then compared with the number of dengue cases per locality during the 2009–2015 period considering four suitability of presence categories. Category 4 corresponded with the highest suitability of presence (0.747 to 1) and the greatest risk of dengue (odds ratio [OR] = 103.27; P < 0.001). In conclusion, the present ecological niche model represents an important tool for the monitoring of dengue and the identification of high-risk areas.
Competition influences the expression of morphological, physiological, and behavioral traits and also regulates ecological and evolutionary dynamics. This study aims to identify and characterize changes in wing morphology in response to intra- and interspecific competition in three necrophagous blowfly species. Using geometric morphometry, we analyzed 3,238 wings from Lucilia sericata (Meigen, 1826), Calliphora vicina Robineau-Desvoidy, 1830, and C. vomitoria (Linnaeus, 1758) raised under cloistered and pairwise conditions. The three species reacted similarly to intraspecific competition—reducing wing size with increased competition—but displayed contrasting patterns of response to interspecific competition. Lucilia sericata displayed a directional change in wing shape in response to an interspecific competitor, while C. vicina increased the scattering of individuals across the morphospace, and C. vomitoria displayed no significant change in response to the same stimulus. Our results show that the same stimulus yields distinctive responses; thus, different competition-related strategies are expected to occur in the three species.
Francisco Augusto da Silva Ferreira, Rejane de Castro Simões, Ruth Leila Ferreira-Keppler, Jeronimo Alencar, Vera Margarete Scarpassa, Wanderli Pedro Tadei
The eggs of three Amazonian species of the genus Mansonia (Diptera: Culicidae) were analyzed using morphological and morphometric characters. Eggs of Mansonia humeralisDyar & Knab, 1916 were morphologically different from those of Mansonia titillans (Walker, 1848) and Mansonia amazonensis (Theobald, 1901), which were more similar to each other according to linear and geometric morphometry. A principal component analysis generated from elliptic Fourier contour data (PC1—92.6% and PC2—2.61%) indicated that Ma. amazonensis and Ma. titillans are more similar to each other than either is to Ma. humeralis. Discriminant multivariate analysis was highly accurate with only four classification errors and a 90% accuracy rate. The results indicate that the three Amazonian species can be precisely distinguished in the egg stage and that geometric morphometry based on elliptic Fourier contours is a promising method for distinguishing eggs of species of Mansonia. An identification key based on egg morphology is provided to distinguish the four Neotropical species.
Lyme disease is caused by the bacterial spirochete Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt, and Brenner (Spirocheatales: Spirochaetaceae) which is transmitted through the bite of an infected blacklegged tick Ixodes scapularis Say (Ixodida: Ixodidae). Maine, USA, is a high Lyme disease incidence state, with rising incidence of Lyme disease and other tick-borne illnesses associated with increasing I. scapularis abundance and northward range expansion. Members of the public submitted ticks to a tick identification program (1990–2013). From these passive surveillance data, we characterized temporal trends in I. scapularis submission rate (an index of abundance), comparing Maine's northern tier (seven counties) versus southern tier (nine counties). In the northern tier, the I. scapularis submission rate increased throughout the duration of the time series, suggesting I. scapularis was emergent but not established. By contrast, in the southern tier, submission rate increased initially but leveled off after 10–14 yr, suggesting I. scapularis was established by the mid-2000s. Active (field) surveillance data from a site in the southern tier—bird tick burdens and questing adult tick collections—corroborated this leveling pattern. Lyme disease incidence and I. scapularis submission rate were temporally correlated in the northern but not southern tier. This suggested a decoupling of reported disease incidence and entomological risk.
Domestic filth flies play a significant role in the transmission of nosocomial infections and cause nosocomial myiasis in hospitals worldwide. This descriptive cross-sectional study was conducted in five hospitals of the Hormozgan province, of southern Iran. Adult flies were collected by bottle fly traps. Specimens were pinned and morphologically identified using the relevant keys. Species biodiversity indices including Menhinick (M), Shannon–Wiener (H'), Pielou's Evenness (E), and Simpson's diversity (D) were calculated. Totally 2,298 individuals of 18 species of flies belonging to nine genera and four families were collected. Chrysomya megacephala was the most frequent species (37.3%), followed by Chrysoma albiceps (24.8%), Fannia canicularis (5.1%), Musca domestica (4.8%), Sarcophaga aegyptica (3.7%), and 15 other species (24.4%). Our results show a high diversity and abundance of domestic filth flies in the studied hospitals. Relatively similar data derived from various hospitals in this study can show the uniformity in sanitary conditions of hospitals. On the other hand, estimation of diversity indices alarmed for potential of dominant species in fly communities in hospital environments.
The mosquito Aedes aegypti (L.) is the primary vector of various infectious viruses and is typified by a polymorphic color and abundance of white scales on the body. It has been conventionally separated into two subspecies, Ae. aeg. formosus (Walker) (Aaf) and Ae. aeg. aegypti (L.) (Aaa), with Aaf considered a ‘sylvan' form and Aaa a ‘domestic’ form. Because the two subspecies show different susceptibilities to dengue viruses it is important to understand their distribution. In this study, we collected larvae from artificial and natural habitats in southern Kenya and reared them to adults to morphologically identify subspecies. We describe the geographical distribution and relative abundance of Aaa and Aaf in Kenya, and estimate the environmental factors associated with their distributions by GIS using climate and environment data. A total of 5,243 Ae. aegypti adults were collected from 249 sites, with Aaa accounting for 22% of the specimens. The relative abundance of Aaa was higher in coastal areas versus sites in western Kenya. Aaa abundance was also higher in urbanized than forested areas, which is consistent with known ecology. In contrast and inconsistent with previous studies, both Aaa and Aaf were sympatric in artificial and natural habitats. The high relative abundance of Aaa in coastal areas might derive from old populated cities, climate, and/or introduction from abroad.
Carmen Guzmán-Cornejo, Angel Herrera-Mares, Ana Ugalde-Medina, Andrés M. López-Pérez, Laura Del Castillo-Martínez, Roxana Acosta-Gutiérrez, Martín Cabrera-Garrido, Juan B. Morales-Malacara
The Chamela Biological Station (ChBS) is located in the Pacific Coast of Mexico in the State of Jalisco. This represents one of the core areas of the Chamela-Cuixmala Biosphere Reserve, characterized by one of the most threatened ecosystems, the tropical dry forest. Although accumulated knowledge of biological diversity, only few studies have been focused on ectoparasites or ectodytes associated with mammals, only 23 arthropod taxa had been recorded. In order to increase knowledge about arthropods associated with Mexican mammals, the objective of this work was to record the richness of arthropods (mites, ticks, lice, and fleas) associated with small and medium-sized mammals in the ChBS. A total of 81 hosts belonging to four orders, six families and nine species were captured. From these hosts, 4,946 arthropods were recovered: 4,007 mites, 673 ticks, 230 lice, and 36 fleas. Among medium-sized mammals, Nasua narica (L.) and Didelphis virginiana Kerr showed the highest levels of richness, with six arthropod taxa; among rodents, Heteromys pictus (Thomas) had the highest number of associated species (five). Within the 22 arthropod taxa registered in the present work, 12 represent new records for the reserve, and 3 represent new records for Mexico. With this study, the arthropod fauna associated with mammals in the ChBS has been raised to 38 taxa. In terms of biological conservation, knowledge of the species that inhabit natural reserves must be a priority, since this represents the baseline for species protected, not only in Mexico but around the world.
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
Siparuna guianensis (Laurales: Siparunaceae) has a terpene-rich essential oil with great potential for larvicides. The poor water miscibility of their compounds makes nano-emulsions of great interest for novel bioactive systems, including for control of Aedes aegypti (Diptera: Culicidae). This species is adapted to urban environments with important role in the epidemiology of some arboviruses such as dengue, chikungunya fever, zika, and urban yellow fever. The aim of the present study was to evaluate the feasibility of nano-emulsification to affect Ae. aegypti larvae. An optimal system was achieved by using a nonionic single surfactant, highlighted by its satisfactory size distribution profile. Moreover, improved larvicidal activity in comparison to bulk essential oil can be observed for the nano-emulsions. The estimated LC50 and LC90 values after 24 h of treatment of larvae with the essential oil were, respectively, 86.5232 and 134.814 µg/ml, while the estimated LC50 and LC90 value after treatment with the nano-emulsion were 24.7572 and 75.2452 µg/ml, respectively. The utilization of a simple technique to produce a fine nano-emulsion opens perspective for further integrative practices of mosquito control and giving value to this Amazon plant species may encourage its sustainable use and contribute to conservation policies.
We assessed the efficacy of bifenthrin to suppress Ixodes scapularis Say and Amblyomma americanum (L.) nymphs when applied prior to the initiation of spring host-seeking activity versus when nymphs were already active. Treatment and control plots were sampled for host-seeking ticks every week from mid-April through June, and single occasion bifenthrin applications were done in different sets of treatment plots on 15 April, 29 April, 13 May, and 27 May. Ixodes scapularis nymphs and A. americanum nymphs and adults were effectively suppressed after each application, with at or near 100% suppression of all ticks being observed for up to 8-wk postapplication. Irrespective of the bifenthrin application date, the level of suppression of I. scapularis nymphs never declined below 70% during the study period. However, with the exception of the last application, the suppression of A. americanum nymphs decreased dramatically to below 25% by the conclusion of the trial. The results of this study demonstrated that preseason applications of bifenthrin can mitigate acarological risk of exposure to ticks throughout much of their spring peak activity period.
The objective of this investigation was to know whether the organophosphate temephos resistance developed in larvae from a laboratory strain of Aedes aegypti (Linnaeus, 1762) from Cuba could be reversed. The resistant laboratory strain of Ae. aegypti, named SAN-F6, was left without temephos selection pressure for 12 generations. The level of temephos resistance was determined using WHO bioassays and mechanisms of metabolic resistance were determined based on enzyme activity levels detected by biochemical assays. Bioassays and biochemical assays were conducted on the SAN-F6 parental strain and every three reversal generations (SANRevF3, SANRevF6, SANRevF9, and SANRevF12) without temephos selection pressure. After 19 yr of keeping the SAN-F6 strain under selection pressure with the LC90 of temephos, the resistance ratio (RR50) was 47.5×. Biochemical assays indicated that esterase and glutathione S-transferase are still responsible for temephos resistance in this strain, but not mixed-function oxidase. Experiments on resistance reversal showed that temephos susceptibility could be recovered as α esterase activity levels decreased. The SAN-F6 strain has provided an essential basis for studies of temephos resistance in Cuba. It was demonstrated that the resistance developed to the larvicide temephos in Ae. aegypti from this Cuban lab strain is a reversible phenomenon, which suggests that similar outcomes might be expected in field populations. As such, the use of temephos alternated with other larvicides recommended by WHO such as Bti or pyriproxyfen is recommended to maintain the effectiveness of temephos and to achieve more effective control of Ae. aegypti.
In an update of earlier surveys conducted in Connecticut and New Jersey in the mid-1990s, an online survey of private commercial pest control firms engaged in residential tick control showed that the application of synthetic acaricides continues to be the primary method of control used. The carbamate and organophospate acaricides, previously the most commonly used against ticks, have given way to synthetic pyrethroids and, to a lesser extent, the use of natural product/organic acaricides. Typical costs for a single acaricide application today ($100–$200 for a 1 acre [0.4 ha] property) remain similar to those reported from the earlier surveys, although the frequency of applications and, therefore, also the overall annual cost has increased. The application habitats within residential properties, life stages targeted, and application equipment used have not changed appreciably since the mid-1990s. While most survey respondents expressed knowledge of natural product acaricides and Damminix Tick Tubes, many reported that they either did not employ or knew very little about other alternative tick control methods (including entomopathogenic fungus and topical application of acaricides to tick hosts via 4-Poster deer treatment stations or Select TCS rodent bait boxes). This suggests either a failure to adequately inform the pest management industry and their potential client base of the availability of alternate methods, and/or industry concerns about cost and effectiveness of the alternatives.
Sebastien Marcombe, Phoutmany Thammavong, Phonesavanh Luangamath, Somsanith Chonephetsarath, Nothasin Phommavanh, Khaitong Lakeomany, Somphat Nilaxay, Zuhal Rahmani, Penelope J. Saverton, Omobolanle H. Abdullateef, Jordan Forward, Anna E. Jacob, Safina Khadam, Wlaa Ali, Chloé Boer, Hayato Kakinuma, Joseph Hawkins, Rosie Longstreeth, Natalie M. Portwood, Madeleine Smee, Natasha Brown, Nursu C. Kuyucu, Susannah Lechmere, Gabriela Stieger, Santi Maithaviphet, Simone Nambanya, Paul T. Brey, Andrew K. Jones
The gamma-aminobutyric acid (GABA) receptor, RDL, plays important roles in neuronal signaling and is the target of highly effective insecticides. A mutation in RDL, commonly A296S, underlies resistance to several insecticides such as cyclodienes. Even though the use of cyclodienes has been banned, the occurrence of mutations substituting A296 is notably high in mosquitoes from several countries. Here, we report a survey investigating the prevalence of the Rdl mutant allele in mosquitoes from Laos, a country where mosquito-borne diseases such as malaria and dengue fever are health concerns. Anopheles and Aedes mosquitoes were collected from 12 provinces in Laos. Adult bioassays on Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) showed that all the populations tested were susceptible to dieldrin (4%) following WHO protocols. Exon 7 from a total of 791 mosquitoes was sequenced to identify the amino acid encoded for at 296 of RDL. Only one of these mosquitoes, Anopheles maculatus rampae Harbach and Somboon (Diptera: Culicidae) from Attapeu, carried the mutant allele being heterozygous for A296S. We therefore found a general lack of the Rdl mutant allele indicating that mosquitoes from Laos are not exposed to insecticides that act on the GABA receptor compared to mosquitoes in several other countries. Identifying the prevalence of the Rdl mutation may help inform the potential use of alternative insecticides that act on the GABA receptor should there be a need to replace pyrethroids in order to prevent/manage resistance.
The Sterile InsectTechnique (SIT) is a pest control method where large numbers of sterile males are released to induce sterility in wild populations. Since a successful SIT application depends on the released sterile males being competitive with wild males, standard quality control tests are a necessary component of any SIT program. Flight ability (ability to fly out from a device) is a reliable indicator of insect quality. Based on previous studies, we developed four new tubular devices constructed with locally available materials to explore their potential as flight test devices for Aedes aegypti (L.) mass-reared males. Males were allowed to fly upwards through a vertical tube, the ones that flew out were considered successful. The effect of male age (0 to 21 d old), test time interval (30 min to 24 h), and the design of the device (40 and 80 cm height and 2 and 3.5 cm diameter) were evaluated. Our devices determined differences in the flight ability of Ae. aegypti males of different ages. During the first minutes, more old males escaped than young males in three out of four types of devices. However, young males reached higher rates of escape in all cases after 24 h. For standard quality control tests, we recommend testing 2- to 3-d-old sexually mature males in the high and narrow device (80 × 2 cm). Further observations for time intervals between 1 and 5 h might be performed to decide the shortest and more representative interval to use.
Aedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The primary strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations presents a significant threat to these prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti is vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel (VGSC) gene for the presence of the V1016I and F1534C kdr mutations in Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. A strong association between these mutations and permethrin and deltamethrin resistance was found in Puntarenas. Limon did not show this association; however, our results indicate that the Limon population analyzed is not under the same selective pressure as Puntarenas for the VGSC gene. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti, which must be a priority to develop an effective resistance management plan.
Chagas disease affects around 6 million people in the world, and in Latin America, it is mainly transmitted by the kissing bug. Chemical control of the vector with pyrethroid insecticides has been the most frequently used tool to reduce the disease incidence. Failures of field control have been detected in areas of the Argentinian Gran Chaco that correlate with high levels of insecticide resistance. Here, we provide evidence of the mechanisms involved in the resistance to insecticides of field populations of T. infestans from General Güemes Department (Chaco Province, Argentina). The biochemical analysis suggests the increase in the activity of the degradative enzymes P450 oxidases and esterases as a minor contributive mechanism in low-resistance populations. The molecular study revealed high frequencies of the kdr L925I mutation at the voltage-gated sodium channel as responsible for the high resistance ratios detected. This knowledge contributes to the generation of comprehensive vector control strategies that reduce the incidence of the disease.
Wild birds play important roles in the maintenance and dispersal of tick populations and tick-borne pathogens, yet in field studies of tick-borne disease ecology and epidemiology there is limited standardization of how birds are searched for ticks. We conducted a qualitative literature review of 100 field studies where birds were searched for ticks to characterize which parts of a bird's anatomy are typically sampled. To increase understanding of potential biases associated with different sampling approaches, we described variation in tick loads among bird body parts using field-collected data from 459 wild-caught birds that were searched across the entire body. The literature review illustrated a lack of clarity and consistency in tick-searching protocols: 57% of studies did not explicitly report whether entire birds or only particular body parts were searched, 34% reported concentrating searches on certain body parts (most frequently the head only), and only 9% explicitly reported searching the entire bird. Based on field-collected data, only 22% of ticks were found on the head, indicating that studies focusing on the head likely miss a large proportion of ticks. We provide tentative evidence that feeding locations may vary among tick species; 89% of Amblyomma americanum, 73% of Ambloyomma maculatum, and 56% of Haemaphysalis leporispalustris were on body parts other than the head. Our findings indicate a need for clear reporting and increased standardization of tick searching methodologies, including sampling the entire bird body, to provide an unbiased understanding of the role of birds in the maintenance and emergence of tick-borne pathogens.
Most sand flies and mosquitoes require a bloodmeal for egg production, but when blood-sources are scarce, some of them can reproduce without it, so called facultative autogeny. The evolution of autogenous reproduction is thought to involve a trade-off between the benefit of reproducing in the absence of bloodmeal hosts versus the quantitative cost of reduced fecundity and/or or qualitative effect on reduced offspring development and survivorship. We blood-fed (BF) some Phlebotomous papatasi (Scopoli) sand fly females on mice while keeping others (from the same cohort) not BF. We then compared the fecundity of BF and non-blood-fed (NBF) females and also evaluated their egg mass and hatching rate, larval development rate and survivorship, pupa mass and eclosion rates, and progeny fecundity. Among NBF females, only 55% became gravid and produced three times less mature oocytes than BF ones. Autogenous females laid 3.5 and 5.7 times fewer eggs in individual and multi-female bioassays, respectively. Egg mass and hatching rate were not affected by blood-feeding. Individual-larvae bioassays suggested reduced survival during larval stages in the autogenous group. In multi-larvae bioassays, overall and especially pupae survival was significantly reduced in the autogenous group. Development rate was slower and pupal mass was reduced in progeny from autogenous mothers. These effects were particularly apparent at high larval density. Mothers' blood-feeding history did not affect daughter's fecundity. Studies on the costs of autogeny provides insights on the evolution of blood feeding. Moreover, it also provides insights regarding potential implications of autogeny to the emergence of vector-borne diseases.
Mosquito surveillance has been conducted across South Dakota (SD) to record and track potential West Nile virus (WNV) vectors since 2004. During this time, communities from 29 counties collected nearly 5.5 million mosquitoes, providing data from over 60,000 unique trapping nights. The nuisance mosquito, Aedes vexans (Meigen) was the most abundant species in the state (39.9%), and most abundant in most regions. The WNV vector, Culex tarsalis Coquillett (Diptera: Culicidae), was the second most abundant species (20.5%), and 26 times more abundant than the other Culex species that also transmit WNV. However, geographic variation did exist between WNV vector species, as well as relative abundance of vector and nuisance mosquitoes. The abundance of Ae. vexans decreased from east to west in South Dakota, resulting in an increase in the relative abundance of Cx. tarsalis. Other species are reported in this study, with various relative abundances throughout the different regions of South Dakota. WNV infection rates of mosquitoes showed that Cx. tarsalis had the most positive sampling pools and the highest vector index of all the species tested. This study addressed the need for an updated summary of the predominant mosquito species present in the United States Northern Great Plain and provides infection rate data for WNV among these predominant species.
We updated the Illinois historical (1905–December 2017) distribution and status (not reported, reported or established) maps for Amblyomma americanum (L.) (Acari: Ixodidae), Dermacentor variabilis (Say) (Acari: Ixodidae), and Ixodes scapularis (Say) (Acari: Ixodidae) by compiling publicly available, previously unexplored or newly identified published and unpublished data (untapped data). Primary data sources offered specific tick-level information, followed by secondary and tertiary data sources. For A. americanum, D. variabilis, and I. scapularis, primary data contributed to 90% (4,045/4,482), 80% (2,124/2,640), and 32% (3,490/10,898) tick records vs 10%, 20%, and 68%, respectively from secondary data; primary data updated status in 95% (62/65), 94% (51/54) and in 90% (9/10) of the updated counties for each of these tick species; by 1985 there were tick records in 6%, 68%, and 0% of the counties, compared to 20%, 72%, and 58% by 2004, and 77%, 96%, and 75% of the counties by 2017, respectively for A. americanum, D. variabilis, and I. scapularis. We document the loss of tick records due to unidentified, not cataloged tick collections, unidentified ticks in tick collections, unpublished data or manuscripts without specific county location, and tick-level information, to determine distribution and status. In light of the increase in tick-borne illnesses, updates in historical distributions and status maps help researchers and health officials to identify risk areas for a tick encounter and suggest targeted areas for public outreach and surveillance efforts for ticks and tick-borne diseases. There is a need for a systematic, national vector surveillance program to support research and public health responses to tick expansions and tick-borne diseases.
Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such is a threat to public health worldwide. Effective trapping methods are essential for surveillance of both the mosquito species and disease presence. The BG-Sentinel (BGS) is a widely used to trap Ae. aegypti but little is known of its efficiency, i.e., what proportion of the mosquitoes encountering the trap are captured. The first version of the BGS trap was predominantly white, and the current version is mostly navy blue. While this trap is often deployed without any olfactory lure, it can also be deployed with CO2 and/or a human skin odor mimic lure to increase capture rates. We tested the efficiency of capturing Ae. aegypti under semi-field conditions for the original white version without lures as well the blue version with and without various lure combinations. None of the configurations tested here captured 100% of the mosquitoes that encountered the trap. A navy-blue trap emitting CO2 and a skin odor mimic produced the highest capture (14% of the total insects in the semi-field cage), but its capture efficiency was just 5% (of mosquitoes encountering the trap). Mosquitoes often had multiple encounters with a trap that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Understanding these behaviors and the factors that induce them has the potential to suggest improvement in trap design and therefore capture efficiency.
Rebecca J. Eisen, Linda A. Atiku, Joseph T. Mpanga, Russell E. Enscore, Sarah Acayo, John Kaggwa, Brook M. Yockey, Titus Apangu, Kiersten J. Kugeler, Paul S. Mead
Plague is a low incidence flea-borne zoonosis that is often fatal if treatment is delayed or inadequate. Outbreaks occur sporadically and human cases are often preceded by epizootics among rodents. Early recognition of epizootics coupled with appropriate prevention measures should reduce plague morbidity and mortality. For nearly a century, the flea index (a measure of fleas per host) has been used as a measure of risk for epizootic spread and human plague case occurrence, yet the practicality and effectiveness of its use in surveillance programs has not been evaluated rigorously. We sought to determine whether long-term monitoring of the Xenopsylla flea index on hut-dwelling rats in sentinel villages in the plague-endemic West Nile region of Uganda accurately predicted plague occurrence in the surrounding parish. Based on observations spanning ∼6 yr, we showed that on average, the Xenopsylla flea index increased prior to the start of the annual plague season and tended to be higher in years when plague activity was reported in humans or rodents compared with years when it was not. However, this labor-intensive effort had limited spatial coverage and was a poor predictor of plague activity within sentinel parishes.
The Simulium damnosum Theobald complex transmits Onchocerca volvulus Leuckart (Spirurida: Onchocercidae), the causative agent of onchocerciasis. Recent evidence suggests that control efforts have strongly suppressed parasite populations, but vector surveillance is needed in parts of Africa where the disease remains endemic. Here, studies on biting rates and infectivity status of suspected vector species were conducted in three onchocerciasis-endemic areas, namely Iwo, Ede, and Obokun, in Osun State, Nigeria. A total of 3,035 black flies were collected between October 2014 and September 2016, and examined for parity and parasites using standard methods. A separate collection of 2,000 black flies was pool-screened for infectivity using polymerase chain reaction (PCR) amplification of the O-150 marker. Results showed that parous flies were significantly less common than nulliparous flies with overall parous rates of 8.02% in Iwo and 35.38% in Ede at the end of the study period. Obokun had a parous rate of 22.22% obtained in the first year only. None of the dissected parous flies were infected with O. volvulus and PCR assays showed no amplification of O-150 O. volvulus-specific repeats in head and body pools. However, annual biting rates exceeded the World Health Organization threshold of 1,000 bites/person/yr. Thus it appears that, with such high rates of biting, even low levels of vector infection can sustain onchocerciasis in African communities.
Konan F. Assouho, Akré M. Adja, Négnorogo Guindo-Coulibaly, Emmanuel Tia, Affoué M. N. Kouadio, Dounin D. Zoh, Moussa Koné, Nestor Kessé, Bernard Koffi, André B. Sagna, Anne Poinsignon, Ahoua Yapi
To better understand the influence of periodic mass distribution of Long-Lasting Insecticidal Nets (LLINs) on malaria transmission, a 1-yr entomological survey was conducted in three major districts of Côte d'Ivoire. Mosquitoes were sampled by Human Landing Catches (HLC) in urban and rural areas of San Pedro and Abidjan (coastal), and in Yamoussoukro (central). Mosquitoes were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoite (CSP) indices were measured by ELISA, and the Entomological Inoculation Rates (EIR) were calculated for each species and area. Anopheles gambiae s.l. Giles (Diptera: Culicidae) and Anopheles niliTheobald (Diptera: Culicidae) were identified in coastal districts, while An. gambiae s.l. and Anopheles funestus Giles (Diptera: Culicidae) were reported in the central district. In urban areas, malaria vectors showed a low aggressiveness (<10 bites per person per night), except inYamoussoukro, where up to 18.9 b/p/n were recorded. The annual EIR was higher in the central urban area (138.7 infected bites per person per year) than in coastal ones (10–62 ib/p/n). In rural areas, malaria vectors were highly aggressive with an average 13 b/p/n for An. gambiae s.l, 21.2 b/p/n for An. nili and 12 b/p/n for An. funestus. The annual EIR ranged between 94.9 and 193.4 infected bites per person per year. This work indicates that, despite repeated mass distribution of LLINs, malaria transmission remains high and heterogeneous across Côte d'Ivoire. Malaria transmission was lower in coastal urban areas than in the central one, and remains high rural areas where two additional Anopheles vectors are involved in malaria transmission.
Pediculosis capitis caused by Pediculus humanus capitis (De Geer) is endemic all over the world, and children are mostly affected, particularly those living in overcrowded institutions. Several studies have shown that P. h. capitis carried human pathogenic bacteria, suggesting the potential role of head lice in the transmission of pathogens to humans. In this study, we determined the genetic diversity of head lice collected from welfare homes sheltering underprivileged children by using DNA barcoding and demonstrated the presence of Acinetobacter spp., Serratia marcescens, and Staphylococcus aureus in head lice, which have never been investigated before in Malaysia. Cox1 DNA barcoding identified the head lice, P. h. capitis collected from welfare homes across two geographical areas of Peninsular Malaysia as belonging to clades A, B, and D. Acinetobacter bacteria: Acinetobacter guillouiae, Acinetobacter junii, Acinetobacter baumannii, and Acinetobacter nosocomialis were detected in head lice belonging to clades A and also D. In addition, DNA from S. marcescens and S. aureus were also detected in both clades A and D. To our knowledge, this is the first report on the genetic diversity of head lice in Malaysia through DNA barcoding, as well as the first to provide molecular evidence on the type of bacteria occurring in head lice in Malaysia. It is anticipated that the DNA barcoding technique used in this study will be able to provide rapid and accurate identification of arthropods, in particular, medically important ectoparasites.
The white-footed mouse, Peromyscus leucopus (Rafinesque), is a reservoir for the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern half of the United States, where the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), is the primary vector. In the Midwest, an additional Lyme disease spirochete, Borrelia mayonii, was recorded from naturally infected I. scapularis and P. leucopus. However, an experimental demonstration of reservoir competence was lacking for a natural tick host. We therefore experimentally infected P. leucopus with B. mayonii via I. scapularis nymphal bites and then fed uninfected larvae on the mice to demonstrate spirochete acquisition and passage to resulting nymphs. Of 23 mice fed on by B. mayonii-infected nymphs, 21 (91%) developed active infections. The infection prevalence for nymphs fed as larvae on these infected mice 4 wk post-infection ranged from 56 to 98%, and the overall infection prevalence for 842 nymphs across all 21 P. leucopus was 75% (95% confidence interval, 72–77%). To assess duration of infectivity, 10 of the P. leucopus were reinfested with uninfected larval ticks 12 wk after the mice were infected. The overall infection prevalence for 480 nymphs across all 10 P. leucopus at the 12-wk time point was 26% (95% confidence interval, 23–31%), when compared with 76% (95% confidence interval, 71–79%) for 474 nymphs from the same subset of 10 mice at the 4-wk time point. We conclude that P. leucopus is susceptible to infection with B. mayonii via bite by I. scapularis nymphs and an efficient reservoir for this Lyme disease spirochete.
The scaling-up of malaria control interventions in northernTanzania has resulted in a decline in malaria prevalence and vector species composition. Despite this achievement, residual malaria transmission remains a concern in the area. The main aim of this study was to investigate malaria vector species composition, parasite infectivity rates, and the presence of insecticide knockdown resistance (kdr) mutations in three sites that have experienced a significant decline in malaria in northernTanzania. Adult mosquitoes were sampled using light traps in houses and hand-aspirators in cowsheds, whereas the standard dipping method was used for sampling mosquito larvae. Adult mosquitoes identified as Anopheles gambiae s.l. and An. funestus s.l. and larval stages III and IV of An. gambiae s.l. were stored in absolute ethanol for further laboratory molecular identification. The identified species in the An. gambiae complex were An. gambiae s.s., An. merus, An. quadriannulatus, and An. arabiensis, whereas the An. funestus group comprised An. funestus s.s., An. rivulorum, and An. leesoni. For An. gambiae s.s. analyzed from Zeneth, 47.6% were kdr-East homozygous susceptible, 35.7% kdr-East heterozygous resistant, 9.6% kdr-East homozygous resistant, and 7.1% undefined, whereas specimens from Kwakibuyu were 45.5% kdr-East homozygous susceptible, 32.7% kdr-East heterozygous resistant, 16.3% kdr-East homozygous resistant, and 5.5% undefined. There were no kdr-West alleles identified from any specimen. The overall malaria parasite infectivity rate was 0.75%. No infections were found in Moshi. The findings indicate that populations of the major malaria vector mosquitoes are still present in the study area, with An. funestus taking a lead in malaria transmission.
Reported cases of Lyme disease in Nebraska have been assumed to be imported from other endemic areas. Previous surveillance efforts provided no evidence of established populations as only individual specimens of Ixodes scapularis (Say) had been collected. In the winter of 2018, adult I. scapularis were found on a dog atTwo Rivers State Recreation Area, Douglas County, prompting tick collection at the site and nearby natural areas. In May 2019, all life stages of host-seeking I. scapularis were collected using dragging and flagging techniques in sites located near the Platte River in Douglas, Sarpy, and Saunders counties. This is the first documentation of established populations of I. scapularis in Nebraska.
Despite historical and contemporary evidence of its effectiveness, larval source management with insecticides remains little used by most malaria control programs worldwide. Here we show that environmentally safe biological larvicides under field conditions can significantly reduce anopheline larval density in fish farming ponds that have became major larval habitats across the Amazon Basin. Importantly, the primary local malaria vector, Anopheles darlingi Root (Diptera: Culicidae), feeds and rests predominantly outdoors, being little affected by interventions such as long-lasting insecticidal bed net distribution and indoor residual spraying. We found >95% reduction in late-instar density up to 7 d after the first application of VectoMax FG or VectoLex CG (both from Valent BioSciences), and up to 21 d after larvicide reapplication in fish ponds (n = 20) situated in the main residual malaria pocket of Brazil, irrespective of the formulation or dosage (10 or 20 kg/ha) used. These results are consistent with a substantial residual effect upon retreatment and support the use of biological larvicides to reduce the density of anopheline larvae in this and similar settings across the Amazon where larval habitats are readily identified and accessible.
Due to ethical issues associated with the use of blood for mosquito laboratory experiments, an artificial diet that supports the production of eggs and larvae is highly desirable. We report the development of an artificial diet using direct feeding on protein-rich sugar solution (PRSS) as an alternative to whole blood and evaluated its effects on several biologic parameters of Anopheles darlingi (Root). Field-collected females were fed with different PRSSs containing bovine serum albumin (BSA) at 200 and 400 mg/ml with or without supplemental salts. Engorged mosquitoes were monitored for survival to oviposition, before being forced to oviposit. The proportion ovipositing, number of eggs, and number of larvae were recorded for each treatment. Mosquitoes promptly engorged on PRSSs. The mean proportion of mosquitoes fed with PRSS that survived to oviposition did not differ statistically from that of blood-fed ones. The oviposition proportion of females fed with PRSS at 200 mg/ml was similar to that of blood-fed mosquitoes, whereas mean egg production was lower for most PRSS-fed females, except for those fed with BSA at 400 mg/ml. However, the mean larval production of PRSS-fed mosquitoes was significantly lower than that of blood-fed females. Although feeding An. darlingi on simple PRSS triggered oogenesis and embryogenesis, our results highlight the need for additional nutrients to increase the number of larvae to improve overall reproduction potential.
In the present study, we report the sympatric occurrence of Ixodes ricinus (Linnaeus, 1758) and Ixodes inopinatus (Estrada-Peña, Nava, and Petney, 2014) in Tunisia. In total, 173 adult Ixodes ticks were collected from four sites (El Jouza, Tamra, Aïn Soltan, and Jbel Zaghouan) between February and April 2017, a period corresponding to the peak of activity of I. ricinus in North Africa. The morphological characters corresponded to both species; thus, we generated a total of 28 16S rRNA sequences and compared them with previously published data in GenBank. The two species were sympatric in Tamra, Aïn Soltan, and El Jouza, whereas collections in Jbel Zaghouan only yielded I. inopinatus. These results indicate that the two taxa are widespread in the humid area of northern Tunisia. The one tick collected in Jbel Zaghouan suggests that the distribution of at least I. inopinatus might extend to the sub-humid area. More studies are needed to fully comprehend the systematic status of the two taxonomic entities using multiple molecular markers and morphological characters; integrating these two identification methods are a necessary step toward a better understanding of the ecology and epidemiology of tick-borne diseases in Tunisia.
Kyran M. Staunton, Barukh B. Rohde, Michael Townsend, Jianyi Liu, Mark Desnoyer, Paul Howell, Brogan Amos, Jacob Crawford, Nigel Snoad, Scott A. Ritchie
Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid AedesTraps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.
The importation of exotic ticks to Germany on infested humans is rarely reported. Here we describe the detection of an Amblyomma mixtum nymph harboring Rickettsia amblyommatis by a tourist returning from a holiday trip to Cuba. Tick infestation may be neglected by tourists. Therefore, careful anamnesis and diagnosis should be carried out when tourists return from tropical and subtropical countries suffering from nonspecific symptoms, such as fever and malaise.
Factors contributing to the delay or prevention of the natural wound healing process include infection and ineffective conventional treatment. Alternative therapies, such as the maggot debridement therapy (MDT), may be helpful for successful treatment in these cases. Aiming to disseminate information about the possibility of using other species of flies for wound treatment, besides the best known Lucilia sericata Meigen, 1826 (Diptera, Calliphoridae), we report here a successful MDT case with the application of Cochliomyia macellaria (Fabricius, 1775) larvae to treat an infected wound with extensive area of necrotic tissue in a dog. Five sterile larvae were applied to each square-cm of lesion and kept on the animal for only 48 h. The healing was successful, from both qualitative and quantitative points of view. The ratio of wound healing (RWH) reached almost 50% on the 5th day and 100% on the 14th day after MDT. Although the overall animal prognosis had been unfavorable, mainly due to the sepsis, the patient began to recover and had improved clinical condition from the fifth day after MDT. This study shows the importance and effectiveness of MDT in promoting faster and more complete healing of a complex wound.
Cimex lectularius and Cimex hemipterus are the most common species of bedbugs that infest homes. Although case reports decreased substantially by the end of the 20th century, bed bugs, and especially C. lectularius, are currently suffering a resurgence mostly attributed to insecticide resistance, inadequate pest control, and increased travel. Here, we report, to the best of our knowledge, the first molecular confirmation of C. lectularius in Central America. Specimens were obtained from an apartment located in Heredia, Costa Rica. These specimens were identified morphologically as C. lectularius. The species identification was confirmed by amplifying and sequencing fragments of the cytochrome oxidase subunit I (COI) and the 16S rRNA (16S) genes. The phylogenetic analysis showed that the sequences obtained were more closely related to a C. lectularius mitochondrial complete genome sequence from China, with similarities of 98.84% (686/694) for COI and 98.97% (387/391) for 16S. The finding of C. lectularius in Costa Rica will require further investigation in order to determine the extent of current infestations and the susceptibility to insecticides, especially due to the impact that this species can have in human health, as well as the tourism industry in the region.
Tick-borne rickettsiae are undergoing epidemiological changes in the eastern United States while human encounters with lone star ticks (Amblyomma americanum L.) have increased substantially. We used real-time polymerase chain reaction assays to test for three species of spotted fever group rickettsiae (SFGR) (Rickettsiales: Rickettsiaceae) in 1,858 nymphal A. americanum collected from Monmouth County, New Jersey, a coastal county with endemic Lyme disease and established tick surveillance. Out of the 1,858 tested, 465 (25.0%) were infected with Rickettsia amblyommatis Karpathy, a species of undetermined pathogenicity found frequently in A. americanum, while 1/1,858 (0.05%) contained Rickettsia rickettsii Brumpt, the agent of Rocky Mountain spotted fever. No ticks tested positive for mildly pathogenic Rickettsia parkeri Lackman, and no ticks were co-infected with multiple Rickettsia spp. Our results indicate that A. americanum could be involved in transmission of R. rickettsii to humans in New Jersey, albeit rarely. The much higher rates of R. amblyommatis infection are consistent with hypotheses that human sera reacting to this species could contribute to reports of mild SFGR cases.
Amblyomma maculatum Koch is the primary vector of Rickettsia parkeri, the etiologic agent of tidewater spotted fever, and can also carry and transmit a variety of other pathogens. This tick historically has been a costly nuisance to livestock owners in the southeastern United States. Over the past 6 yr, A. maculatum has been collected in numbers sufficient to demonstrate their establishment in Kent County, Delaware, and the presence of R. parkeri has been documented. Our goals were to determine the geographic distribution of A. maculatum and R. parkeri in Delaware, and to equate this to relative risk to the public of encountering R. parkeri-infected ticks. We surveyed for ticks in four locations throughout the state from May to August 2019, and found established A. maculatum populations in all three counties. Laboratory analysis of collected specimens by quantitative polymerase chain reaction detected R. parkeri in A. maculatum populations across the state. These results indicate that A. maculatum could present a health risk to inhabitants of the state, and they also historically have posed a risk to the livestock industry, making them an important consideration in the development and implementation of continued tick surveillance efforts and future policies regarding tick management.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere