BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A central concept in forensic entomology is that arthropod succession on carrion is predictable and can be used to estimate the postmortem interval (PMI) of human remains. However, most studies have reported significant variation in successional patterns, particularly among replicate carcasses, which has complicated estimates of PMIs. Several forensic entomology researchers have proposed that further integration of ecological and evolutionary theory in forensic entomology could help advance the application of succession data for producing PMI estimates. The purpose of this essay is to draw attention to the role of spatial aggregation of arthropods among carrion resources as a potentially important aspect to consider for understanding and predicting the assembly of arthropods on carrion over time. We review ecological literature related to spatial aggregation of arthropods among patchy and ephemeral resources, such as carrion, andwhenpossible integrate these results with published forensic literature. We show that spatial aggregation of arthropods across resources is commonly reported and has been used to provide fundamental insight for understanding regional and local patterns of arthropod diversity and coexistence. Moreover, two suggestions are made for conducting future research. First, because intraspecific aggregation affects species frequency distributions across carcasses, data from replicate carcasses should not be combined, but rather statistically quantified to generate occurrence probabilities. Second, we identify a need for studies that tease apart the degree to which community assembly on carrion is spatially versus temporally structured, which will aid in developing mechanistic hypotheses on the ecological factors shaping community assembly on carcasses.
Two new blackfly species, Simulium (Gomphostilbia) azhari and Simulium (Gomphostilbia) johorense, are described based on adult females, males, pupae, and larvae collected from Peninsular Malaysia, and assigned to the parahiyangum subgroup and the duolongum subgroup of the batoense species group of the subgenus Gomphostilbia, respectively. S. (G.) azhari sp. nov. is characterized in the female by the narrow frons, and in the male by the broad style and the ventral plate moderately produced ventrally. S. (G.) johorense sp. nov. is also remarkable in having the female subcosta lacking hairs or bearing a reduced number of hairs ranging from one to five. The pupae of both new species share a similar arrangement of the eight gill filaments (i.e., stalks of dorsal and middle triplets and ventral pair arising at the same level from the short common basal stalk), although relative lengths of filaments of the ventral pair to those of the dorsal and middle triplets are different between the two new species. Taxonomic notes are given to distinguish these new species from other related species. Keys to identify all 10 species of the batoense species group in Peninsular Malaysia are provided for adult females, males, pupae, and mature larvae.
Changes in spatial distribution of mosquitoes over time in a Sahelian village werestudied to understand the sources of the mosquitoes during the dry season when no larval sites are found. At that time, the sources of Anopheles gambiae Giles may be local shelters used by aestivating mosquitoes or migrants from distant populations. The mosquito distribution was more aggregated during the dry season, when few houses had densities 7- to 24-fold higher than expected. The high-density houses during the dry season differed from those of the wet season. Most high-density houses during the dry season changed between years, yet their vicinity was rather stable. Scan statistics confirmed the presence of one or two adjacent hotspots in the dry season, usually found on one edge of the village. These hotspots shifted between the early and late dry season. During the wet season, the hotspots were relatively stable near the main larval site. The locations of the hotspots in the wet season and early and late dry season were similar between years. Season-specific, stable, and focal hotspots are inconsistent with the predictions based on the arrival of migrants from distant localities during the dry season, but are consistent with the predictions based on local shelters used by aestivating mosquitoes. Targeting hotspots in Sahelian villages for vector control may not be effective because the degree of aggregation is moderate, the hotspots are not easily predicted, and they are not the sources of the population. However, targeting the dry-season shelters may be highly cost-effective, once they can be identified and predicted.
Emerging infectious diseases are on the rise with future outbreaks predicted to occur in frontier regions of tropical countries. Disease surveillance in these hotspots is challenging because sampling techniques often rely on vector attractants that are either unavailable in remote localities or difficult to transport.Weexamined whether a novel method for producing CO2 from yeast and sugar produces similar mosquito species captures compared with a standard attractant such as dry ice. Across three different vegetation communities, we found traps baited with dry ice frequently captured more mosquitoes than yeast-baited traps; however, there was little effect on mosquito community composition. Based on our preliminary experiments,we find that this method of producing CO2 is a realistic alternative to dry ice and would be highly suitable for remote field work.
The medical importance of the brown recluse spider, Loxosceles reclusa Gertsch and Mulaik, is well known, but there is a need for more accurate information about the distribution of the spider in North America. We gathered information via an Internet offer to identify spiders in Illinois and Iowa that were thought to be brown recluses. We also mined brown recluse locality information from other agencies that kept such records. In Iowa, the brown recluse is unknown from its northern counties and rare in southern counties. In Illinois, brown recluse spiders are common in the southern portion of the state and dwindle to almost nonexistence in a transition to the northern counties. Although there were a few finds in the Chicago, IL area and its suburbs, these are surmised to be human-transported specimens and not part of naturally occurring populations. Considering the great human population density and paucity of brown recluses in the Chicago area, medical personnel therein should obtain patient geographic information and be conservative when diagnosing loxoscelism in comparison with southern Illinois, where the spiders are plentiful and bites are more likely.
We analyzed a comprehensive telephone log of pest infestation reports to assess the spatial and temporal trends in Cimex lectularius L. (bed bug) reporting throughout Philadelphia, PA. Citywide spatial analyses of reports from September 2011 to June 2012 revealed several statistically significantbed bug hotspots. However, these were small and diffuse. Temporal analyses of reports from December 2008 to May 2011 detected prominent seasonality in bed bug reporting, peaking in August and reaching a nadir in February each year. Controlling for seasonal cycling, the number of bed bug reports in Philadelphia increased steadily at a rate of ≈4.5% per month (or 69.45% per year) from December 2008 to May 2011. While it may be difficult to spatially target citywide bed bug control measures because of the insects' widespread migration, interventions informed by seasonal trends may enhance efforts to curb the recent increases in urban bed bug populations.
Climatic changes forecasted in the coming years are likely to result in substantial alterations to the distributions and populations of vectors of arthropod-borne pathogens. Characterization of the effect of temperature shifts on the life history traits of specific vectors is needed to more accurately define how such changes could impact the epidemiological patterns of vector-borne disease. Here, we determined the effect of temperatures including 16, 20, 24, 28, and 32°C on development time, immature survival, adult survival, mosquito size, blood feeding, and fecundity of both field and colonized populations of the Culex mosquitoes Culex pipiens L., Culex quinquefasciatus Say, and Culex restuans Theobald. Our results demonstrate that temperature significantly affects all of these traits, yet also that the extent of this effect is at times incongruent among temperatures, as well as being population and species-specific. Comparisons of colonized mosquitoes with field populations generally demonstrate decreased adult and immature survival, increased blood feeding and egg production, and significant variation in the effects of temperature, indicating that such colonies are not fully representative of natural populations. Results with field populations in general indicate that increases in temperature are likely to accelerate mosquito development, and that this effect is greater at temperatures below 24°C, but also that temperature significantly increases mortality. Among field populations, Cx. restuans were most affected by temperature increases, with decreased longevity relative to other species and significant increases in adult and immature mortality measured with each incremental temperature increase. Despite the unique climates characteristic of the geographic ranges of Cx. quinquefasciatus and Cx. pipiens, evidence of significant species-specific adaptation to temperature ranges was not seen. Taken together, these results indicate that geographic region, as well as species and population differences, must be considered when measuring the effect of temperature on vector populations.
House flies are among the most important nonbiting insect pests of medical and veterinary importance. Larvae develop in decaying organic substrates and their survival strictly depends on an active microbial community. House flies have been implicated in the ecology and transmission of enterococci, including multi-antibiotic-resistant and virulent strains of Enterococcus faecalis. In this study, eight American Type Culture Collection type strains of enterococci including Enterococcus avium, Enterococcus casseliflavus, Enterococcus durans, Enterococcus hirae, Enterococcus mundtii, Enterococcus gallinarum, Enterococcus faecalis, and Enterococcus faecium were evaluated for their significance in the development of house flies from eggs to adults in bacterial feeding assays. Furthermore, the bacterial colonization of the gut of teneral flies as well as the importance of several virulence traits of E. faecalis in larval mortality was assessed. Overall survival of house flies (egg to adult) was significantly higher when grown with typically nonpathogenic enterococcal species such as E. hirae (76.0% survival), E. durans (64.0%), and E. avium (64.0%) compared with that with clinically important species E. faecalis (24.0%) and E. faecium (36.0%). However, no significant differences in survival of house fly larvae were detected when grown with E. faecalis strains carrying various virulence traits, including isogenic mutants of the human clinical isolate E. faecalis V583 with in-frame deletions of gelatinase, serine protease, and capsular polysaccharide serotype C. Enterococci were commonly detected in fly puparia (range: 75-100%; concentration: 103–105 CFU/puparium) ; however, the prevalence of enterococci in teneral flies varied greatly: from 25.0 (E. casseliflavus) to 89.5% (E. hirae). In conclusion, depending on the species, enterococci variably support house fly larval development and colonize the gut of teneral adults. The human pathogenic species, E. faecalis and E. faecium, poorly support larval development and are likely acquired in nature by adult flies during feeding. House fly larvae do not appear to be a suitable model organism for assessment of enterococcal virulence traits.
Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) larvae rely on oxidases to reduce toxicity of water soluble toxins from some senescent tree leaf infusions. The mortality of third instar Ae. aegypti larvae in live oak and pin oak leaf infusions increased significantly in the presence of piperonyl butoxide (PBO), a broad inhibitor of cytochrome P450s (CYPs). In contrast, PBO treatment did not increase mortality in water controls or infusions of northern red oak or sugar maple leaf infusions for Ae. aegypti larvae. A similar pattern was observed for Ae. albopictus larvae, that is, an increase in mortality when CYPs were inhibited in live oak leaf infusions and no increase in sugar maple leaf infusions or water controls. However, the fresh live oak leaf infusion (5 d old) was the most toxic infusion to Ae. aegypti, but appeared less toxic to Ae. albopictus than the older infusions. A direct comparison of survival between the two Aedes species revealed Ae. aegypti exhibited a greater mortality than Ae. albopictus in PBO-treated live oak leaf infusions. These findings suggest that toxic components of some leaf litter in larval habitats may impose cryptic energy costs (detoxification).
An understanding of how climate variables drive seasonal dynamics of mosquito populations is critical to mitigating negative impacts of potential outbreaks, including both nuisance effects and risk of mosquito-borne infectious disease. Here,weidentify climate variables most affecting seasonal dynamics of two major floodwater mosquitoes, Aedes vexans (Meigen, 1830) and Aedes sticticus (Meigen, 1838) (Diptera: Culicidae), along the lower courses of the Dyje River, at the border between the Czech Republic and Austria. Monthly trap counts of both floodwater mosquitoes varied both across sites and years. Despite this variability, both models used to fit the observed data at all sites (and especially that for Ae. sticticus) and site-specific models fitted the observed data quite well. The most important climate variables we identified—temperature and especially flooding—were driving seasonal dynamics of both Aedes species. We suggest that flooding determines seasonal peaks in the monthly mosquito trap counts while temperature modulates seasonality in these counts. Hence, floodwater mosquitoes indeed appear worthy of their name. Moreover, the climate variables we considered for modeling were able reasonably to predict mosquito trap counts in the month ahead. Our study can help in planning flood management; timely notification of people, given that these mosquitoes are a real nuisance in this region; public health policy management to mitigate risk from such mosquito-borne diseases as that caused in humans by the Tahyna virus; and anticipating negative consequences of climate change, which are expected only to worsen unless floods, or the mosquitoes themselves, are satisfactorily managed.
The mosquito Culex coronator (Dyar and Knab) (Diptera: Culicidae) has undergone rapid range expansion in the United States since 2003, with its historical distribution in the southwest expanding eastward to the Atlantic coast. Although Cx. coronator nominally use small natural aquatic habitats for development, the use of containers (e.g., tires) makes it potentially important as container invasive. To determine the potential ecological effects of Cx. coronator on resident container species, we conducted a laboratory experiment to assess its competitive ability with two common tireinhabiting species, Aedes albopictus (Skuse) and Culex quinquefasciatus (Say) (Diptera: Culicidae). Larvae were reared under a factorial design with each species alone and in combination (Cx. coronatorAe. albopictus, Cx. coronatorCx. quinquefasciatus) across three different resource environments (leaf detritus only, animal detritus only, animal leaf). Mosquito performance (survival, adult male and female mass, and development time) was measured for each species across treatments. Female Cx. coronator developed slowest when grown with Ae. albopictus, or when grown with leaves only regardless of species combinations; similar patterns emerged for males although species effects were restricted to mass. Few differences were evident in performance for male and female Cx. coronator across detritus environments when grown with Cx. quinquefasciatus. Cx. quinquefasciatus did not vary in mass or development time in the presence of Cx. coronator compared with when grown alone. Ae. albopictus female mass was 15% lower in the presence of Cx. coronator. Survival of Cx. coronator was highest in animal and leaf detritus containers, although survival was generally lower when larvae were grown with Ae. albopictus. These findings suggest that the performance of Cx. coronator is similar to that of Cx. quinquefasciatus but it suffers in the presence of Ae. albopictus under some resource environments.
In temperate regions, Aedes aegypti (L.) (Diptera: Culicidae) populations remain in the egg stage during the cold season. To ensure the start of a new breeding season, eggs should hatch at the beginning of a favorable period. The aim of the current study was to investigate the hatching response of two Ae. aegypti egg batches collected and stored for 3 mo under different conditions, to different low immersion temperatures. Two different hatching media (water and yeast solution) were used for the first batch and only one (water) for the second egg batch. Eggs were immersed for 8 d, during which the number of hatched eggs was recorded daily. The proportion of hatched eggs, delay of the hatching response, proportion of dead larvae, and proportion of remaining eggs within the first egg batch were compared between the two hatching media at each temperature. These parameters also were compared between the two batches immersed in water. Hatching rates were higher and faster in the yeast solution. The hatching response was lower at lower immersion temperatures and among eggs stored under field conditions at colder temperatures (second batch). Among the eggs stored in the laboratory (first batch), older eggs exhibited lower hatching response. The proportion of dead larvae was higher in the yeast solution and in the eggs stored in the laboratory. The conditions that triggered a lower hatching response led to higher proportions of remaining eggs, allowing the population to maintain an egg bank for future favorable opportunities.
Mosquito collections were conducted in Zika Forest near Entebbe, Uganda, from July 2009 through June 2010 using CO2-baited light traps, ovitraps, and human-baited catches. In total, 163,790 adult mosquitoes belonging to 12 genera and 58 species were captured. Of these, 22 species (38%) were captured in Zika Forest for the first time. All the new records found in the forest in this study had previously been captured in other regions of Uganda, implying that they are native to the country and do not represent new introductions. More than 20 species previously collected in Zika Forest were not detected in our collections, and thismaysuggest a change in the mosquito fauna during the past 40 yr or variation in species composition from year to year. Arboviruses of public health importance have previously been isolated from >50% of the 58 mosquito species captured in Zika Forest, which suggests a high potential for transmission and maintenance of a wide range of arboviruses in Zika Forest.
The greenhead horse fly, Tabanus nigrovittatus Macquart (Diptera: Tabanidae), is frequently found in coastal marshes of the Eastern United States. The females are autogenous (i.e., able to develop eggs without a bloodmeal), but they become a considerable pest to both humans and animals when they pursue a source of blood protein to produce additional eggs. In this study, we identified microsatellite markers to provide first insight into the population genetic structure of this notorious pest species. Because no prior genomic information was available for T. nigrovittatus,weused direct shotgun pyrosequencing technology to characterize microsatellite loci. Approximately 10% of the 105,634 short sequence reads generated from random genome sampling contained microsatellites with at least four repeats of di-, tri-, tetra-, penta-, and hexamers. Primers were designed for 36 different microsatellite loci with di-, tri-, and tetramer repeat units. After optimization, 20 primer pairs yielded consistent PCR products and were validated for population genetic application in six populations in Western Louisiana. Ten loci were polymorphic with 2–9 alleles per locus and an average observed heterozygosity of 0.20 across populations. The horse fly populations from different trap sites (distance 50–144 km) or years of collection (2010 vs 2011) were genetically distinct from each other (FST = 0.05–0.39) and genetically diverse (gene diversity: 0.24–0.37) but considerably inbred (FIS: 0.22– 0.47), with high mean relatedness among individuals (r = 0.27), suggesting the capture of a high percentage of sisters at the same trap location who were progeny of incest.
The aim of this study was to survey the bacterial diversity of Amblyomma maculatum Koch, 1844, and characterize its infection with Rickettsia parkeri. Pyrosequencing of the bacterial 16S rRNA was used to determine the total bacterial population in A. maculatum. Pyrosequencing analysis identified Rickettsia in A. maculatum midguts, salivary glands, and saliva, which indicates successful trafficking in the arthropod vector. The identity of Rickettsia spp. was determined based on sequencing the rickettsial outer membrane protein A (rompA) gene. The sequence homology search revealed the presence of R. parkeri, Rickettsia amblyommii, and Rickettsia endosymbiont of A. maculatum in midgut tissues, whereas the only rickettsia detected in salivary glands was R. parkeri, suggesting it is unique in its ability to migrate from midgut to salivary glands, and colonize this tissue before dissemination to the host. Owing to its importance as an emerging infectious disease, the R. parkeri pathogen burden was quantified by a rompB-based quantitative polymerase chain reaction (qPCR) assay and the diagnostic effectiveness of using R. parkeri polyclonal antibodies in tick tissues was tested. Together, these data indicate that field-collected A. maculatum had a R. parkeri infection rate of 12–32%. This study provides an insight into the A. maculatum microbiome and confirms the presence of R. parkeri, which will serve as the basis for future tick and microbiome interaction studies.
A circular perimeter barrier of CO2-baited Centers for Disease Control and Prevention (CDC) suction traps (without the light) was placed at a hilltop location in southern California known for high “canyon fly”activity, to determine whether a transiently operated barrier trapping system using attractive traps would reduce the number of these nuisance flies to successfully reach a human host within the protected area. Preliminary studies demonstrated that the number of flies captured by a human host was reduced when a single CO2trap was placed ≤20 m from the host, an indication that these traps are attractive enough to reduce fly pressure on nearby human hosts. The use of eight transiently operated CO2 traps placed equidistant along either a 15- or 5-m radius barrier perimeter significantly reduced the number of flies to reach a human host within the protected area. Attack rates at the protected human host were reduced by a maximum of 51% in the presence of a protective barrier. However, with attack rates on a human host in the hundreds of flies per minute at the study site, this level of protection was not deemed sufficient for recommendation of this technique to homeowners or others who want temporary suppression of these nuisance flies in a limited area, such as a backyard. Implications of using a transient barrier trapping system to manage canyon flies are discussed.
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
The human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is an obligate ectoparasite that causes pediculosis capitis and has parasitized humans since the beginning of humankind. Head louse infestations are widespread throughout the world and have been increasing since the early 1990s partially because of ineffective pediculicides. In Argentina, the overuse of products containing pyrethroids has led to the development of resistant louse populations. Pyrethroid insecticides act on the nervous system affecting voltage-sensitive sodium channels. Three point mutations at the corresponding amino acid sequence positions M815I, T917I, and L920F in the voltage-gated sodium channel gene are responsible for contributing to knockdown resistance (kdr). The management of pyrethroid resistance requires either early detection or the characterization of the mechanisms involved in head louse populations. In the current study, we estimated the distribution of kdr alleles in 154 head lice from six geographical regions of Argentina. Pyrethroid resistance kdr alleles were found in high frequencies ranging from 67 to 100%. Of these, 131 (85.1%) were homozygous resistant, 13 (8.4%) were homozygous susceptible, and 10 (6.5%) were heterozygous. Exact tests for the Hardy-Weinberg equilibrium for each location showed that genotype frequencies differed significantly from expectation in four of the six sites studied. These results show that pyrethroid resistance is well established reaching an overall frequency of 88%, thus close to fixation. With 30 yr of pyrethroid-based pediculicides use in Argentina, kdr resistance has evolved rapidly among these head louse populations.
Populations of Aedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticideimpregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility of Ae. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations of Ae. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53–70%) in the intervention area. The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti , which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems.
Mass production is an important component of any pest or vector control program that requires the release of large number of insects. As part of efforts to develop an area-wide program involving the sterile insect technique (SIT) for the control of mosquitoes, the Insect Pest Control Laboratory of the Food and Agriculture Organization—International Atomic Energy Agency (FAO—IAEA Joint Division) has developed a mass production cage (Aedes MPC) for brood stock colonies in a mass production system for Aedes albopictus (Skuse, 1895). A preliminary experiment using Plexiglas cages was carried out to estimate the impact of cage volume on egg productivity. Transparent Plexiglas cages of different dimensions but loaded with the same adult density were tested. Egg productivity (number of eggs laid per adult female) and adult survival were recorded and analyzed. According to the results, the optimal volume of 100 liters has been chosen to develop the Aedes MPC. The numbers of adults introduced into the Aedes MPC did not affect the egg production and adult survival in comparison with the Plexiglas cage experiment data, confirming the possible use of Aedes MPC for mass-rearing procedures. Finally, the modification of Aedes MPC and creation of a new prototype model of MPC (Anopheles MPC) to effectively contain Anopheles arabiensis (Patton, 1905) adults is discussed with major changes pioneered to oviposition devices and systems for automatic collection of the eggs.
The long-term efficacy of long-lasting insecticidal nets (LLINs) depends on both the physical condition of the net and the residual activity of the insecticide. This study focused on monitoring these parameters in Olyset nets (Sumitomo Chemical Co., Osaka, Japan) (n = 101) that had been used for 1–3 yr in Tafea Province, Vanuatu. Net usage and frequency of washing was ascertained by questionnaire; the nets were assessed with regards to cleanliness and damage owing to holes. Insecticide efficacy was determined with cone bioassays using Anopheles farauti Laveran. Net usage was high and 86.1% (87 of 101) of villages stated that they used the net every night. Washing of nets was low (11.9%, 12 of 101), and most nets (79.2%, 80 of 101) were considered dirty. Most nets were damaged (73.4% had holes), and 22.8% (23 of 101) had large holes (<200cm2).The24-h mortality of An. farauti exposed to nets aged 1–2 yr was 79.4%, while the mortality for nets 3 yr of age was significantly lower at 73.7%. There was no difference in the insecticidal activity of clean compared with dirty nets (mean 24-h mortality: Clean = 76.7%, Dirty = 77.1%). Although the majority of nets had holes, the physical condition of 8.9Ð22.8% of nets was altered so severely to potentially affect efficacy. Although the 3-yr-old nets would still be providing significant levels of insecticidal and personal protection, consideration should be given to replacing nets <3 yr old.
VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS
Wereport the first comprehensive insecticide susceptibility status of Aedes aegypti (L.) larvae from Singapore. The study indicated that Ae. aegypti is susceptible to temephos, although resistance (RR50 =1.29–4.43-fold) could be developing. Of high concern is the detection of moderate to high resistance to permethrin (RR50 = 29–47-fold) and etofenprox (RR50 = 14–34-fold). Biolarvicide Bacillus thuringiensis israelensis (Bti) remains effective. The insecticide susceptibility profile of Ae. aegypti larvae was found to be homogenous among the different sites studied across the island city. The addition of synergists piperonyl butoxide, S,S,S,-tributyl phosphorotrithioate, and triphenyl phosphate generally failed to enhance the toxicity of the insecticides investigated, suggesting an insignificant role of metabolic-based resistance, and a possible involvement of target site resistance. Further biochemical investigation of specific metabolic enzyme activities suggested that detoxifying enzymes, mono-oxygenases, esterases, glutathione S-transferases, and altered acetylcholinesterases, generally did not contribute to the resistance observed. This study clearly demonstrated that pyrethroid resistance is widespread among Ae. aegypti population and lowered susceptibility to organophosphates is developing.
Estimation of the efficacy of mosquito repellents requires both laboratory and field tests. The results of field tests are more meaningful, but the safety of volunteers in such tests may be a significant concern. In the current study, we compared tests of mosquito repellent efficacy under semifield conditions in an outdoor enclosure with those under laboratory and field conditions. In this study, we assessed the efficacy of N,N-diethyl-meta-toluamide under laboratory conditions with human volunteers and under semifield and field conditions with Centers for Disease Control and Prevention traps and experimental mice. A semifield test may be a suitable replacement for the more difficult field test for assessment of mosquito repellent efficacy. Semifield tests should be considered when developing new guidelines for testing.
The endosymbiotic bacteria Wolbachia pipientis Hertig infects a wide variety of insect species and can increase viral resistance in its host. Wolbachia naturally infects Culex quinquefasciatus Say and Culex pipiens L. mosquitoes, both vectors of West Nile virus (WNV). We recently demonstrated that Wolbachia infection of Cx. quinquefasciatus laboratory strain Ben95 increases host resistance to WNV infection, reducing vector competence. This observation raised the possibility that Wolbachia could impact vector competence in other populations of Cx.quinquefasciatus or Cx.pipiens. To investigate this possibility, Wolbachia densities were measured in Ben95 Cx.quinquefasciatus and compared with densities in a newly established colony of Cx.quinquefasciatus, and in field-collected and colonized Cx.pipiens. Wolbachia densities in somatic tissues of Ben95 Cx.quinquefasciatus were significantly higher than densities in the other mosquito populations tested. There was also no significant spatiotemporal variation in Wolbachia density in the field-collected Cx.pipiens, although significant familial differences were observed. Correlating Wolbachia densities and vector competence in individual colonized Cx.pipiens indicated that the densities of somatic Wolbachia observed in the mosquitoes other than Ben95 Cx.quinquefasciatus were too low to inhibit WNV infection and reduce vector competence. These results suggest that the high Wolbachia densities capable of inducing resistance to WNV in Ben95 Cx.quinquefasciatus sue not a general characteristic of Cx.quinquefasciatus or Cx.pipiens mosquitoes and that the impact of Wolbachia on vector competence in field populations of Cx.quinquefasciatus and Cx.pipiens, if any, is likely to be limited to specific populations.
Monitoring dengue vector control by sampling adult Aedes aegypti (L.) recently has been used to replace both larval and pupal surveys. We have developed and evaluated the Gravid Aedes Trap (GAT) through a sequential behavioral study. The GAT does not require electricity to function, and trapped mosquitoes are identified easily during trap inspections. The GAT concept relies on visual and olfactory cues to lure gravid Ae. aegypti and an insecticide to kill trapped mosquitoes. Gravid mosquitoes are lured to a black bucket base containing oviposition attractant (infusion) and are trapped in a translucent chamber impregnated with a pyrethroid insecticide where they are killed within 3–15 min. In semifield observations, the GAT captured a significantly higher proportion of gravid mosquitoes than the double sticky ovitrap. We also demonstrated that the visual cues of the prototype GAT-LgBF (large black base bucket with a black funnel at the top of the translucent chamber) captured a significantly higher proportion of gravid mosquitoes than the other prototypes. The visual contrast created by the addition of a white lid to the top of the black funnel significantly increased the number of captured gravid mosquitoes when compared with the GAT-LgBF in semifield trials. We conclude that the GAT is more efficient in recapturing gravid Ae. aegypti when compared with sticky ovitraps. The GAT is an effective, practical, low cost, and easily transportable trap, features that are essential in large-scale monitoring programs, particularly in areas where funding is limited.
Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7X and 2.4 X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10–50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools of Ae. aegypti stored in a GAT held at 28°C and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only ≈10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in developing countries.
There is a threat for dengue virus (DENV) reemergence in many regions of the world, particularly in areas where the DENV vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), are readily available. However, there are currently no accurate and reliable diagnostic methods to provide critical, real-time information for early detection of DENV within the vector populations to implement appropriate vector control and personal protective measures. In this article, we report the ability of an immuno-chromatographic assay developed by VecTOR Test Systems Inc. to detect DENV in a pool of female Aedes mosquitoes infected with any of the four viral serotypes. The DENV dipstick assay was simple to use, did not require a cold chain, and provided clear results within 30 min. It was highly specific and did not cross-react with samples spiked with West Nile, yellow fever, Japanese encephalitis, Rift Valley fever, chikungunya, Venezuelan equine encephalomyelitis, Ross River, LaCrosse, or Caraparu viruses. The DENV assay can provide real-time critical information on the presence of DENV in mosquitoes to public health personnel. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.
Blacklegged ticks, Ixodes scapularis Say, were collected from 27 sites in eight New York State counties from 2003 to 2006 to determine the prevalence and distribution of tick-borne pathogens in public-use areas over a 4-yr period. In total, 11,204I. scapularis (3,300 nymphs and 7,904 adults) were individually analyzed using polymerase chain reaction to detect the presence of Borrelia burgdorferi (causative agent of Lyme disease), Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila, causative agent of human granulocytic anaplasmosis), and Babesia microti (causative agent of human babesiosis). Overall prevalence of B. burgdorferi, A. phagocytophilum, and B. microti was 14.4, 6.5, and 2.7% in nymphs and 45.7, 12.3, and 2.5% in adult ticks, respectively. Rates varied geographically and temporally during the time period examined, and were related to measurements of tick density. Average rate of polymicrobial infection for nymphs and adults, respectively, was 1.5 and 8.5% overall, with 0.5 and 6.3% coinfection of B. burgdorferi and A. phagocytophilum, 1.0 and 1.5% B. burgdorferi and B. microti, and 0.05 and 0.6% A. phagocytophilum and B. microti. Thirty-three individual adult ticks from seven study sites in Westchester, Putnam, Dutchess, and Rockland counties tested positive for simultaneous infection with all three agents by multiplex polymerase chain reaction assay.
Virgínia P. Macedo-Silva, Daniella R. A. Martins, Paula Vivianne Souza De Queiroz, Marcos Paulo G. Pinheiro, Caio C. M. Freire, José W. Queiroz, Kathryn M. Dupnik, Richard D. Pearson, Mary E. Wilson, Selma M. B. Jeronimo, Maria De Fátima F.M. Ximenes
Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source of bloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil.
To document the expansion of human babesiosis in Connecticut, we analyzed reservoir host sera for seroreactivity to Babesia microti Franca and reviewed Connecticut human surveillance case data collected during 2001–2010. Sera from white-footed mice, Peromyscus leucopus Rafinesque, from 10 towns in 5 counties, collected at 4–7-yr periods between 2001 and 2010, were tested for total immunoglobulins. The prevalence of B. microti-positive mice was compared with confirmed and probable human case reports tabulated by the Connecticut Department of Public Health. The highest babesiosis and rodent seroprevalence rates were in New London County, where this protozoan disease was first documented in the state. However, human cases and reservoir host infection increased significantly from 2001–2005 to 2005–2010 and in other parts of the state. Clinicians should be aware that the disease is not confined to long-established endemic areas of the state.
Benjamin J. Krajacich, Jeremiah R. Slade, Robert T. Mulligan, Brendan Labrecque, Kevin C. Kobylinski, Meg Gray, Wojtek S. Kuklinski, Timothy A. Burton, Jonathan A. Seaman, Massamba Sylla, Brian D. Foy
Currently, there exists a deficit of safe, active trapping methods for the collection of host-seeking Anopheles and other disease-causing arthropod vectors. The gold-standard approach for mosquito collection is that of human landing catch (HLC), in which an individual exposes bare skin to possibly infected vectors. Here, we present the development of a new method for mosquito collection, the Infoscitex tent, which uses modern tent materials coupled with a novel trap design. This provides an efficacious, a non-labor-intensive, and a safe method for vector collection. In these initial studies, we found it collected an average of 27.7 Anopheles gambiae s.l. per trap per night in rural villages in southeastern Senegal, and 43.8 Culex group V per trap per night in the semiurban town of Kedougou, Senegal. In direct comparisons with HLC, the tent was not statistically different for collection of Culex quinquefasciatus in crepuscular sampling, but was significantly less efficacious at trapping the highly motile dusk-biter Aedes aegypti. These studies suggest that the Infoscitex tent is a viable and safe alternative to HLC for Anopheles and Culex sampling in areas of high vector-borne disease infection risk.
Many mosquito species take bloodmeals predominantly from either birds or mammals. Other mosquito species are less host-specific and feed readily on both. Furthermore, some species tend to alter their feeding patterns over the course of the year; early in the mosquito season such species may feed primarily on a particular host type, and subsequently take an increasingly larger proportion of their bloodmeals from an alternative host type as the season progresses. We have examined the feeding patterns of the three mosquito species found in Bernalillo County, NM: Culex quinquefasciatus (Say), Culex tarsalis (Coquillett), and Aedes vexons (Meigen). Specifically, we seek to determine if any of these species displays a seasonal shift in terms of its host utilization pattern. Our analysis focuses on these three species because they are all considered to be competent vectors for the West Nile virus ( WNV). Our current data for Cx. quinquefasciatus suggest that unlike elsewhere in its range, this species increases its proportion of avian bloodmeals as the season progresses. Alternatively, Ae. vexans feeds primarily on mammals, whereas Cx. tarsalis appears to feed on both mammals and birds throughout the mosquito season. A more complete understanding of the feeding habits of these three mosquito species may help to clarify the transmission dynamics of WNV in Bernalillo County.
Joel Lutomiah, Lillian Musila, Albina Makio, Caroline Ochieng, Hellen Koka, Edith Chepkorir, James Mutisya, Francis Mulwa, Samoel Khamadi, Barry R. Miller, Joshua Bast, David Schnabel, Eyako K. Wurapa, Rosemary Sang
Biodiversity and relative abundance of ticks and associated arboviruses in Garissa (northeastern) and Isiolo (eastern) provinces of Kenya were evaluated. Ticks were collected from livestock, identified to species, pooled, and processed for virus isolation. In Garissa, Rhipicephalus pulchellus Gerstäcker (57.8%) and Hyalomma truncatum Koch (27.8%) were the most abundant species sampled, whereas R. pulchellus (80.4%) and Amblyomma gemma Dönitz (9.6%) were the most abundant in Isiolo. Forty-four virus isolates, comprising Dugbe virus (DUGV; n = 22) and Kupe virus (n = 10; Bunyaviridae: Nirovirus), Dhori virus (DHOV; n = 10; Orthomyxoviridae: Thogotovirus), and Ngari virus (NBIV; n = 2; Bunyaviridae: Orthobunyavirus), were recovered mostly from R. pulchellus sampled in Isiolo. DUGV was mostly recovered from R. pulchellus from sheep and cattle, and DHOV from R. pulchellus from sheep. All Kupe virus isolates were from Isiolo ticks, including R. pulchellus from all the livestock, A. gemma and Amblyomma variegatum F. from cattle, and H. truncatum from goat. NRIV was obtained from R. pulchellus and A. gemma sampled from cattle in Isiolo and Garissa, respectively, while all DHOV and most DUGV (n = 12) were from R. pulchellus sampled from cattle in Garissa. DUGV was also recovered from H. truncatum and Amblyomma hebraeum Koch from cattle and from Rhipicephalus annulatus Say from camel. This surveillance study has demonstrated the circulation of select tick-borne viruses in parts of eastern and northeastern provinces of Kenya, some of which are of public health importance. The isolation of NRIV from ticks is particularly significant because it is usually known to be a mosquito-borne virus affecting humans.
Lyme borreliosis is caused by spirochetes from the Borrelia burgdorferi sensu lato species complex. In the United States, B. burgdorferi sensu stricto (s.s.; Johnson, Schmid, Hyde, Steigerwalt, and Brenner) is the most common cause of human Lyme borreliosis. With >25,000 cases reported annually, it is the most common vector-borne disease in the United States. Although approximately 90% of cases are contained to the northeastern and Great Lake states, areas in Canada and some southern states are reporting rises in the number of human disease cases. Louisiana records a few cases of Lyme each year. Although some are most certainly the result of travel to more endemic areas, there exists evidence of locally acquired cases. Louisiana has established populations of the vector tick, Ixodes scapularis (Say), and a wide variety of potential reservoir animals, yet Lyme Borrelia has never been described in the state. Using culture and polymerase chain reaction, we investigated the presence of Lyme Borrelia in both mammals and questing ticks at a study site in Louisiana. Although culture was mostly unsuccessful, we did detect the presence of B. burgdorferi s.s. DNA in 6.3% (11 of 174) of ticks and 22.7% (five of 22) of animal samples. To our knowledge, this is among the first evidence documenting B. burgdorferi s.s. in Louisiana. Further investigations are required to determine the significance these findings have on human and animal health.
Marcelo B. Labruna, Arlei Marcili, Maria Ogrzewalska, Darci M. Barros-Battesti, Filipe Dantas-Torres, André A. Fernandes, Romario C. Leite, Jose M. Venzal
The bat tick Ornithodoros mimon Kohls, Clifford & Jones is currently known by only few reports in Bolivia, Uruguay, Argentina, and the state of São Paulo in southeastern Brazil. Here, we expand the distribution of O. mimon in Brazil to the states of Minas Gerais (southeastern region), Goiás (central-western), Pernambuco, and Rio Grande do Norte (northeastern). Ticks were collected on human dwellings, where there had been repeated complains of tick bites on persons during the night. Tick bites were generally followed by intense inflammatory reactions that lasted for several weeks at the bite site. Bats and opossums were reported to inhabit the attic of the infested houses. In addition, a free-ranging opossum (Didelphis albiventris Lund) trapped in Rio Grande do Norte was found infested by argasid larvae. Based on morphological and/ or molecular analysis, all ticks were identified as O. mimon. From one of the sites (Tiradentes, state of Minas Gerais), 20 field-collected nymphs were tested by a battery of polymerase chain reaction protocols targeting tick-borne microorganisms of the genera Babesia, Hepatozoon, Rickettsia, Borrelia, Anaplasma, Ehrlichia, and Coxiella; no tick specimen was found infected by any of these microorganism genera. The current study expands northwards the distribution of O. mimon, which has been shown to be very harmful to humans because of the intense inflammatory response that usually occurs after tick bites.
Musca autumnalis DeGeer were collected in the summer and fall of 2011 and 2012 from a beef cattle herd in southern California. Visual counts of Musca spp. on cattle faces were documented, and sweep net samples of face flies and other Diptera were also collected from cattle faces. Face flies dominated in the net collections, and 5–30 flies per face were common between early July and October 2011. Adult female M. autumnalis were dissected and examined for the presence of the host-specific nematode Paraiotonchium autumnale (Nickle). Overall, 67 of 887 (7.6%) adult face fly females were parasitized. M. autumnalis' ability to survive in such a southerly latitude (34° N) could reflect the rather temperate weather (coastal effects) and frequently irrigated pastures at the experimental site in southern California. Preliminary observations suggest that face flies disappear from cattle during winter, despite generally favorable temperatures for fly activity. This is a possible indication of diapause and should be examined further.
For many insect species, group living provides physiological and behavioral benefits, including faster development. Bed bugs (Cimex lectularius L.) live in aggregations composed of eggs, nymphs, and adults of various ages. Our aim was to determine whether bed bug nymphs reared in groups develop faster than solitary nymphs. We reared first instars either in isolation or in groups from hatching to adult emergence and recorded their development time. In addition, we investigated the effects of group housing on same-age nymphs versus nymphs reared with adults. Nymphal development was 2.2 d faster in grouped nymphs than in solitary-housed nymphs, representing 7.3% faster overall development. However, this grouping effect did not appear to be influenced by group composition. Thus, similar to other gregarious insect species, nymph development in bed bugs is faster in aggregations than in isolation.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere