BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Grasshopper mice of the genus Onychomys, represented by three living species in North America, have a long and controversial taxonomic history. Usually allocated to either the cricetine or neotomine cricetids, they also have been considered to represent a distinct tribe. Since the discovery and description of the extinct grasshopper mouse relative Acrolophomys rhodopetros from the late Miocene of the upper Dove Spring Formation of California, dated at 9.3–8.8 Ma, it has become apparent that the grasshopper mouse clade has a long, distinct evolutionary history. Using a combination of morphological (including paleontological material) and molecular data, we reassessed the phylogenetic position of grasshopper mice. A morphological phylogenetic analysis was done on fossil and modern specimens of all recognized neotomine tribes, including craniodental, phallic, and soft tissue characters. A DNA-based matrix was constructed including 72 species representing all known living genera of Neotominae and 13 outgroup taxa belonging mostly to cricetid subfamilies. DNA sampling covered the mitochondrial protein-coding gene cytochrome-b (Cytb), and seven nuclear loci. The morphological analysis yielded a single most parsimonious tree of 42 steps, placing Ochrotomys (Ochrotomyini), Baiomys (Baiomyini), Reithrodontomys (Reithrodontomyini), and an Onychomys–Acrolophomys clade as successive sister clades to a Peromyscus clade, respectively. The molecular phylogenetic analyses recovered seven major clades: (1) a clade including Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and a paraphyletic Peromyscus clade, sister to (2) a second clade containing extant Onychomys species, (3) a Reithrodontomys clade, (4) an Isthmomys clade, (5) a clade including Baiomys and Scotinomys, (6) an Ochrotomys clade, and (7) a well-supported clade containing Hodomys, Neotoma, and Xenomys. A Bayesian combined morphological and molecular analysis recovered the same major phylogenetic associations as the molecular analyses. The sum of molecular markers and morphological traits expressed by Acrolophomys and Onychomys leads to a phylogenetic position supporting their recognition as a distinct tribe.
Describing spatial and temporal occurrence patterns of wild animal populations is important for understanding their evolutionary trajectories, population connectivity, and ecological niche specialization, with relevance for effective management. Throughout the world, blue whales produce stereotyped songs that enable identification of separate acoustic populations. We harnessed continuous acoustic recordings from five hydrophones deployed in the South Taranaki Bight (STB) region of Aotearoa New Zealand from January 2016 to February 2018. We examined hourly presence of songs from three different blue whale populations to investigate their contrasting ecological use of New Zealand waters. The New Zealand song was detected year-round with a seasonal cycle in intensity (peak February–July), demonstrating the importance of the region to the New Zealand population as both a foraging ground and potential breeding area. The Antarctic song was present in two distinct peaks each year (June–July; September–October) and predominantly at the offshore recording locations, suggesting northbound and southbound migration between feeding and wintering grounds. The Australian song was only detected during a 10-day period in January 2017, implying a rare vagrant occurrence. We therefore infer that the STB region is the primary niche of the New Zealand population, a migratory corridor for the Antarctic population, and outside the typical range of the Australian population.
KEYWORDS: age estimation, Cetacean, conservation, demography, life history, life tables, marine mammal, population parameters, Siler model, survivorship
Biodiversity loss is a major global challenge of the 21st century. Ultimately, extinctions of species are determined by birth and death rates; thus, conservation management of at-risk species is dependent on robust demographic data. In this study, data gathered from 381 (227 females, 154 males) long-finned pilot whales (Globicephala melas edwardii) that died in 14 stranding events on the New Zealand coast between 2006 and 2017 were used to construct the first age- and sex-specific life tables for the subspecies. Survivorship curves were fitted to these data using (1) a traditional maximum likelihood approach, and (2) Siler's competing-risk model. Life table construction and subsequent survival curves revealed distinct differences in the age- and sex-specific survival rates, with females outliving males. Both sexes revealed slightly elevated rates of mortality among the youngest age-classes (<2 years) with postweaning mortality rates decreasing and remaining relatively low until the average life expectancy is reached; 11.3 years for males and 14.7 years for females. Overall (total) mortality is estimated to be 8.8% and 6.8% per annum for males and females, respectively. The mortality curve resembles that of other large mammals, with high calf mortality, lower postweaning mortality, and an exponentially increasing risk of senescent mortality. An accelerated mortality rate was observed in mature females, in contrast to the closely related short-finned pilot whale (G. macrorhynchus), which selects for an extension to the postreproductive life span. The reason for the observed differences in the mortality rate acceleration and postreproductive life span between the two pilot whale species have not been established and warrant further investigation. Obtaining robust information on the life history of long-lived species is challenging, but essential to improve our understanding of population dynamics and help predict how future pressures may impact populations. This study illustrates how demographic data from cetacean stranding events can improve knowledge of species survival rates, thus providing essential information for conservation management.
Understanding patterns of species distribution and diversity plays a vital role in biodiversity conservation. Such documentation is frequently lacking for bats, which are relatively little studied and often threatened. The Western Ghats biodiversity hotspot in peninsular India is a bat hotspot with 63 species. We conducted a comprehensive bat survey across the southern Western Ghats and used maximum entropy modeling (MaxEnt) to model the potential distribution of 37 bat species for which sufficient data were available. We generated binary maps of each species using species-specific thresholds to estimate suitable habitat areas and overlaid binary maps of species to produce bat hotspots (we use the term “bat hotspot” for regions that were suitable for more than 25 bat species). We also estimated species richness across protected area networks in the southern Western Ghats to assess the level of protection. The highest levels of species richness were found mainly along the southmost Periyar–Agastyamalai landscape. The study also identified a 1,683 km2 area of potential bat hotspot and 726 km2 (43%) of the total bat hotspots are currently within the protected area network. However, more than 50% of suitable habitats for each of the 37 species remain unprotected. Therefore, conservation decisions are needed to take into account both bat hotspots and species with restricted distributions.
Closely related species have been used as representative systems to investigate the genetic mechanisms involved in the early stages of species differentiation. Previous studies have indicated that variation in gene expression might be a sensitive indicator of initial species divergence, although the role of expression divergence, and especially that associated with phenotypic variation remained relatively undefined. For three organs (cochlea, brain, and liver) from two closely related bat species (Rhinolophus siamensis and R. episcopus), the interspecific and intersubspecific gene expression profiles were compared using transcriptomics in this study. Striking organ specificity of expression was observed, and expression profiles exhibited similarities between cochlea and brain tissues. Numerous differentially expressed genes (DEGs) were identified for each organ in the interspecific comparison (cochlea/brain/liver: 1,069/647/692) and intersubspecific comparison (608/528/368). Functional enrichment analysis indicated vital variation in expression related to the immune system, ion activities, neuronal function, and multisensory system regulation in both comparisons. DEGs relevant to the variation in echolocation calls (RF) were found, and some of them were involved in the pivotal patterns of expression variation. The regulation of immune, ion channel, neural activity, and sophisticated sensory functions at the expression level might be key mechanisms in the early species divergence of bats, and the expression variation related to acoustical signal could have played a crucial part. This study expands our knowledge of gene expression and patterns of variation for three key organs to echolocation at both the interspecific and intersubspecific levels. Further, the framework described here provides insight into the genetic basis of phenotypic variation during the incipient stage of species differentiation.
Small insectivorous bats often enter a state of torpor, a controlled, reversible decrease in body temperature and metabolic rate. Torpor provides substantial energy savings and is used more extensively during periods of low temperature and reduced prey availability. We studied torpor use and activity of a small (10.1 ± 0.4 g) fishing bat, Myotis macropus, during winter in a mild climate in Australia. We predicted that the thermal stability of water would make foraging opportunities in winter more productive and consistent in a riparian habitat compared to a woodland habitat, and therefore, fishing bats would use torpor less than expected during winter compared to other bats. Using temperature-sensitive radio transmitters, we recorded the skin temperature of 12 adult (6 M, 6 F) bats over 161 bat-days (13.4 ± 5.4 days per bat) during Austral winter (late May to August), when daily air temperature averaged 6.2–18.2°C. Bats used torpor every day, with bouts lasting a median of 21.3 h and up to 144.6 h. Multiday torpor bouts were more common in females than males. Arousals occurred just after sunset and lasted 3.5 ± 2.9 h. Arousals tended to be longer in males than females and to occur on warmer evenings, suggesting some winter foraging and perhaps male harem territoriality or other mating-related activity was occurring. The extensive use of torpor by M. macropus during relatively mild winter conditions when food is likely available suggests torpor might function to minimize the risks of mortality caused by activity and to increase body condition for the upcoming breeding season.
We present a taxonomic revision of maned sloths, subgenus Bradypus (Scaeopus), a taxon endemic to the Brazilian Atlantic Forest and currently composed of a single species, the vulnerable Bradypus torquatus. Our review is based on coalescent species delimitation analyses using mitochondrial and nuclear DNA, morphological analyses, and field observations. Our integrative approach demonstrates that two species of maned sloth can be recognized: the northern maned sloth (Bradypus torquatusIlliger, 1811) occurring in the Brazilian states of Bahia and Sergipe, and the southern maned sloth (Bradypus crinitusGray, 1850), occurring in Rio de Janeiro and Espirito Santo states. The two species diverged in the Early Pliocene and are allopatrically distributed. We discuss the biogeographic pattern of the two maned sloth species, comparing it with other Atlantic Forest mammals. We also suggest that the conservation status of both maned sloths needs to be reassessed after this taxonomic rearrangement.
Apresentamos uma revisão taxonômica das preguiças-de-coleira, subgênero Bradypus (Scaeopus), um táxon endêmico da Mata Atlântica do Brasil e atualmente composto por uma única espécie, a vulnerável Bradypus torquatus. Nossa revisão é baseada em análises de delimitação coalescente usando DNA mitocondrial e nuclear, análises morfológicas e observações de campo. Nossa abordagem integrativa demonstra que duas espécies de preguiça-de-coleira podem ser reconhecidas: a preguiça-de-coleira do nordeste (Bradypus torquatusIlliger, 1811), que ocorre nos estados brasileiros da Bahia e Sergipe; e a preguiça-de- coleira do sudeste (Bradypus crinitusGray, 1850), que ocorre nos estados do Rio de Janeiro e no Espírito Santo. Essas espécies divergiram no início do Plioceno e atualmente apresentam distribuição alopátrica. Discutimos o padrão biogeográfico das duas espécies de preguiça-de-coleira, comparando-o com outros mamíferos da Mata Atlântica. Também sugerimos que o estado de conservação de ambas as preguiças-de-coleira seja reavaliado após este rearranjo taxonômico.
Space use by mammals can differ among age-classes, sexes, or seasons, and these processes are recognized as adaptive behavioral strategies. Semi-fossorial ground squirrels, in particular, have shown age- and sex-specific patterns in their aboveground movement behaviors. We studied space use of Mohave ground squirrels (Xerospermophilus mohavensis) at the Freeman Gulch study site in the central region of their range in the Mojave Desert, California. We documented the timing of their full annual cycle, investigated correlates of size of home ranges of adults and distance of long-distance movements by juveniles, and evaluated whether juvenile body masses and movements were related to interannual climatic variation. Adult males emerged from burrows and entered hibernation sooner than did adult females. Home ranges were larger for males (x̄ ± SD = 0.50 ± 0.40 km2) than females (0.05 ± 0.03 km2), especially during the mating season. Maximum distances moved by juveniles did not differ significantly between males (1.6 ± 2.3 km) and females (1.0 ± 1.8 km), and both sexes were equally likely to travel long distances from natal sites. The longest-distance movement we documented was 7.7 km by a juvenile male. Juveniles born in a year of low vegetation productivity gained significantly less mass (97 ± 7 g) and traveled shorter distances than those born in a year of higher vegetation productivity (177 ± 20 g). Our findings were similar to those documented in the Coso Range study site in the northern region of the geographic range of the species, indicating that movement patterns are similar range-wide. Mohave ground squirrels responded strongly to climate variation, and global climate change will likely result in a northward shift in suitable habitats. Informed conservation planning, therefore, will be essential for this rare, declining species.
Jaguars and pumas are top-predator species in the Neotropics that are threatened by habitat destruction, illegal poaching of their body parts and their favored prey, and by the human–wildlife conflicts that arise when predators attack livestock. Much of the remaining felid habitat in the Americas is in protected nature reserves that are too small and isolated to support local populations. Surrounding forests therefore play a vital role in felid conservation. Successful long-term conservation of these two felids requires evidence-based knowledge of their biological and ecological requirements. We studied population distributions of jaguars and pumas and their prey in and between two small, private reserves of the Northern Yucatán Peninsula, Mexico, with areas of 25 and 43 km2. During 2 years of camera trapping (2015 and 2016), we detected 21 jaguars, from which we estimated an average space requirement of 28–45 km2/individual. Dietary niche overlap exceeded random expectation. The most frequently occurring prey items in jaguar and puma diets were collared peccary and deer. Jaguar also favored nine-banded armadillos and white-nosed coati, while puma favored canids. Both felids avoided ocellated turkey. Overall, diet of jaguars was less species-rich, but similar in niche breadth, to that of pumas. A fluid use of space by both species, in 2015 tending toward mutual attraction and in 2016 toward partial exclusion of pumas by jaguars, combined with the high dietary overlap, is consistent with a dominance hierarchy facilitating coexistence. Jaguars and pumas favor the same prey as the people in local communities who hunt, which likely will intensify human–wildlife impacts when prey become scarce. We conclude that even small reserves play an important role in increasing the continuity of habitat for prey and large felids, whose generalist habits suppress interspecific competition for increasingly limiting prey that are largely shared between them and humans.
Los jaguares y pumas son las principales especies depredadoras del Neotrópico. Se encuentran amenazados por la destrucción de su hábitat, la caza furtiva de sus partes corporales, así como de sus presas favoritas, y por los impactos entre humanos y vida silvestre que surgen cuando estas especies atacan al ganado. Gran parte del hábitat protegido de los felinos restante en las Américas lo constituyen reservas naturales que son demasiado pequeñas y aisladas para por sí mismas sustentar las poblaciones locales de estas especies. Por lo tanto, los bosques circundantes juegan un papel vital para la conservación de estos felinos. La conservación exitosa a largo plazo de estas dos especies de felinos necesita conocimiento basado en evidencia de sus requerimientos biológicos y ecológicos. Estudiamos la distribución de poblaciones de jaguares y pumas, y sus presas, en dos pequeñas áreas protegidas privadas del norte de la península de Yucatán, México, con áreas de 25 y 43 km2, y en el área no protegida de 250 km2 que se encuentra entre ellas. Durante un estudio de foto-trampeo de dos años (2015 y 2016), detectamos 21 jaguares, a partir de los cuales estimamos requerimientos espaciales de 28–45 km2/individuo en promedio. La superposición entre nichos alimentarios superó las expectativas aleatorias. Las presas más frecuentes en las dietas del jaguar y el puma fueron el pecarí de collar y los venados. El jaguar también favoreció al armadillo de nueve bandas y coatí de nariz blanca, mientras que el puma favoreció a los cánidos. Ambos felinos evitaron al pavo ocelado. En general, la dieta de los jaguares presentó menor riqueza específica, pero similar amplitud de nicho a la de los pumas. Un uso fluido del espacio por parte de ambas especies hizo que en un año tendieran a tener atracción mutua y en otro a una exclusión parcial por parte de los jaguares a los pumas, lo cual, en combinación con la alta superposición alimentaria, es consistente con una jerarquía de dominancia que facilita la convivencia. Los jaguares y los pumas favorecieron las mismas presas que la gente que caza en las comunidades locales, lo que probablemente intensificará los impactos entre humanos y vida silvestre cuando las presas escaseen. Concluimos que incluso las reservas pequeñas desempeñan un papel importante en el aumento de la continuidad del hábitat para presas y grandes felinos, cuyos hábitos generalistas suprimen la competencia inter-específica por presas cada vez más limitadas que en gran parte comparten con los humanos.
Individuals from island and continental mammal populations have shown a number of differences in their behavioral ecology. We predicted that, like other island carnivores exhibiting dwarfism, the pygmy raccoon (Procyon pygmaeus), a Critically Endangered carnivore endemic to Cozumel Island, México, would show differences in its home ranges and activity patterns when compared to its mainland counterpart, the racoon, P. lotor. We radio-tracked 11 individuals (six males, five females) from February to July 2017 and used location data derived from triangulation to estimate the home range size, diel activity patterns, and distances traveled of pygmy raccoons. Individuals showed an average home range size between 96.9 ± 18.8 ha (95% minimum convex polygon) and 123.3 ± 31.2 ha (95% fixed kernel). Home ranges of males (109.4–142.8 ha) were larger than those of females (81.8–99.9 ha). Average home ranges were in the lower extreme of those reported for continental raccoons. Activity patterns of pygmy raccoons generally begin at sunset and continue up to 04:00 with rare activity peaks during the day; there were no significant differences in activity patterns between sexes. Data on spatial needs of individuals, and differences between sexes or insular versus continental populations have implications for conservation planning and management.
Individuos de especies insulares muestran diferencias en su ecología del comportamiento con respecto a sus especies hermanas continentales. Presumimos que el mapache pigmeo (Procyon pygmaeus), un carnívoro Críticamente Amenazado endémico de Isla Cozumel, México, mostraría, al igual que otros carnívoros insulares que presentan enanismo, diferencias en sus áreas de acción y patrones de actividad con respecto a su homólogo continental. Seguimos a 11 individuos (seis machos, cinco hembras) marcados con radiocollares desde febrero hasta julio 2017, y utilizamos los datos de posición derivados por triangulación para estimar el tamaño de sus áreas de acción, patrones diarios de actividad y distancias recorridas por los mapaches pigmeos. Los individuos mostraron un tamaño promedio del área de acción de 96.9 ± 18.8 ha (polígono convexo mínimo al 95%) y de 123.31 ± 31.20 ha (método de Kernel fijo al 95%); las áreas de acción de los machos (109.4–142.8 ha) fueron más grandes que la de las hembras (81.86–99.9 ha). El promedio del área de acción se encontró en el extremo inferior del promedio de las áreas de acción documentadas en mapaches continentales. El patrón de actividad de los mapaches pigmeos generalmente empieza al anochecer y sigue hasta las 04:00 horas, con raros aumentos en actividad diurna y diferencias no significativas entre sexos. La información sobre los requerimientos espaciales de los individuos, las diferencias entre sexos o con individuos de la contraparte continental tiene implicaciones relevantes para la planificación de la conservación y el manejo de la especie.
Whether prey species avoid predators and predator species track prey is a poorly understood aspect of predator–prey interactions, given measuring prey tracking by predators and predator avoidance by prey is challenging. A common approach to study these interactions among mammals in field situations is to monitor the spatial proximity of animals at fixed times, using GPS tags fitted to individuals. However, this method is invasive and only allows tracking of a subset of individuals. Here, we use an alternative, noninvasive camera-trapping approach to monitor temporal proximity of predator and prey animals. We deployed camera traps at fixed locations on Barro Colorado Island, Panama, where the ocelot (Leopardus pardalis) is the principal mammalian predator, and tested two hypotheses: (1) prey animals avoid ocelots; and (2) ocelots track prey. We quantified temporal proximity of predators and prey by fitting parametric survival models to the time intervals between subsequent prey and predator captures by camera traps, and then compared the observed intervals to random permutations that retained the spatiotemporal distribution of animal activity. We found that time until a prey animal appeared at a location was significantly longer than expected by chance if an ocelot had passed, and that the time until an ocelot appeared at a location was significantly shorter than expected by chance after prey passage. These findings are indirect evidence for both predator avoidance and prey tracking in this system. Our results show that predator avoidance and prey tracking influence predator and prey distribution over time in a field setting. Moreover, this study demonstrates that camera trapping is a viable and noninvasive alternative to GPS tracking for studying certain predator–prey interactions.
Debido a las dificultades en evaluar como los depredadores rastrean su presa, y como las presas eluden a depredadores, un aspecto todavía poco conocido en la interacción entre depredadores y presas es si estas evitan a depredadores o si estos rastrean las presas. Una enfoque común para estudiar estas interacciones entre mamíferos bajo condiciones de campo es de seguir la proximidad espacial de animales a intervalos fijos, usando marbetes de GPS ajustados a los individuos. Sin embargo, este método es invasivo y solo permite obtener información de un número limitado de individuos. En este estudio, usamos cámaras trampas como método alternativo y no invasivo, para monitorear el proximidad temporal entre depredadores y presas en sitios fijos en Isla Barro Colorado, Panamá, donde los ocelotes (Leopardus pardalis) son el principal mamífero depredador. Evaluamos dos hipótesis: (1) las presas evitan a los ocelotes, y (2) los ocelotes rastrean a las presas. Cuantificamos la proximidad temporal de depredadores y presas ajustando modelos paramétricos de supervivencia a los intervalos de tiempo ocurridos entre observaciones subsecuentes en las cámaras trampas, y luego comparamos los intervalos observados con permutaciones aleatorias que retuvieron la distribución espacio-temporal de la actividad de los animales. Encontramos que, si un ocelote había pasado por dicha área, el tiempo en el cual una presa aparece en una ubicación fue significativamente mayor que lo esperado aleatoriamente. También encontramos que, después de pasar una presa por un área, el tiempo en que un ocelote tarda en aparecer fue significativamente menor que lo esperado al azar. Estos resultados constituyen evidencia indirecta que las presas evitan a los depredadores y que estos rastrean a las presas. Nuestros resultados muestran que la evitación de los depredadores y el rastreo de las presas influyen en la distribución de presas y depredadores a lo largo del tiempo en un escenario natural. Este estudio también demuestra que las cámaras trampas son una alternativa viable y no invasiva, con respecto a marbetes de GPS, para estudiar ciertas interacciones entre presas y depredadores.
Faunivorous mammals with simple guts are thought to rely primarily on endogenously produced enzymes to digest food, in part because they lack fermentation chambers for facilitating mutualistic interactions with microbes. However, variation in microbial community composition along the length of the gastrointestinal tract has yet to be assessed in faunivorous species with simple guts. We tested for differences in bacterial taxon abundances and community compositions between the small intestines and colons of 26 individuals representing four species of shrew in the genus Crocidura. We sampled these hosts from a single locality on Sulawesi Island, Indonesia, to control for potential geographic and temporal variation. Bacterial community composition differed significantly between the two gut regions and members of the family Mycoplasmataceae contributed substantially to these differences. Three operational taxonomic units (OTUs) of an unclassified genus in this family were more abundant in the small intestine, whereas 1 OTU of genus Ureaplasma was more abundant in the colon. Species of Ureaplasma encode an enzyme that degrades urea, a metabolic byproduct of protein catabolism. Additionally, a Hafnia–Obesumbacterium OTU, a genus known to produce chitinase in bat gastrointestinal tracts, was also more abundant in the colon compared to the small intestine. The presence of putative chitinase- and urease-producing bacteria in shrew guts suggests mutualisms with microorganisms play a role in facilitating the protein-rich, faunivorous diets of simple gut mammals.
Mamalia faunivora dengan usus sederhana diperkirakan mengandalkan sejumlah enzim yang diproduksi secara endogen untuk mencerna makanan, salah satu alasannya di satu sisi karena mereka tidak memiliki ruang fermentasi untuk memfasilitasi interaksi mutualistik dengan mikroba. Namun begitu, variasi komposisi komunitas mikroba di sepanjang saluran pencernaan dari spesies-spesies faunivora dengan usus sederhana masih perlu dipelajari lebih lanjut. Kami menguji perbedaan-perbedaan dalam hal kelimpahan taksa dan komposisi komunitas bakteri antara usus halus dengan usus besar pada 26 individu yang merepresentasikan 4 spesies celurut genus Crocidura. Kami mengambil sampel inang dari satu lokasi tunggal di Sulawesi, Indonesia, demi mengendalikan variasi geografis dan temporal yang mungkin terjadi. Komposisi komunitas bakteri berbeda secara signifikan antara dua bagian usus, dan anggota-anggota dari keluarga famili Mycoplasmataceae berkontribusi besar terhadap perbedaan ini. Dalam famili ini, tiga OTU yang genusnya belum terklasifikasikan ternyata lebih melimpah di usus halus, sementara satu OTU dari genus Ureaplasma lebih melimpah di usus besar. Spesies Ureaplasma mengkodekan enzim yang mendegradasi urea, produk sampingan metabolik dari katabolisme protein. Selain itu, Hafnia–Obesumbacterium OTU, suatu genus yang diketahui memproduksi kitinase pada saluran pencernaan kelelawar ternyata juga lebih melimpah di usus besar dibandingkan dengan di usus halus. Keberadaan bakteri yang terduga menghasilkan kitinase dan urease di saluran pencernaan celurut tersebut mengindikasikan bahwasannya mutualisme dengan mikroorganisme berperan penting dalam memfasilitasi asupan faunivora yang kaya protein pada mamalia berusus sederhana.
Interspecific interactions can mediate site occupancy of sympatric species and can be a key factor in habitat use patterns. American martens (Martes americana) and Fishers (Pekania pennanti) are two sympatric mesocarnivores in eastern North American forests. Due to their larger size, fishers have a competitive advantage over martens. We investigated site occupancy of martens and fishers in temperate deciduous forests of Québec, an environment modified by forest management and climate change. We formulated hypotheses on the spatial distribution of the studied species based on the knowledge of local trappers and on the scientific literature regarding forest cover composition, habitat fragmentation, and competitive relationships. We used a network of 49 camera traps monitored over two fall seasons to document site occupancy by both species. We used two-species site occupancy models to assess habitat use and the influence of fishers on martens at spatial grains of different sizes. None of the habitat variables that we considered explained site occupancy by fishers. Availability of dense old coniferous stands explained the spatial distribution of martens both at the home range grain size and at the landscape grain size. We identified the characteristics of habitat hotspots based on the knowledge of trappers, which highlighted the importance of stand composition, height, age, and canopy closure. The characteristics of habitat hotspots for martens in temperate deciduous forests refine the habitat suitability model for American martens that was originally developed for boreal forests of Québec.
Les interactions interspécifiques peuvent affecter l'occupation de sites par des espèces sympatriques et jouer un rôle clé dans leur utilisation des habitats. La martre d'Amerique (Martes americana) et le pékan (Pekania pennanti) sont deux mésocarnivores sympatriques des forêts de l'est de l'Amérique du Nord. En raison de sa grande taille, le pékan est un compétiteur dominant de la martre. Nous avons étudié l'occupation des sites par la martre et le pékan dans la forêt tempérée feuillue du Québec, un environnement modifié par l'aménagement forestier et les changements climatiques. Nous avons formulé des hypothèses sur la répartition spatiale des espèces étudiées en nous basant sur les connaissances des trappeurs locaux et sur la littérature scientifique en ce qui a trait à la composition du couvert forestier, à la fragmentation de l'habitat, et aux relations de compétition. Nous avons utilisé un réseau de 49 appareils photo à déclenchement automatique pendant deux automnes pour documenter l'occupation des sites par les deux espèces. Nous avons utilisé des modèles d'occupation de sites à deux espèces afin d'évaluer l'effet de la présence du pékan sur l'utilisation de l'habitat par la martre à des échelles spatiales de résolutions variables. Aucune des variables d'habitat que nous avons prises en compte n'explique l'occupation des sites par les pékans. La disponibilité de vieux peuplements denses de conifères explique la répartition spatiale de la martre aux échelles spatiales du domaine vital et du paysage. Nous avons développé un indice d'habitat potentiel basé sur les connaissances des trappeurs, qui a mis en évidence l'importance de la composition, de la hauteur, de l'âge et de la densité des peuplements. Cet indice affine, pour les forêts tempérées feuillues du Québec, le modèle de qualité de l'habitat de la martre d'Amérique originellement élaboré pour la forêt boréale.
Daniel H. Monson, Rebecca L. Taylor, Grant V. Hilderbrand, Joy A. Erlenbach, Heather A. Coletti, Kimberly A. Kloecker, George G. Esslinger, James L. Bodkin
Sea otters were extirpated throughout much of their range by the maritime fur trade in the 18th and 19th centuries, including the coast of Katmai National Park and Preserve in southcentral Alaska. Brown bears are an important component of the Katmai ecosystem where they are the focus of a thriving ecotourism bear-viewing industry as they forage in sedge meadows and dig clams in the extensive tidal flats that exist there. Sea otters began reoccupying Katmai in the 1970s where their use of intertidal clam resources overlapped that of brown bears. By 2008, the Katmai sea otter population had grown to an estimated 7,000 animals and was likely near carrying capacity; however, in 2006–2015, the age-at-death distribution (AADD) of sea otter carcasses collected at Katmai included a higher-than-expected proportion of prime-age animals compared to most other sea otter populations in Alaska. The unusual AADD warranted scientific investigation, particularly because the Katmai population is part of the Threatened southwest sea otter stock. Brown bears in Katmai are known to prey on marine mammals and sea otters, but depredation rates are unknown; thus, we investigated carnivore predation, especially by brown bears, as a potential explanation for abnormally high prime-age otter mortality. We installed camera traps at two island-based marine mammal haulout sites within Katmai to gather direct evidence that brown bears prey on seals and sea otters. Over a period of two summers, we gathered photo evidence of brown bears making 22 attempts to prey on sea otters of which nine (41%) were successful and 12 attempts to prey on harbor seals of which one (8%) was successful. We also developed a population model based on the AADD to determine if the living population is declining, as suggested by the high proportion of prime-age animals in the AADD. We found that the population trend predicted by the modeled AADDs was contradictory to aerial population surveys that indicated the population was not in steep decline but was consistent with otter predation. Future work should focus on the direct and indirect effects these top-level predators have on each other and the coastal community that connects them.
In recent years, animal-borne video cameras have been used to identify the food habits of many species. However, the usefulness and difficulties of identifying food habits from animal-borne video cameras have not been sufficiently discussed in terrestrial mammals, especially large omnivores. The aim of this study is to compare the video analysis of foraging behavior by Asian black bears (Ursus thibetanus) acquired by camera collars with estimates from fecal analysis. We attached GPS collars equipped with video cameras to four adult Asian black bears in the Okutama mountains in central Japan from May to July 2018 and analyzed video clips for foraging behavior. Simultaneously, we collected bear feces in the same area to determine food habits. We found that using video analyses was advantageous to recognize foods, such as leaves or mammals, that were physically crushed or destroyed while bears chewed and digested foods, which are difficult to identify to species using fecal analyses. On the other hand, we found that camera collars are less likely to record food items that are infrequently or quickly ingested. Additionally, food items with a low frequency of occurrence and short foraging time per feeding were less likely to be detected when we increased the time between recorded clips. As one of the first applications of the video analysis method for bears, our study shows that video analysis can be an important method for revealing individual differences in diet. Although video analysis may have limitations for understanding the general foraging behavior of Asian black bears at the present stage, the accuracy of food habit data from camera collars can be improved by using it in combination with established techniques such as microscale behavior analyses.
Guidelines identifying best practices for harvesting tissues that lead to optimal DNA preservation are few but are important curatorial concerns for genetic resource collections. We conducted a temporal study to establish rate of DNA degradation of tissue samples extracted from field-caught museum specimens. Five individuals of Sigmodon hispidus were collected and their liver and muscle tissues were harvested. Each tissue type was sectioned into 15 subsamples, and each was preserved in liquid nitrogen at different time intervals (2, 4, 8, 16, and 32 min; 1, 2, 4, 8, and 16 h; and 1, 2, 4, 8, and 16 days) following death. DNA was extracted using an automated robotic instrument and molecular mass profiles were determined fluorometrically. Postmortem DNA degradation was continuous and dependent on time, but also was significantly affected by differences among individual cotton rats. DNA fragments of ≥10,000 base pairs in length were present in muscle samples across all time intervals, whereas DNA fragments of this size in liver samples were no longer present after 8–16 h postmortem. DNA molecular mass profiles showed that muscle samples retained 80% of their longest fragments (≥10,000 base pairs) until 1 day postmortem, whereas liver samples retained the same percentage only until 8 min after death. Although rates of decay were measured from samples in a laboratory (not field) setting, rates of decay presented here can guide field and museum workers in best practices. Results suggest that opportunistic samples, such as those from roadkill specimens, are more likely to be of use for a variety of molecular methods when muscle is preserved. Considerations of differences in rates of degradation may also guide selection of tissue types housed in genetic resource collections, especially under space-limited circumstances.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere