Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A remarkable ability to tolerate temperatures as high as 52°C for Mezium affine Boieldieu and 56°C for Gibbium aequinoctiale Boieldieu (Coleoptera: Anobiidae) was discovered as part of a water balance study that was conducted to determine whether desiccation-resistance (xerophilic water balance classification) is linked to survival at high temperature. Characteristics of the heat shock response were an intermediate, reversible level of injury, appearing as though dead; greater recovery from heat shock by G. aequinoctiale (57%) than M. affine (30%) that supplemented higher temperature survival by G. aequinoctiale; and lack of protection generated by conditioning at sublethal temperature. Heatinduced mortality is attributed to an abrupt, accelerated water loss at 50°C for M. affine and 54°C for G. aequinoctiale, not to the species (M. affine) that loses water the slowest and has the lower activation energy, Ea as a measure of cuticular boundary effectiveness. These temperatures where water loss increases sharply are not critical transition temperatures because Arrhenius analysis causes them to be erased (uninterrupted Boltzmann function) and Ea fails to change when cuticular lipid from these beetles is removed. Our conclusion is that the temperature thresholds for survival and accelerated water loss closely match, and the key survival element in hot and dry environments contributing to wide distribution of G. aequinoctiale and M. affine derives from rising temperature prompting entry into quiescence and a resistance in cuticular lipid fluidity.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere