Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The roles of consumers (top-down forces) versus resources (bottom-up forces) as determinants of alpha diversity in a community are not well studied. Numerous community ecology models and empirical studies have provided a framework for understanding how density at various trophic levels responds to variation in the relative strength of top-down and bottom-up forces. The resulting trophic theory can be applied to understanding variation in insect diversity at different trophic levels. The objective of this research was to elucidate the strengths of direct and indirect interactions between plants and entire arthropod communities to determine the effects of trophic interactions on arthropod diversity. Grassland plant and insect diversity was measured in July 2001 to document patterns of diversity at multiple trophic levels. The study site includes riparian grasslands in North-Central Colorado on the Carpenter Ranch, owned and managed by The Nature Conservancy. This pastureland consists of sites with different management regimes: unmanaged pasture intermixed along riparian forest, and cattle grazed pasture with flood irrigation. Plant abundance and richness were higher on the grazed-irrigated pasture versus the unmanaged field. Path analysis revealed strong effects of herbivore diversity on diversity of other trophic levels. For the managed fields, top-down forces were important, with increases in enemy diversity depressing herbivore diversity, which in turn depressed plant abundance. For the unmanaged fields, bottom-up forces dominated, with increases in plant diversity causing increased herbivore diversity, which in turn increased enemy diversity. These results support hypotheses from other empirical studies, demonstrating that changes in diversity of a single trophic level can cascade to effect diversity at other, nonadjacent trophic levels.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere