Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Topical application of 400µg of the juvenile hormone analog, methoprene, to females of the penultimate instar of Leucophaea maderae failed to induce vitellogenin synthesis. However, last instar females showed an increasing response level in making vitellogenin as they aged during the first half of the instar. In the second half of the last instar the response to methoprene declined to nearly zero when the prothoracic glands have become highly active. Then, a few days before the metamorphic molt the responsiveness reached maximal levels, i.e., comparable to adult females. These data suggest that the fat body develops competency to produce vitellogenin during the last nymphal instar, but increasing titers of ecdysone then interfere with the action of methoprene and consequently production of vitellogenin is curtailed.
When prothoracic glands from the second half of the last instar were implanted into adult females, the normal activation of the corpora allata, or their accelerated activation induced by mating, did not occur. Likewise, an activation of the corpora allata due to the severance of the NCCI was not observed when prothoracic glands had been implanted prior to such operations. Thus, ecdysone released by the prothoracic glands appeared to directly inhibit the isolated corpora allata in vivo i.e. without the mediation by the brain.
Methoprene applied to allatectomized adult females induced vitellogenin synthesis in a dose dependent manner. This induction was, however, quantitatively reduced by implanted active prothoracic glands, particularly when low doses of methoprene had been applied. Methoprene higher than 5µg overcame the inhibitory potency of the implanted prothoracic glands. The effect of the prothoracic glands, i.e. ecdysone, appears to signal an interference with the action of methoprene at the target tissues, the fat body. The exposure of the fat body to a given juvenile hormone/ecdysone ratio dictates the apparent effectiveness of ecdysone. The precise mode of the interaction of juvenile hormone and ecdysone on the adult fat body is not known.
These data show that ecdysone inhibits vitellogenesis by two independent mechanisms: 1) inhibition of the corpora allata resulting in the inhibition of juvenile hormone production and 2) inhibition of vitellogenin synthesis by the fat body. Both of these mechanisms appear to be operative in immature and mature animals. However, the action of ecdysones on the fat body is only seen after it had acquired competency to make vitellogenin during the last nymphal instar.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere