Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A novel cDNA clone encoding a cytochrome P450 gene, named CYP6BK18 (GenBank KC683905), was isolated by reverse transcription PCR from Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae), a natural enemy of beetles. The full-length cDNA sequence is 1,659 bp, containing a 1,533 bp open reading frame predicting a 510-amino acid protein possessing a transmembrane domain with a calculated molecular weight of 59.4 kDa and a theoretical pI of 8.94. The deduced amino acid sequence of CYP6BK18 showed a 59% identity with CYP6BK17 (GenBank XP_970481.1) from Tribolium castaneum. Phylogenetic analysis indicated that CYP6BK18 was most closely related to CYP6BK17 and CYP6BK14 (GenBank EFA05731.1) from T. castaneum. Expression patterns of CYP6BK18 in different tissues (head, oviduct, midgut, fat bodies, and Malpighian tubules), developmental stages (first- to sixth-instar larvae and adult) and 10 age groups of adult were analyzed by real-time quantitative PCR (RT-qPCR). The results showed that CYP6BK18 was highly expressed in adulthood. Also, RT-qPCR analysis among different age groups of adult showed that CYP6BK18 transcripts were abundant in the spawning period and peaked at the early stage of the adult development. Moreover, the tissue-specific expression levels of CYP6BK18 were in the order of midgut, Malpighian tubes and fatty body from high to low. These results suggest that cytochrome P450 CYP6BK18 may play a role in regulating the development and aging of D. helophoroides.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere