Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the current study the effects of serine proteinase inhibitors (TLCK, TPCK, SBTI, and a combination of SBTI and TPCK) with concentrations of 1% and 4% of dietary protein in artificial diets were tested against growth of the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), development, and its gut serine proteinase targets. Analysis of variance indicated that protease inhibitors affected nymphal development time, adult weight, and survival. Mean development time of third instar nymphs in control, SBTI (1%), TLCK (1%), and TPCK was 7.18, 9.74, 9.97, and 8.52 days, respectively. The highest mortality (100 % mortality) was observed when a combination of TPCK and SBTI, both at 4% of dietary protein, was used followed by TPCK (4%) that produced 95% mortality. There were significant differences in proteinase activity between treatments and controls when BApNA and SAAPFpNA were used as substrates for trypsin and chymotrypsin, respectively. Reduction of trypsin activity in insects fed with low doses of SBTI (1%), TLCK (1%), and both doses of TPCK (1% and 4%) was 40, 26, 23, and 17%, respectively. Inhibition of chymotrypsin activity was seen in the insects fed on SBTI (1%), TLCK (1%), and TPCK (4%) where inhibition was 14, 9, and 36%, respectively. Maximum inhibition of chymotrypsin activity was observed in the insects fed on diets containing high doses of TPCK (4%). In gel assays, the greatest effects were observed when E. integriceps were fed on high doses of SBTI and TPCK. Therefore, TPCK followed by SBTI proved to be the most effective proteinase inhibitors of E. integriceps.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere