Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The aim of this work was to assess the virulence of strain M379 of the fungus, Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) after different passages through a suitable host and at different concentrations for the control of both acaricide-susceptible and resistant strains of the tick, Rhipicephalus (formerly Boophilus) microplus Canestrini (Ixodida: Ixodidae) in vitro. The highest value of LC50 for the susceptible strain corresponded to zero passage with 7.68 × 107 conidia/ml followed by the fourth passage with 2.68 × 107, which reduced 2.87-fold the lethal concentration. When comparing LC50 values of the fourth vs. the seventh passage (2.59 × 105 conidia/ml), the lethal concentration was reduced 103.47-fold by the seventh passage. In addition, in the resistant strain the LC50 highest value corresponded to zero passage with 4.95 × 107 conidia/ml followed by the fourth passage with 7.86 × 106, which reduced 6.30-fold the lethal concentration. When comparing LC50 values of the fourth vs. the seventh passage (1.04 × 105 conidia/ml) in the resistant strain, the lethal concentration was reduced 75.58-fold by the seventh passage. These results suggest that the number of passages on M. anisopliae through a suitable host increased its virulence on both R. microplus strains. When comparing LC50 of the zero passage through a suitable host of both acaricide-susceptible and resistant strains, the highest LC50 values corresponded to the susceptible strain with 7.68 × 107 conidia/ml followed by the resistant one with 4.95 × 107, showing that on the resistant strain the lethal concentration is reduced by 1.55-fold. When comparing the fourth passage, the highest values of LC50 corresponded to the susceptible strain with 2.68 × 107 conidia/ml followed by the resistant one with 7.86 × 106 conidia/ml, showing for the resistant strain a 3.41-fold reduced lethal concentration. Moreover, when comparing the seventh passages, the highest values of LC50 corresponded to the susceptible strain with 2.59 × 105 followed by the resistant with 1.04 × 105 conidia/ml, revealing for the resistant strain a 2.49-fold reduced lethal concentration. These results suggest that the resistant strain needs a lower concentration of conidia than the susceptible strain. In this case, the acaricide-resistant strain is more susceptible to M. anisopliae of zero- and seven-passage strains.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere