BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Some plant pathogens manipulate the behavior and performance of their vectors, potentially enhancing pathogen spread. The implications are evolutionary and epidemiological but also economic for pathogens that cause disease in crops. Here we explore with models the effects of vector manipulation on crop yield loss to disease and on the economic returns for vector suppression. We use two frameworks, one that simulates the proportional occurrence of the pathogen in the vector population with the option to eliminate vectors by a single insecticidal treatment, and one that includes vector population dynamics and the potential for multiple insecticidal sprays in a season to suppress vectors. We parameterize the models with published data on vector manipulation, crop yields as affected by the age of the plant at infection, commodity prices and costs of vector control for three pathosystems. Using the first framework, maximum returns for treating vectors are greater with vector manipulation than without it by approximately US$10 per acre (US$24.7/ha) in peas infected by Pea enation mosaic virus and Bean leaf roll virus, and approximately US$50 per acre (US$124/ha) for potatoes infected by Potato leaf roll virus. Using the second framework, maximum returns for controlling the psyllid vectors of Candidatus Liberibacter solanacearum are 50% greater (approximately US$400/acre, US$988/ha) but additional returns for multiple weekly sprays diminish more with vector manipulation than without it. These results suggest that the economics of vector manipulation can be substantial and provide a framework that can inform management decisions.
The European bee, Apis mellifera L. (Hymenoptera: Apidae), is a fundamental resource for the pollination of a great variety of botanical species used by humans for sustenance. Over the last few decades, bee colonies have become vulnerable to a new pest that has advanced beyond its native sub-Saharan territory: the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). This currently presents a pressing problem in the United States and Australia, but it has also been recorded in Portugal and Italy and it is likely to spread in the rest of Europe too. This study represents a systematic review, based on EFSA guidelines, of the various control treatments for small hive beetles in order to identify the most effective methods as well as, those with no effects on bee colonies. The results show that the bulk of these studies were performed in the United States and that a number of treatments are suitable for the control of A. tumida, though some have negative effects on bees while others have low effectiveness or are ineffective. The best results are those with the entomopathogenic nematodes of the genus Steinernema and Heterorhabditis, but also with formic acid or diatomaceous earth. Various products containing insecticides have been effective, for example, Perizin (Bayer), GardStar (Y-Tex), CheckMite+ strips (Bayer), but Apithor (Apithor) cannot be used in Europe because it contains Fipronil, which has been banned since 2013. Some common products like bleach and detergent have also been effective.
We tested Magnolia grandiflora L. (Magnoliales: Magnoliaceae) seed essential oil and its pure compounds for their repellency and toxicity against workers of hybrid imported fire ants. Series of dosages were tested starting from 156 µg/g to the dose where the treatment failed. Workers removed significantly less sand from the vials with M. grandiflora seed essential oil and 1-octanol treated sand at serial dosages of 156–4.9 µg/g than the solvent control whereas the amount removed at 2.4–0.6 µg/g was similar to the solvent control. In 1-decanol treatments, workers removed significantly less sand at serial dosages of 156–0.15 µg/g than the solvent control whereas the removal of sand at the dose of 0.08 µg/g was similar to the solvent control. In DEET (N, N-diethyl-meta-toluamide) treatments, workers removed significantly less sand at serial dosages of 156–78 µg/g than the solvent control whereas the quantity of removed sand at 39 µg/g was similar to the solvent control. Based on the mean amount of sand removed, M. grandiflora essential oil, 1-decanol, and 1-octanol showed significantly higher repellency than DEET. 1-Decanol and 1-octanol, present in seed essential oil showed toxicity against fire ant workers. 1-Decanol with LC50 of 140.6 µg/g was the most toxic natural compound followed by 1-octanol (LC50 = 486.8 µg/g). Bifenthrin with LC50 value of 0.018 µg/g showed much higher toxicity than these natural compounds. High repellency and toxicity of 1-decanol makes it a natural compound of interest for further studies under field conditions.
Adequate nutrition is required to support productive honey bee colonies, therefore beekeepers supplement colonies with additional protein at targeted time points. We tested the effects of commercially available protein feeds in spring, in advance of colonies being used for hybrid canola pollination. The feed treatments across the three-year study included the following patty types: Global 15% pollen, Global 0% pollen, Bee Pollen-Ate, FeedBee, and Healthy Bees, as well as an unsupplemented control in year two of the study only. The amount of feed consumed varied among colonies, treatments, date, and year. Similarly, there were also differences in feed efficiency (bees reared per gram of feed consumed), likely due to the relative availability of external forage sources to supplement the feed provided. Unsupplemented colonies were able to rear less brood, and subsequently had fewer adult bees than supplemented colonies, in an apiary where pollen was not abundant. Differences in consumption among treatments often failed to translate in to differences in amount of brood reared or subsequent adult population. All the protein feed treatments contained all ten amino acids essential to honey bees, however lysine and arginine were below the optimal proportion required for growth in all patties except the FeedBee patty. The amount of protein and amount and types of sugars and fats in the products also varied among product type and batch. The results of this study demonstrate a benefit to supplementary spring protein feeding to increase honey bee colony populations in advance of a summer pollination market.
The potato crop (Solanum tuberosum L.) is affected by various hemipteran insect pests including Circulifer tenellus Baker, Lygus spp., Myzus persicae Sulzer, and Macrosiphum euphorbiae Thomas. These pests can cause direct foliage damage or vector plant pathogens, and consequently reduce potato yield. Gaining insights into which factors have the greatest impact on seasonal population growth of insect pests is key for improving integrated pest management strategies. Moreover, abiotic and biotic cues such as temperature and crop growth stage can strongly influence insect population growth. Hence, the seasonal population dynamics of C. tenellus, Lygus spp., M. persicae, and M. euphorbiae, and temperature, were monitored weekly throughout potato growing seasons in commercial fields located in the lower Columbia Basin (USA). Using a multi-year dataset, we developed phenology models of each pest based on the accumulated degree days (DD) and potato days (PD). Temperature-mediated population growth models suggest that C. tenellus and Lygus spp. are the first of the pests to colonize the potato crop fields, with 90% of cumulative catch by 2,823 and 1,776 DD, respectively. In contrast, M. persicae and M. euphorbiae populations increased more gradually over the course of the season, with 90% cumulative catch by 5,590 and 5,047 DD, respectively. PD-mediated population growth models suggest that 50% of the populations of C. tenellus, Lygus spp., and M. persicae can be collected at potato tuber growth stage, while 50% of the M. euphorbiae population at tuber initiation stage. The results presented here will help in improving hemipteran potato pests' management.
Citriculture landscapes in the U.S. are typically habitat mosaics of commercial groves interspersed with residential areas supporting a variety of unmanaged citrus. Diaphorina citri the vector of Candidatus Liberibacter asiaticus, the causal agent of Huanglongbing feeds on citrus in both habitats. We postulated that residential citrus function as a ‘source’ of D. citri that infest groves, functioning as sinks. Here we report on an experimental mark-release-recapture study conducted at the interface of a residential neighborhood and groves. Adult D. citri marked with colored fluorescent powders were released in both habitats (n = 15,300) and their movement within and between milieus monitored. Although the recapture rate of marked psyllids was very low (0.23%), the results were instructive. Most of the recaptured psyllids in residential trees (84.6%) were released within that habitat. In contrast, approximately half of the marked psyllids recovered in groves were released in residential areas. Of all the recaptured psyllids, about 40% changed habitats, but the change was skewed toward movement from residential to grove habitat. These data strongly suggest that there is a constant exchange of D. citri adults between the two habitats, with residential citrus trees functioning as a source habitat of psyllids. The further the residential trees are located from groves, the less likely they will serve as sources of D. citri. Hence, to reduce the risks of citrus grove colonization by D. citri, new groves should be established away from residential habitats where possible, and psyllid management practices must also be implemented in residential habitats.
Trichogramma wasps are commonly used as biocontrol agents to manage lepidopteran rice pests in rice fields. However, lepidopteran pests synergistically occur with rice planthoppers which are not targeted by Trichogramma. The use of Trichogramma parasitoids in field-based pest control efforts is greatly affected by the application of insecticides targeting planthoppers. As such, insecticide-resistant strains of Trichogramma are urgently needed for the incorporation of these beneficial natural enemies into integrated pest management programs in rice agroecosystems. In the present study, Trichogramma japonicum Ahmead (Hymenoptera: Trichogrammitidae) and Trichogramma chilonis Ishii (Hymenoptera:Trichogrammitidae) were treated with sublethal doses of four insecticides which target rice planthoppers, to generate tolerant strains in the laboratory. The resistance rate of T. japonicum to imidacloprid was the highest (17.8-folds) after 10 successive treatments and experienced 2.5, 4.72, and 7.41-fold increases in tolerance to thiamethoxam, buprofezin, and nitenpyram, respectively. Tolerance of T. chilonis to imidacloprid, thiamethoxam, buprofezin, and nitenpyram were 8.8, 6.9, 4.43, and 5.67-fold greater, respectively. The emergence and deformity (without spreading wings or short wings) rates of T. japonicum and T. chilonis gradually recovered with an increased exposure time of treatments. The fecundity of T. japonicum treated with thiamethoxam was significantly higher than that of the control and T. chilonis treated with thiamethoxam and nitenpyra. Our results demonstrate that screening for insecticide-tolerant/resistant Trichogramma strains was feasible, especially in the pairing of T. japonicum and imidacloprid, which could provide a valuable biological control tool that can be combined with traditional chemical control strategies for use in IPM of rice agroecosystems.
A newly discovered entomopathogenic fungus Cordyceps javanica (Friedrichs & Bally) Samson & Hywel-Jones (Hypocreales: Cordycipitaceae) strain Wf GA17 was compared with the commercial Cordyceps fumosorosea Wize (Hypocreales: Cordycipitaceae) Apopka 97 strain for liquid-culture production, formulation, insecticidal efficacy, and storage stability under laboratory conditions. We compared culture media with carbon:nitrogen (C:N) ratios of 10:1, 30:1, and 50:1 for these two isolates. A third strain, C. fumosorosea strain ARSEF 3581, had previously been optimized for liquid-culture production of blastospores at 10:1 C:N served as an added control. These seven cultures were processed by spray drying with skim milk powder, stored at 25°C to evaluate storage stability, and assayed for insecticidal activity against Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) neonates. Final blastospore concentrations were not significantly different among cultures, ranging from 4.47 to 9.88 × 108 spores/ml. Fungal biomass decreased and final glucose concentrations increased with increasing C:N ratios, indicating better fungal growth with higher nitrogen concentrations. Product yields from the spray dryer (grams per liter culture) increased with increased C:N ratios while spore concentrations decreased, ranging from 2.27 to 7.17 × 109 spores/g. There were no significant differences for insecticidal efficacy among the seven treatments. Spores produced in 10:1 C:N ratio media retained viability longer than spores produced in other media. Cost of ingredients decreased with increasing C:N ratios, such that the 30:1 media may yield the most economical product. The raw material cost needed for application was 1.4× greater for Wf GA17 compared with Apopka 97, a difference that could be erased by optimization of culture conditions.
Eco-friendly entomopathogenic fungi are widely used to control agricultural insect pests. Purpureocillium lilacinum (Thom.) Luangsa-ard et al. (Hypocreales: Ophiocordycipitaceae) is a nematophagous fungus used for the bio-control of destructive root-knot nematodes. However, its insecticidal activities against agricultural insect pests haven't been widely studied. In this study, P. lilacinum PL-1 was isolated from soil (Hefei, China) and identified by molecular and morphological analyses. The growth rate, spore production, proteinase, and chitinase activities of the isolate were analyzed. Virulence tests against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) and fall armyworm (FAW), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were performed. The median lethal concentration (LC50) and median lethal time (LT50) against aphids (via immersion) and LT50 against FAW (via injection) were determined. FAW eggs immersed in aqueous conidia suspension were infected after 60 h. Differentially expressed genes (DEGs) in the infection of FAW larvae by P. lilacinum were analyzed by quantitative reverse transcription PCR. The significantly upregulated DEGs include FAW immune genes (antimicrobial peptides, C-type lectins, lysozymes, prophenoloxidase, and peptidoglycan recognition proteins) and fungal pathogenic genes (ligase, chitinase, and hydrophobin). Our data demonstrate that P. lilacinum can be used as an entomopathogenic fungus against agricultural insect pests.
Temperature has a profound effect on performance and behavior of egg parasitoids. Egg parasitoids are a well-known alternative for the control of lepidopterous pests. Selected life history parameters of Trichogramma euproctidis (Girault) (Hymenoptera: Trichogrammatidae), an established egg parasitoid species in Khuzestan-Southwest Iran, were appraised at eight constant temperatures (22.5, 25, 27.5, 30, 32.5, 35, 37.5, and 40°C) using Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as the host. We found significant effects of temperature on the number of parasitized eggs, development time, sex ratio, progeny's longevity, and fecundity. T. euproctidis developed on E. kuehniella eggs at all temperatures tested, but performed best at 32.5°C. At this temperature, they parasitized the most eggs, produced the most female progeny, and had high rates of survival. Our findings revealed that temperature significantly affected the longevity of female progeny and fecundity of T. euproctidis. A life table analysis confirmed that temperature resulted in optimal effects on T. euproctidis life history. Net reproductive rate (R0) of T. euproctidis was different among the temperatures tested. The intrinsic rate of increase (r) was positively correlated with temperature from 22.5 to 32.5°C and then decreased from 35 to 40°C. Generation time (T) and doubling time (DT) decreased as temperature increased from 22.5 to 37.5°C and then increased at 40°C. These data suggest that this strain of T. euproctidis is adapted to high temperatures and harsh environmental conditions and has the potential to be used in integrated management programs in Southwest Iran.
Bactrocera dorsalis (Hendel) is a new fruit fly pest of some fruit types in the north and north eastern areas of South Africa. In order to determine whether existing cold disinfestation treatment schedules for an indigenous fruit fly pest: Ceratitis capitata (Wiedemann) would be effective for B. dorsalis, cold tolerances of four immature stages of the two species were compared. Studies were done in an artificial carrot-based larval diet. The developmental rates of the immature stages of the two species in the carrot-based larval diet were first determined at a constant temperature of 26°C. The developmental times for eggs and three larval stages were found to be similar for the two species. Incubation times of both species after egg inoculation were determined to be 0, 3, 4, and 6 d for obtaining egg, first larval, second larval, and third larval stages respectively for the cold treatment. At a test temperature of –0.6°C, mortality rates of C. capitata eggs, first instars, second instars, and third instars were lower than those of B. dorsalis. These results demonstrate that the current cold treatment schedules for disinfestation of C. capitata can be used as equally or more efficacious treatments for B. dorsalis.
Organic yard waste from western Washington, U.S. that may contain puparia of apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), had been moved to central Washington for composting, threatening the $3 billion apple industry concentrated in that region. Heating waste to kill fly puparia before it is transported could be a solution to this problem. Here, we report results of studies in 2016–2021 that sought to identify a minimum heat treatment simulating that obtained using a low-pressure steam generator for maximizing kill of R. pomonella puparia. In two experiments, puparia were exposed to temperatures ramped linearly over 6 h from 21°C to 47.8, 51.1, 55.0, or 60.0°C in an oven. The 47.8, 51.1, and 55°C treatments did not achieve 100% mortality, although only one adult fly from 4,000 puparia was found in the 55°C treatment, while no puparia survived the 60°C treatment. In a third, similar experiment, no puparia out of 2,400 exposed to 55°C survived. In a fourth and final experiment conducted over 3 years, no puparia out of 61,223 exposed to a 6-h ramp from 21°C to 55°C followed by a 1-h hold time at 55°C produced flies. In addition, all puparia in this treatment died. Based on 42.3 to 69.8% control survival, 31,217 puparia were killed by this treatment with no survivors, for a probit 8.7190 level of security. Results suggest that the 55°C and 1-h hold time treatment here is close to the minimum heat regime needed for disinfesting organic waste of R. pomonella puparia.
The ham mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), is a common pest infesting several stored products, particularly the aged hams. In this study, we reported the efficacy of nitric oxide (NO) fumigation, a recently discovered fumigation treatment under the ultra-low oxygen environment, at various concentrations and time under the laboratory conditions at 25°C against different mite stages on both dietary media and ham meat. Our results showed that NO fumigation was effective against all mite stages and 100% control was achieved. Generally, the egg was the most tolerant stage and required 48-, 24-, 16-, and 8-h treatments to achieve 100% mortality at 0.5, 1, 1.5, and 2% NO concentration on dietary media, respectively. Tyrophagus putrescentiae mobile immatures and adult stages were less tolerant, and 100% mortality was achieved after 16-, 8-, 8-, and 4-h treatment at 0.5, 1, 1.5, and 2% NO, respectively. The median lethal concentration (LC50) of NO on egg was 0.86, 0.68, and 0.32% for 8-, 16-, and 24-h treatments. In addition, a confirmatory test was conducted on ham meat at 0.5 and 1.0% of NO and similar efficacy was found. Complete control of egg was achieved after 48- and 24-h treatment at 0.5 and 1.0% of NO, respectively, and larvae and adult mites were 100% controlled after 16 and 8 h at 0.5 and 1.0% of NO, respectively. Our results demonstrated that NO fumigation was effective against T. putrescentiae and can be a potential alternative treatment to methyl bromide for cured-ham pest control.
Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation. Our result showed that a total of 27 CHCs were detected in S. avenae, and linear alkanes (e.g., n-C29) were found to be the predominant components. Long-chain monomethyl alkanes were found to associate closely with water loss rates in S. avenae in most cases. Resistant genotypes of both wing morphs had higher contents of short-chain n-alkanes under control than nonresistant genotypes, showing the importance of short-chain n-alkanes in constitutive desiccation resistance. Among these, n-C25 might provide a CHC signature to distinguish between desiccation-resistant and nonresistant individuals. Compared with linear alkanes, methyl-branched CHCs appeared to display higher plasticity in rapid responses to desiccation, especially for 2-MeC26, implying that methyl-branched CHCs could be more sensitive to desiccation, and play more important roles in induced desiccation-resistance. Thus, both constitutive and induced CHCs (linear or methyl-branched) can contribute to adaptive responses of S. avenae populations under desiccation environments. Our results provide substantial evidence for adaptive changes of desiccation resistance and associated CHCs in S. avenae, and have significant implications for aphid evolution and management in the context of global climate change.
The two-spotted stink bug, Bathycoelia distincta Distant (Hemiptera: Pentatomidae), is a serious pest in South African macadamia orchards. This pest is predominantly controlled using insecticides, thus alternative control methods are essential. The stink bugs arrive as adults in the orchards, during the early nut set season, but little is known about their alternative plant hosts before their arrival. The aim of this study was to develop a PCR-based metabarcoding assay to identify plant material in the gut of B. distincta. Thereafter, the persistence of plant DNA in the gut, after switching food sources, was determined by rearing the stink bugs on Zea mays L. (Cyperales: Poaceae), transferring them to Macadamia sp. and then collecting insects at different time points. As a proof of concept, the assay was tested on insects collected from commercial macadamia orchards to determine if it can identify alternative food sources. The chloroplast gene markers, trnL and trnF, were most successful for plant DNA amplification. The time trial suggested that plant material can be detected 24 h after switching to the alternate food source and one of the samples still contained Z. mays DNA after five days. Various plant species were detected from the orchard collected samples, including known food sources of other stink bugs, such as tea plants (Camellia sinensis L. (Ericales:Theaceae)) and sunflowers (Helianthus annuus L. (Asterales: Asteraceae)). This study provides the first indication of potential alternative food sources of B. distincta. The assay developed in this study can now be implemented for large-scale field surveys to contribute to future integrated pest management strategies.
The glassy-winged sharpshooter (Homalodisca vitripennis (Germar); Hemiptera: Cicadellidae: Cicadellinae) is an invasive insect that transmits the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadacae). While adult glassy-winged sharpshooter must feed to produce eggs, the role of nutritional status on initiating oogenesis is poorly understood. To determine the effects of glassy-winged sharpshooter nutrition on nymphal development, oogenesis, and fecundity, glassy-winged sharpshooter were reared on cowpea, sunflower, sorghum, and a mixture of the three plant species. Adults emerging from cowpea, sunflower, or plant mixture treatments had shorter development times, attained larger size, and had greater estimated lipid reserves than females reared on sorghum. In choice tests, nymphs avoided sorghum and preferentially fed on cowpea and sunflower. Adult females provisioned with a single plant species during the nymphal stage were provided with either the same host plant species or a mixture of host plant species (cowpea, sunflower, sorghum) for a 9-wk oviposition period, with 37% of females initiating oogenesis. Ovipositing females had greater juvenile hormone and octopamine levels than reproductively inactive females, although topical application of the juvenile hormone analog Methoprene did not promote oogenesis. Across nymphal diets, reproductively active females produced more eggs when held on plant mixtures than on single plant species. In choice tests, adult females were observed most frequently on cowpea, although most eggs were deposited on sorghum, the host least preferred by nymphs. Results suggest that fecundity is largely determined by the quality of the adult diet, although the stimulus that initiates oogenesis does not appear to be related to nutrition.
Interspecies competition affects the distribution, quantity, and community structure of insects, especially among closely-related (congeners) species. Some ecological factors differentially affect the fitness of co-existing species, thus conferring an advantage on one competitor, and then the structure of communities. The present work evaluated the effects of high temperature and natural enemies on the interspecific competition between the grain aphid Sitobion miscanthi (Takahashi) (Aphididae: Hemiptera) and bird cherry-oat aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae), two key pests of wheat in China. Results showed that the population growth of R. padi was faster at 30°C, and the intrinsic rate of natural increase (rm) value was 5 times that of S. miscanthi, indicating that R. padi was more high-temperature resistant and has advantages in interspecific competition at high temperature. Moreover, compared to S. miscanthi, the population of R. padi was less affected by their predator, larvae of the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), and aphid parasitoids, Aphidius avenae (Haliday) or Aphidius gifuensis (Ashmead) (Hymenoptera: Aphidiidae), which made them gain an advantage in the interspecific competition. Our results enrich the knowledge of phytophagous insect interspecific completion and implicate the ecological mechanism of R. padi may become the dominant species in wheat fields in China.
The fall armyworm, Spodoptera frugiperda (J. E. Smith), a newly invasive pest, has natural insect enemies that hold promise as biological control agents. Here we analyzed predation rates between natural enemy insect, the syrphid Episyrphus balteatus (De Geer) and S. frugiperda in all paired combinations of all immature stages for each insect in petri dishes. The 2nd and 3rd instars E. balteatus larvae consumed 1st and 2nd instars S. frugiperda larvae, and 3rd and higher larval instars of S. frugiperda preyed on all instar larvae of E. balteatus. The 2nd and 3rd instars larvae of E. balteatus preyed on 1st and 2nd larval instars of S. frugiperda, consistent with the Holling type III response in petri dishes, with a theoretical maximum predation of 77 and 71 individuals in 24 h. The 5th and 6th instars S. frugiperda larvae consumed E. balteatus larvae, also with the Holling type III response, with a theoretical maximum predation on 1st instar E. balteatus larvae were 29 and 36 individuals, respectively. In a plant cage trial study, predation results were similar to those in petri dishes but with a lower predation number. None of the S. frugiperda larvae that fed on E. balteatus larvae developed to adulthood, and only about 20% of E. balteatus larvae that fed on S. frugiperda larvae became adults which had a significantly shorter lifespan than those who consume aphids. This two-way predation study revealed the complexity of S. frugiperda invasion and provided new insights into relationship between pests and natural enemies.
Insect responses to chemical attractants are often measured using olfactory bioassays prior to testing in field experiments. The attraction of sexually mature male Bactrocera dorsalis to methyl eugenol (ME) and the loss of attraction by ME pre-fed males have been demonstrated in laboratory bioassays and field trapping studies. It has been suggested that ME nonresponsiveness can be exploited to improve the effectiveness of B. dorsalis management programs by protecting sterile males from ME-based control measures. Currently, work is underway to identify alternatives that reduce or eliminate ME response. To support the development of compounds and evaluation of their effect on B. dorsalis attraction to ME, we compared the effectiveness of three common bioassay methods that have been used to measure lure response in Bactrocera flies under controlled conditions (choice assays using Y-tube [Y], small-cage arena [SC], and rotating carousel field-cage [RC]) to determine which bioassay method is efficient and reliable. A series of bioassays comparing ME-exposed and ME-naïve wild-type and genetic sexing strain males showed that the RC and SC were effective at both observing attraction to ME and detecting a significant reduction in ME response from ME-exposed males. However, the male attraction to ME and a significant decrease in response to ME after ME feeding was not observed in our Y-tube assays. These suggest that RC and SC are preferable options to evaluate ME non-responsiveness in B. dorsalis, and that Y-tube tests are difficult to administer correctly.
The greenhouse whitefly, Trialeurode vaporariorum, is among the key pests of tomato (Solanum lycopersicum) in sub-Saharan Africa with Tuta absoluta, spider mite, thrips, and fruitworms. To understand the interaction between the pest and the plant's herbivory-induced plant volatile (HIPVs), we investigated the repellency of four tomato cultivars (Kilele F1, Assila F1, Red Beauty F1, and Nemonneta F1) upon infestation by Trialeurode vaporariorum. We analyzed the behavioral response of T. vaporariorum to infested and uninfested tomato plants of these cultivars using olfactory bioassays followed by gas chromatography–mass spectrometry (GC–MS) analyses of emitted volatiles. Trialeurode vaporariorum was attracted to uninfested plants of all four tomato cultivars. However, two cultivars Kilele F1 and Red Beauty F1 were no longer attractive to the whitefly when they were already infested by the pest. GC–MS analyses identified 25 compounds, 18 monoterpenes, 3 sesquiterpenes, 2 xylenes, 1 aldehyde, and 1 carboxylic compound in the 4 uninfested and infested cultivars. Based on the insects' behavioral response, 1,8-cineole, p-cymene, and limonene did not attract T. vaporariorum at varying concentrations when combined with Red Beauty F1, the most attractive tomato cultivar. This repellence behavioral response can be used as a basis for improvement of other vegetable crops for the management of arthropod pests as for odor masking technique.
Proteus, matrine, and pyridalyl were tested in the laboratory for their effects upon Orius laevigatus (Fieber), which is a polyphagous predator used for IPM programs of Frankliniella occidentalis (Pergande). Against female adults, the most toxic insecticide was Proteus (LC50 = 44.3 µl L–1), followed by pyridalyl (LC50 = 83.8 µl L–1) and matrine (LC50 = 102.7 µl L–1). The mortality of female adults was checked 24, 48, 72, and 96 h after exposure to 14-d residues of the treatments on strawberry leaves. The residual of Proteus was less toxic; the remaining products caused the lowest mortality at different times after exposure. Sublethal treatments (LC25) significantly prolonged the developmental duration of total immature stages from 17.6 d in control to 21.6 and 20.0 d in Proteus and pyridalyl treatments, respectively. Also, the fecundity of O. laevigatus treated with Proteus, pyridalyl, and matrine decreased to 58.8%, 75.6%, and 96.7%, respectively, in comparison to the control. Compared with the control population (0.118 d–1), the intrinsic rate of increase (r) of F1 generation decreased by 0.053, 0.095, and 0.110 d–1 in Proteus, pyridalyl, and matrine treatments, respectively. The consumption rate of control bugs reached 14.0 thrips during 24 h. The adults fed on Proteus treatment had the lowest consumption rate in this period (9.4 preys). Overall, matrine proved to be harmless with reproductive capacity and r similar to what was recorded in control bugs. We concluded that matrine can be used as an alternative for the synthetic insecticide to integrate with O. laevigatus.
We evaluated the relative efficacy of six pheromone-baited traps used in trapping Agriotes obscurus (L.) click beetles (Coleoptera: Elateridae): original Yatlor Traps, Yatlor Funnel Traps, Vernon Beetle Traps, Unitraps, Baited Pitfall Traps, and Vernon Pitfall Traps. Traps were rated according to quantitative and qualitative criteria of importance for each of four trap uses: general surveys, scientific studies, IPM monitoring, and mass trapping. Measurable quantitative categories included: total catch of A. obscurus; time for assembly, installation, and inspection; exclusion of nontarget invertebrates; and cost. Qualitative criteria were small mammal exclusion, flooding, design and handling variability, and convenience for various field uses. The most desirable characteristics were determined for the above four uses, and the cumulative ranking based on quantitative criteria and all four uses was Vernon Pitfall Trap, Baited Pitfall Trap, Original Yatlor Trap, Vernon Beetle Trap, Yatlor Funnel Trap, and Unitrap.
The Russian wheat aphid (Diuraphis noxia [Kurdjumov, Hemiptera: Aphididae], RWA) was first detected in Australia in 2016 and is threatening an annual cereal industry valued at nearly 10 billion AUD per annum. Considerable uncertainty surrounds the economic risk of D. noxia to Australian cereals, which limits cost-effective farm management decisions. Through a series of inoculated and non-inoculated field trials in 2018 and 2019 in south-eastern Australia, we generated a range of D. noxia pressure metrics under different growing conditions for barley, wheat, and durum wheat. Relative yield loss was best explained by the ‘percentage of tillers with D. noxia’ (%TwRWA) with 0.28% yield loss per percent of tillers with D. noxia, which is significantly lower than 0.46–0.48% for susceptible winter wheat varieties in dryland conditions in the United States. Highest infestation levels were typically reached around GS40–50. To develop an action threshold, we calculated the rate of increase in the %TwRWA through time at 0.021% per day per %TwRWA (with little variation across sites). This allowed prediction of the expected maximum %TwRWA based on observations post tillering (GS30) and the expected duration before GS50 is reached. For earlier growth stages (<GS30), we were unable to determine yield impact and action thresholds since cereal plants produce many new tillers between GS20 and GS30, which may compensate for feeding damage as reported in other studies. This research should improve the cost-effectiveness of management decisions involving D. noxia in Australian cereal production systems.
Several species of eriophyid mites are important economic pests of timothy grass in the Mid-Atlantic United States. Feeding causes stunting, curling, and brown discoloration of leaves, and yield losses ranging up to 50%. Carbaryl is the only approved chemical control for these mites. We investigated the population dynamics of field infestations, host plant resistance, and several cultural control measures to develop a more sustainable management strategy. Seasonal phenology and overall abundance differed among timothy fields and between years, with mean peak densities ranging up to 731 eggs and 1,163 mites per 2.5 cm of leaf blade. Population differences were related to the age of the field, the prevailing temperatures, and snow cover during the fall and winter months. All varieties of timothy tested were susceptible, whereas several other forage grasses were significantly resistant to eriophyid mites as possible alternatives for replacing timothy. Fall harvesting reduced the buildup of mites during the winter but populations eventually rebounded and still reached economic densities by April. Burn-down herbicide, prescribed burning, and urea-based fertilizer treatments prior to green-up in the early spring had variable effects and may help to prevent economic losses; however, several concerns about the benefit/costs and practicality of these practices are discussed.
Aphids (Hemiptera: Aphididae) are serious pests of pecan foliage (Carya illinoinensis [Wangenh.] K. Koch). The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeds on pecan foliage and elicits leaf chlorosis that can cause defoliation. In contrast, the blackmargined aphid, Monellia caryella (Fitch) (Hemiptera: Aphididae), and yellow pecan aphid, Monelliopsis pecanis Bissell (Hemiptera: Aphididae), feed on pecan foliage but do not elicit chlorotic feeding injury. Application of gibberellic acid (GA3) to pecan foliage reduces chlorotic foliar injury and nymphal populations of the black pecan aphid. GA3 has potential to manage black pecan aphid later in the season when broad-spectrum insecticides are used to control direct pests of pecan nuts but also inadvertently induce aphid outbreaks. Here, broad-spectrum insecticides were used with GA3 or aphicides in orchard trials for 2 yr. Populations of aphids and natural enemies along with chlorotic feeding injury on foliage were assessed. When used concurrently with GA3 or aphicides, broad-spectrum insecticides did not flare black pecan aphid populations. However, combined populations blackmargined aphids and yellow pecan aphids were higher in treatments with GA3 than with an aphicide or in the control treatment during one of two years. Application of GA3 or the aphicide often led to significantly less chlorotic injury than observed in the control. Surprisingly, natural enemies were not significantly affected by broad-spectrum insecticides when applied concurrently with GA3. These results show that GA3 can be used as part of a late-season IPM strategy to protect foliage from localized chlorotic leaf injury elicited by the black pecan aphid.
Allium leafminer, Phytomyza gymnostoma Loew (Diptera: Agromyzidae), is an invasive pest of allium crops in North America. Spinosyn insecticides, spinetoram and spinosad, have been effective choices for managing P. gymnostoma infestations in allium crops, but their use should be optimized for economical and resistance management purposes. In New York from 2018 through 2020, performance of each spinosyn insecticide was evaluated by making two applications spaced either 1 or 2 wk apart beginning at various intervals after P. gymnostoma was first detected in the field; a weekly spray program also was included. Results indicated that weekly applications of each spinosyn insecticide provided ≥98% reduction of P. gymnostoma densities in scallions and leeks relative to the untreated control. Spinetoram applied twice, regardless of initial timing and duration between sprays, provided an acceptable level of P. gynostoma control (71 to 98% reduction in densities relative to the untreated control). Spinosad also was effective when applied twice (85 to 95% reduction in densities relative to the untreated control), but not when sprays were made consecutively beginning when P. gymnostoma was first detected and not when the P. gymnostoma infestation was extremely high (i.e., 38 insects per plant in the untreated control). Management of P. gymnostoma with spinosyns can be successful with only two applications, but control tended to be best when first applied 2 to 3 wk after initial detection. Optimizing applications of spinetoram and spinosad will save growers time, reduce insecticide costs, and mitigate resistance development without significantly increasing the risk of yield reduction.
The red imported fire ant, Solenopsis invicta Buren, was first discovered in Japan in 2017. As this ant remains at the early invasion stage, efforts in establishing a rapid-response framework, such as evaluating available control methods, are urgently needed. Despite the presence of numerous household insecticides against invasive/household pest ants in Japan, the effects of these products on fire ants remain poorly understood. This study assessed the efficacy of two bait products designed to target common household ant pests in Japan on S. invicta through under laboratory and field conditions in Taiwan. The two baits are Arino-su-korori (AK), a granule-formulated bait product with hydramethylnon as an active ingredient (A.I.), and Hyper Arino-su-korori (HAK), a paste-formulated bait with fipronil as A.I., respectively. We showed that both AK and HAK resulted in more than 99% mortalities of fire ant within 8 wk under laboratory conditions and significantly reduce fire ants' foraging activities in the field. AK generally performed slightly better than HAK in terms of the time required to achieve total laboratory colony elimination and also long-term suppression of field fire ants. Such differences most likely are attributable to the active ingredient's mode of action and/or formulation and their interactions with fire ant biology. This study demonstrates the feasibility of the two bait products in effectively controlling laboratory and field fire ants, thus representing a promising candidate pest management tool to cope with ongoing/future fire ant invasions in Japan.
This study evaluated intra- and interspecific variation regarding the susceptibility to insecticides of key pentatomid pests of soybean (Glycine max L.) and maize (Zea mays L.) crops in Brazil. To perform bioassays, populations of Euschistus heros (F.), Diceraeus (=Dichelops) furcatus (F.), Nezara viridula (L.), and Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) were collected in soybean fields in Southern Brazil during the 2020/2021 crop season. Then, stink bugs were exposed to doses of commercial insecticides commonly applied for its control in dip-test bioassays using fresh green bean pods. In general, all stink bug species and populations studied were susceptible to acephate, acetamiprid + bifenthrin, imidacloprid + bifenthrin, and ethiprole, with mortality rates > 80%. Most populations of E. heros and D. furcatus, considered the main stink bugs that attack soybean and maize, respectively, presented low or intermediate susceptibility to acetamiprid + α-cypermethrin, ζ-cypermethrin + bifenthrin, dinotefuran + λ-cyhalothrin, and bifenthrin + carbosulfan. Except for bifenthrin + carbosulfan (mortality < 57%), secondary stink bugs species that attack soybean (N. viridula and P. guildinii) showed pronounced susceptibility to all insecticides tested, with mortality rates > 70%. In summary, the populations of E. heros and D. furcatus showed diminished susceptibility to various insecticides formulated with the mixture of neonicotinoids + pyrethroids, whereas N. viridula and P. guildinii were most susceptible to the insecticides evaluated. The implications of these findings to integrated and resistance management programs are discussed.
The banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is an economically important insect pest of bananas. It causes up to 100% yield losses and substantial lifespan reduction in bananas. Advances in genomics, proteomics, and sequencing technologies have provided powerful pathways to genotyping disastrous pests such as C. sordidus. However, such technologies are often not available to the majority of rural subtropical African banana growers and pest control managers. This study was therefore motivated by the need to create cheap and easily accessible C. sordidus genotyping methods that could be deployed by banana pest control managers to the benefit of C. sordidus control programs in the tropics where such advanced technologies are not readily accessible. We used an in-house C. sordidus transcriptome from the an-ongoing study from which we mined an array of simple sequence repeat (SSR) markers. Of these, six highly polymorphic transcriptome-derived SSR markers were used to successfully genotype within and among banana weevil population genetic diversity of 12 C. sordidus populations collected from four banana-growing agro-ecological zones (AEZs) in Uganda. The developed transcriptome-derived SSR markers can be used by researchers in population genetics for characterization of the C. sordidus and identification of new genes that are linked to traits of particular interest. The significant genetic diversity revealed in C. sordidus provides pertinent information for integrated pest management strategies.
The apple maggot, Rhagoletis pomonella (Walsh), was introduced into the apple-growing regions of the Pacific Northwest in the U.S.A. during the past 60–100 yr. Apple maggot (larvae, puparia, and adults) is difficult to distinguish from its morphologically similar sister species, Rhagoletis zephyria Snow, which is native and abundant in the Pacific Northwest. While morphological identifications are common practice, a simple, inexpensive assay based on genetic differences would be very useful when morphological traits are unclear. Here we report nucleotide substitution and insertion–deletion mutations in the nontranscribed spacer (NTS) of the ribosomal RNA gene cistron of R. pomonella and R. zephyria that appear to be diagnostic for these two fly species. Insertion–deletion variation is substantial and results in a 49 base-pair difference in PCR amplicon size between R. zephyria and R. pomonella that can be scored using agarose gel electrophoresis. PCR amplification and DNA sequencing of 766 bp of the NTS region from 38 R. pomonella individuals and 35 R. zephyria individuals from across their geographic ranges led to the expected PCR fragments of approx. 840 bp and 790 bp, respectively, as did amplification and sequencing of a smaller set of 26 R. pomonella and 16 R. zephyria flies from a sympatric site in Washington State. Conversely, 633 bp mitochondrial COI barcode sequences from this set of flies were polyphyletic with respect to R. pomonella and R. zephyria. Thus, differences in NTS PCR products on agarose gels potentially provide a simple way to distinguish between R. pomonella and R. zephyria.
Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ΔCt methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
Juliano de Bastos Pazini, Anderson Dionei Grützmacher, Enio Júnior Seidel, Aline Costa Padilha, Fernando Felisberto da Silva, Daniel Bernardi, Michael Orrin Way, José Francisco da Silva Martins
Plant resistance is a key strategy for the management of Oryzophagus oryzae (Costa Lima) (Coleoptera: Curculionidae), an important pest in South American rice paddies. The present study investigated the resistance of rice cultivars in terms of feeding and oviposition preference, growth, development, and biological performance of O. oryzae under natural conditions of field infestation during two consecutive rice seasons. There were no effects of the six cultivars on the feeding and oviposition preferences of O. oryzae as evaluated 5, 8, and 11 d After Flooding (DAF) of the plots, indicating the absence of antixenosis. Cultivars did not differ in terms of egg viability and larval density of first instars on the roots at 15 DAF. Significant differences were found 25 and 35 DAF when larval density per sample was high on ‘BRS Pampa CL' (up to 24.5), intermediate on ‘BRS Querência' and ‘BRS Ligeirinho' (up to 16.1), and low on ‘BRS Atalanta', ‘BRS Firmeza’, and ‘Dawn’ (up to 8.8). The cultivars ‘BRS Atalanta’, ‘BRS Firmeza’, and ‘Dawn’ caused malnutrition and inhibition of larval growth. These effects, typical of antibiosis, resulted in delayed pupation and emergence of adults; in addition, emerged females had body weight decreased strongly. The cultivars BRS Pampa CL, BRS Querência, and BRS Ligeirinho are susceptible, resulting in high larval populations and more suitable development of O. oryzae; antibiosis, as indicated for ‘BRS Atalanta’, ‘BRS Firmeza’, and ‘Dawn’, probably is the key mechanism of rice resistance to O. oryzae.
High levels of genetic diversity are critical to the success of breeding programs. Russian honey bees are a selected stock that undergoes breeding in a closed block-based mating system. Given its established history, Russian stock has longitudinal measures of genetic integrity (i.e., genetically based stock identity) and diversity. Assessments using genetic stock identification (GSI) have shown that genetic diversity parameters were assessed across breeding blocks for three generations, spanning 6 yr (2014, 2017, and 2020), showing levels comparable to those when the stock was initially released in 2008. Allelic richness (mean number of alleles) and gene diversity levels were consistent over time and among blocks. Blocks were generally not differentiated from one another within each year. However, the 2020 population was distinct when compared with bees sampled in both 2014 and 2017. Genetic distance relationships supported differentiation of the 2020 population by distinct clustering. The patterns observed here are consistent with historical changes made to the breeding program to increase stringency of the selection criteria.
Little is known about how simultaneous antagonistic interactions on plants and pollinators affect pollination services, even though herbivory can alter floral traits and parasites can change pollinator learning, perception, or behavior. We investigated how a common herbivore and bumble bee (Bombus spp.) parasite impact pollination in tomatoes (Solanum lycopersicum L.) (Solanales: Solanaceae). We exposed half the plants to low-intensity herbivory by the specialist Manduca sexta L. (Lepidoptera: Sphigidae), and observed bumble bee visits and time spent on flowers of damaged and control plants. Following observations, we caught the foraging bees and assessed infection by the common gut parasite, Crithidia bombi Lipa & Triggiani (Trypanosomatida: Trypanosomatidae). Interestingly, we found an interactive effect between herbivory and Crithidia infection; bees with higher parasite loads spent less time foraging on damaged plants compared to control plants. However, bees did not visit higher proportions of flowers on damaged or control plants, regardless of infection status. Our study demonstrates that multiple antagonists can have synergistic negative effects on the duration of pollinator visits, such that the consequences of herbivory may depend on the infection status of pollinators. If pollinator parasites indeed exacerbate the negative effects of herbivory on pollination services, this suggests the importance of incorporating bee health management practices to maximize crop production.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere