BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.
Intensified agriculture reduces natural and seminatural habitats and plant diversity, reducing forage available to honey bees (Apis mellifera L. [Hymenoptera: Apidea]). In agricultural landscapes of Iowa, United States, we studied the impact of extrinsic agricultural intensification on the availability of pollen for honey bees by placing colonies next to soybean fields surrounded by either a low or high level of cultivation.The abundance and diversity of pollen returned to a colony were estimated by placing pollen traps on bee colonies during the summer and fall of 2015 and 2016. We observed no difference in abundance and diversity of pollen collected by colonies in either landscape, but abundance varied over time with significantly less collected in September. We explored if the most commonly collected pollen from these landscapes had the capacity to support honey bee immune health by testing if diets consisting of these pollens improved bee resistance to a viral infection. Compared to bees denied pollen, a mixture of pollen from the two most common plant taxa (Trifolium spp. L. [Fabales: Fabaceae] and Chimaechrista fasciculata (Michx.) Greene [Fabales: Fabaceae]) significantly reduced honey bee mortality induced by viral infection.These data suggest that a community of a few common plants was favored by honey bees, and when available, could be valuable for reducing mortality from a viral infection. Our data suggest a late season shortage of pollen may be ameliorated by additions of fall flowering plants, like goldenrod (Solidago spp. L. [Asterales: Asteraceae]) and sunflower (Helianthus, Heliopsis, and Silphium spp. [Asterales: Asteraceae]), as options for enhancing pollen availability and quality for honey bees in agricultural landscapes.
Polistes paper wasps in the Fuscopolistes subgenus (Hymenoptera: Vespidae) can be serious pests when they swarm at tall man-made structures. Chemical attractants may be useful to trap such paper wasps when they achieve pest status. Polistes venom has been shown to elicit a variety of behavioral responses in congeneric wasps, making it a source for potential chemical attractants. The compound N-(3-methylbutyl)acetamide is a principal volatile component in the venom of many female vespid wasps, including numerous Polistes species. We report the presence of N-(3-methylbutyl)acetamide in autumn gynes of Polistes metricus Say, Polistes bellicosus Cresson, and Polistes dorsalis (F.), as well as workers of Polistes aurifer (Saussure), P. bellicosus, P. metricus, and P. dorsalis. In field tests conducted in Florida, Georgia, South Carolina, and Washington, N-(3methylbutyl)acetamide attracted male and female P. aurifer and P. metricus, as well as male P. dorsalis and P. bellicosus. Thus, N-(3-methylbutyl)acetamide may be a useful lure for trapping these paper wasps in pest situations.
Cold hardy citrus is an emerging industry in north Florida. However, it is under the threat of Candidatus Liberibacter asiaticus (CLas), the agent of the citrus disease huanglongbing. Distribution and phenology of the Asian citrus psyllid, Diaphorina citri (Kuwayama), the vector of CLas, was investigated over a 2-year sampling period in north Florida. Diaphorina citri was only found in backyard and ornamental citrus along the Gulf of Mexico, and was not observed in cultivated citrus groves during the 2 years (2017–2018) of the survey. Diaphorina citri population peaks occurred approximately 2 mo later than in central Florida with major population peaks occurring in July. The number of D. citri adults was significantly higher on CLas infected than uninfected citrus trees, whereas more nymphs were found on uninfected trees. Most D. citri were negative for CLas except in Franklin county where both infected trees and psyllids were found. We were able to find adult D. citri during all winter months, despite temperatures as low as –5.5°C. During two consecutive winters, we conducted experiments to determine D. citri cold hardiness by caging D. citri under ambient conditions in mid-November and assessing survivors in the following spring. In 2018, approximately 21%, of D. citri adults survived overwintering whereas 16% survived in 2019 despite lower temperature in 2018 than in 2019. As we are at the earliest stage of HLB infestation, management of D. citri and CLas in north Florida should focus on removal of CLas-infected trees to reduce the reservoir of pathogen.
The Mexican fruit fly, Anastrepha ludens Loew, is a significant pest in mango and citrus production areas of Mexico. In this study, we evaluated the effects of some geographic characteristics, rainfall period, soil micro-environmental, and soil coverage variables on the occurrence of entomopathogenic fungi (EPF) associated with A. ludens larvae in soils of mango, grapefruit and mixed crops in central Veracruz state, Mexico. EPF isolates were characterized morphologically and identified by sequence analysis of elongation factor (EF1-1018F, EF1-1620R). We recorded four species of EPF (Metarhizium robertsii J.F. Bisch, S.A. Rehner & Humber [Hypocreales: Cordycipitaceae], M. brunneum Petch [Hypocreales: Cordycipitaceae], M. pinghaense Q.T. Chen & H.L. Guo [Hypocreales: Cordycipitaceae], and Beauveria bassiana (Balsamo) Vuillemin [Hypocreales: Cordycipitaceae]), of which Metarhizium robertsii was the most abundant and the most virulent. Also, we found that rainfall period, organic matter, coverage of herbs and forbs, and calcium levels modulated EPF occurrence. We estimated lethal concentrations for A. ludens larvae of the four most promising isolates, V3-123, V3-160, V1-332, and V3-369. Our results suggest that M. robertsii obtained from agricultural soils holds potential as a biological control agent for A. ludens.
The spotted wing drosophila, Drosophila suzukii Matsumura, has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe in the last decade. Females oviposit in ripening fruit, and significant economic losses can occur. Control measures are mainly associated with the use of pesticides, but the sterile insect technique (SIT), an ecologically friendly pest-specific method, could be used against this species. The objective of this study was to estimate the mass rearing, quality control parameters, and bioconversion using four artificial larval diets and their economic aspects oriented to the SIT application. Diets were based on the combination of coconut fiber, corncob powder, Brewer's and Torula yeast and were used as oviposition substrate and larval development. We found that a life cycle is completed in 10.19 ± 0.35 d and that adults live an average of 33.67 ± 0.76 d. The highest number of pupae per gram of diet and the maximum bioconversion (6%) were associated with flies developed in the coconut fiber + Brewer's yeast diet. Under our conditions, the establishment of D. suzukii required at least four generations. The use of 30 × 40 × 30 cm Plexiglas cages, each loaded with 5,000 adults and stocked with 500 g of coconut fiber and Brewer's yeast diet distributed in 15 × 5 × 10 cm plastic trays with a diet layer 3-cm thick, allows a minimum production of 84,000 pupae of D. suzukii per day.
The lethal exposure time to controlled atmospheres of high nitrogen at stored grain temperatures is an important information for control of stored-product insects. The mortality of 1-d-old egg, 1-wk-old (first or second instar) larva, 3-wk-old (fourth or fifth instar) larva, and 1-d-old pupa of Plodia interpunctella (Hübner) was determined at 18 ± 1, 23 ± 1, and 28 ± 1°C in 98% N2 mixed with air. At 18°C, the lethal exposure times to achieve 100% mortality were 12.7 ± 0.7, 16.3 ± 0.3, 19.7 ± 0.7, and 14.7 ± 0.7 d for 1-d-old egg, 1-wk-old larva, 3-wk-old larva, and 1-d-old pupa, respectively. Temperature had significant effect on the lethal exposure time, and increase of the temperature significantly decreased the lethal exposure time. The order of the insect stages from the highest to lowest for LT50 values was follows: 3-wk-old larva > 1-wk-old larva > 1-d-old pupa ≥ 1-d-old egg. The minimum lethal exposure times required to kill all stages of P. interpunctella were about 20, 16, and 12 d at 18, 23, and 28°C, respectively.
Diet quality widely affects the survival, development, fecundity, longevity, and hatchability of insects. We used the greater wax moth Galleria mellonella (Linnaeus) to determine the effects of the antifungal, antibiotic terbinafine on some of its' biological parameters. The effects of terbinafine on malondialdehyde (MDA) and protein carbonyl (PCO) contents and the activity of the detoxification enzyme, glutathione S-transferase (GST), in the midgut of seventh-instar larvae of G. mellonella were also investigated. The insects were reared on an artificial diet containing terbinafine at concentrations of 0.001, 0.01, 0.1, and 1 g. The survival rates at all development stages of G. mellonella were significantly decreased at all terbinafine concentrations. The females from a control diet produced 82.9 ± 18.1 eggs; however, this number was significantly reduced to 51.4 ± 9.6 in females given a 0.1 g terbinafine diet. The highest concentration of terbinafine (1 g) completely inhibited egg laying. Terbinafine significantly increased MDA content and GST activity in the midgut tissue of seventh-instar larvae in a dose-dependent manner. Relative to controls, these low dietary concentrations of terbinafine significantly increased midgut PCO content; a 0.1 g terbinafine concentration raised PCO content from 155.19 ± 21.8 to 737.17 ± 36.4 nmol/mg protein. This study shows concentration-dependent effects on the biological traits of the greater wax moth G. mellonella, including the oxidative status and detoxification capacity of the midgut. Low terbinafine concentrations may be possible for use as an antifungal agent in insect-rearing diets.
We determined the potential of the entomopathogenic fungus Metarhizium brunneum Petch (Hypocreales: Clavicipitaceae) F52 strain, and of a microsclerotial formulation, for the control of the annual bluegrass weevil, Listronotus maculicollis Kirby, which is a major pest of golf course turf in eastern North America with widespread insecticide resistance. Under laboratory conditions in Petri dishes with moist sand, the microsclerotia (23–46 kg granules/ha) caused high rates of mortality (85–100%) and infection (67–80%) in annual bluegrass weevil adults, but these levels did not occur until after 9 d at constant 26°C and 12–15 d at 14 h at 23°C and 10 h at 17°C. Production of viable conidia was marginally higher at the higher temperature regime (7.3 vs. 5.2 × 109 per gram of granules). Application of microsclerotia did not provide significant control and infection of adults in pots with grass in the greenhouse. In field trials targeting spring generation larvae, microsclerotia application (50–100 kg granules/ha) was ineffective, and coapplication of hydrogel to stabilize soil moisture did not increase larval control. A liquid M. brunneum F52 conidial formulation (4.75–9.5 × 1013 colony forming units/ha) provided up to 51% control. Combinations of M. brunneum F52 with the neonicotinoid insecticide imidacloprid provided additive control with up to 70% control with the conidial formulation. Field efficacy was probably limited by suboptimal temperatures for the fungus, and future tests need to examine whether higher control rates can be achieved in applications targeting the summer generation larvae.
Okinawan sweet potato, Ipomoea batatas, is an important food staple and export crop for the Island of Hawaii. Cylas formicarius elegantulus, sweet potato weevil, is a major quarantine pest that causes severe destruction to the crop. Root malformation and a bitter taste occur when larvae feed and tunnel within the storage root. Off-grade roots are often left in the field after harvest and serve as a reservoir for the weevils. Current management involves the unsustainable practice of moving to virgin land for the next cropping cycle. Strains of Heterorhabditis indica isolated from the Hawaiian Islands were tested for their efficacy at causing mortality of C. formicarius and reducing the emergence of adults from infested roots. In well plate assays, H. indica caused mortality of 88% larvae, 96% pupae, and 4% adults after 48 h. When applied to infested roots, the nematodes caused an average mortality of 78% larvae, 66% pupae, and 32% adults. Greater mortality was observed at the highest inoculum levels (10,000 infective juveniles per storage tuber) but a reduction of 90% inoculum density was still effective at weevil management. In simulated field trials, infestation of storage roots was reduced by 42–99.6% when planted among infested roots that had been inoculated with H. indica. Rates of 2.5 billion IJs/hectare were just as effective as 5 billion IJs/hectare. Application of local H. indica strains in sweet potato production has the potential to manage C. formicarius populations and allow for consecutive cropping seasons.
Improvements in the mass rearing of Diachasmimorpha longicaudata (Ashmead) on larvae of the Vienna-8 temperature-sensitive lethal genetic sexing strain of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) (= GSS Vienna-8) at the San Juan biofactory, Argentina, are currently under way. Lowering cost production is a key factor regarding parasitoid rearing. Thus, the variation in mass-reared parasitoid encapsulation levels and the incidence of superparasitism were determined; also, the gamma radiation dose-effect relation on host larvae and the influence of Mediterranean fruit fly strain were considered. Naked Mediterranean fruit fly larvae of both GSS Vienna-8 and a wild bisexual strain (= WBS) aged 6-d-old were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, and exposed to parasitoid females. Melanization level was tested for encapsulated parasitoid larval first-instars (= L1). Non-irradiated and irradiated WBS larvae at 20–40 Gy displayed a significantly higher incidence of encapsulation when compared with GSS Vienna-8 larvae. The low melanized level in encapsulated parasitoid L1 was the most common melanization process at 72 h puparium dissection. A high melanized level was only found in non-irradiated WBS larvae. Irradiated GSS Vienna-8 larvae can neutralize the host immunological reactions over irradiated WBS larvae much more quickly. Superparasitism intensity in both Mediterranean fruit fly strains was not affected by radiation doses. High levels of superparasitism seemingly helped to overcome the host's immune reaction by the surviving parasitoid larva. Parasitoid emergence increased from 60 Gy onwards in both Mediterranean fruit fly strains. Radiation in GSS Vienna-8 larvae may favor host's antagonistic reactions decrease in relation with D. longicaudata development.
Climate change has been linked to shifts in the distribution and phenology of species although little is known about the potential effects that extreme low winter temperatures may have on insect host–parasitoid interactions. In late January 2019, northern regions of the United States experienced a severe cold wave caused by a weakened jet stream, destabilizing the Arctic polar vortex. Approximately 3 mo later at six study sites in southern Michigan and three in southern Connecticut, we sampled the overwintering larvae of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), and two larval parasitoids, Spathius galinae (Hymenoptera: Braconidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae), that are being introduced as emerald ash borer biocontrol agents in North America. At these nine study sites, emerald ash borer-infested ash trees and/or saplings were debarked and each overwintering emerald ash borer and parasitoid larva was then examined for cold-induced mortality, as indicated by a brown coloration, flaccid, and watery consistency. In early spring in Michigan, we found 4.5–26% of emerald ash borer larvae, 18–50% of S. galinae larvae, and 8–35% of T. planipennisi larvae were killed by cold. In Connecticut where temperatures were more moderate than in Michigan during the 2019 cold wave, <2% of the larval hosts and parasitoids died from cold injury. Our findings revealed that cold-induced mortality of overwintering larvae of emerald ash borer and its larval parasitoids varied by location and species, with higher mortality of parasitoid larvae in most Michigan sites compared to host larvae. The potential impacts of our findings on the management of emerald ash borer using biocontrol are discussed.
The efficacy of sulfuryl fluoride was evaluated for control of fourth-instar pecan weevil, Curculio caryae (Horn), at 25°C for a 24-h exposure. Larvae, collected as they naturally emerged from pecans, were used to artificially infest pecan nuts. Infested nuts were fumigated with six concentration by time (CT) treatment dosages of sulfuryl fluoride (0–750 g-h/m3) within air-tight, glass containers. The sulfuryl fluoride concentration in each fumigation container was analyzed 30 min after sulfuryl fluoride introduction and just prior to termination of the experiment. Mean sulfuryl fluoride CT dosages were calculated from sulfuryl fluoride measurements and were used for probit analysis. The lethal accumulated dosage (LAD99) of sulfuryl fluoride for pecan weevil was 1052.0 g-h/m3 with a 95% C.I. of 683.21–2,573.0 g-h/m3. For the confirmatory trial, we used two sulfuryl fluoride CT dosage treatments, 1,100 and 1,300 g-h/m3, and a nonfumigated control. All larvae were dead in both fumigation treatments by 14-d postfumigation. Due to higher mortality in the nonfumigated control in the confirmatory trial compared to that of the dose–response trial, 1300 g-h/m3 was selected as the sulfuryl fluoride CT dosage for a proposed quarantine treatment schedule. Fumigating pecans with sulfuryl fluoride can control larval pecan weevil infestations in commercially traded nuts and maintain compliance with quarantine regulations both within and outside the United States.
The host status of sweet granadilla (Passifflora ligularis Juss.) to Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) in Peru was determined. Experiments were conducted in Pasco (Peru) in four different orchards, over 2 yr (2016 and 2017), two orchards per year. Choice (granadilla plus natural host) and no-choice foraging behavior trials were conducted using sleeves under field conditions, and forced infestation was examined in laboratory cages, with five females per fruit.The development time of C. capitata was determined, and the oviposition behavior of C. capitata and A. fraterculus was examined.Three fruit maturity stages of intact (n = 1,320) and punctured (n = 1,320) granadilla fruits were examined. Adult C. capitata (n = 4,418) and A. fraterculus (n = 2,484) were trapped in the orchards, and commercial granadilla fruits (n = 1,940) sampled and dissected. Fruit fly infestation was not found in any intact granadilla fruits. Larvae and pupae were found inside punctured granadilla only in fruits broken after 20 d, and adults only emerged when those pupae were removed from the fruit. Ceratitis capitata development time was longer in punctured granadilla than that in host fruit. In the oviposition test, A. fraterculus and C. capitata did not lay eggs in intact granadilla, and C. capitata laid eggs in punctured fruits but larvae were not found. Because of the resistance mechanisms of the pericarp, commercial fruits of Passiflora ligularis are not a natural host of C. capitata and A. fraterculus in Peru.
Vanessa S. Dias, Guy J. Hallman, Amanda A. S. Cardoso, Nick V. Hurtado, Camilo Rivera, Florence Maxwell, Carlos E. Cáceres-Barrios, Marc J. B. Vreysen, Scott W. Myers
The Anastrepha fraterculus (Wiedemann) complex is currently comprised of at least eight morphotypes, including several that are likely to be described as new species. It is critical to evaluate whether the morphotypes differ in tolerance to phytosanitary treatments. Temperatures from 0 to 3°C are used as a phytosanitary treatment for some commodities exported from the region and at risk of infestation by the A. fraterculus complex. Description of A. fraterculus morphotypes as new species could result in the annulation of phytosanitary treatment schedules for the new species. This study compared the relative cold tolerance of five populations from three morphotypes of the A. fraterculus complex: Andean, Peruvian, and Brazilian-1. Both a laboratory and wild strain of the Brazilian-1 morphotype were studied. Differences in mortality of third instars of the five A. fraterculus populations reared on nectarines were observed only with short treatment durations at temperatures ranging from 1.38 ± 0.04°C to 1.51 ± 0.08°C (mean ± SEM). Estimated times to achieve the LT99.99682 (probit 9) showed that Brazilian-1 wild, Brazilian-1 laboratory, and Cusco population were the most cold tolerant, followed by Andean and Peruvian, the least cold tolerant morphotype (i.e., Brazilian-1 wild = Brazilian-1 laboratory = Cusco population > Andean > Peruvian). These findings suggest that the current cold treatment schedules of 15 d at ≤ 1.11°C and 17 d at ≤ 1.67°C can be applied as cold treatments to any potential new species that may arise from the A. fraterculus complex.
Although international regulations have been successfully implemented to reduce the introduction and spread of plant pests through wood packaging material (WPM), wood-boring insects continue to be intercepted in WPM at U.S. ports of entry. Both hardwoods and softwoods are used in the construction of WPM for international trade; however, it is not clear if some types of wood pose higher risks than others for harboring wood borers. This study documented the taxonomic diversity of infested wood genera intercepted as a result of targeted WPM inspection at U.S. ports, and identified many of the wood-boring insects transported within them. The results of this study reveal associations among packaging woods, commodities, and shipment origins. The wood genera most frequently infested were Pinus Linnaeus (Pinales: Pinaceae), Picea Miller (Pinales: Pinaceae), and Populus Linnaeus (Malpighiales: Salicaceae), which were heavily represented as packaging for commodities such as stone, metal, vehicles, and machinery. In addition to these results, we summarized preferences by the wood borers to develop in living, stressed, dying, or dead hosts, the pest status of intercepted wood borers in their native and non-native ranges, and potential host range of intercepted wood borers to gauge potential for these taxa to become pests in North America. New possible host associations are reported for eight wood borer taxa. Taxonomy of host wood is presented as a new factor for consideration in pathway-level risk analysis of WPM, and the findings further reinforce the need for enhanced compliance with ISPM 15 to reduce entry of non-native wood-boring insects.
The grasshopper Calliptamus abbreviatus Ikonn is a significant pest species distributed across the northern Asian grasslands. Grasshopper plagues often result in significant loss to plant biomass and subsequent deterioration of grass quality that leads to economic depletion. To better understand the close relationship between C. abbreviatus and host plant species, a 2-yr study was conducted. Results showed that the relative density of C. abbreviatus was positively correlated with aboveground biomass of the plant Artemisia frigida. We hypothesized that A. frigida, the most favorable food resource, was optimal for growth performance and that the presence of this plant species led to C. abbreviatus plagues. A controlled feeding trial showed that C. abbreviatus had better growth performance (i.e., survival rate, body mass, and growth rate) when fed on A. frigida and this host was preferred over other plant species since the consumption and food utilization efficiency on plant was comparatively greater. These results were consistent with the distribution of C. abbreviatus in the grassland and suggested that the presence of A. frigida significantly improved C. abbreviatus growth performance. These findings will be useful for designing improved pest management strategies in response to grassland vegetation succession due to grazing, climate change, or human interference.
Temperature-driven development of myoporum thrips, Klambothrips myopori (Thysanopetra: Phlaeothripidae), was examined at seven constant temperatures (15, 17, 20, 25, 30, 34, and 35.5°C) on Myoporum laetum Forst (Lamiales: Scrophulariaceae). Thrips successfully completed development to adult stage between 15 and 35.5°C. One linear and three nonlinear models were fitted to describe developmental rates of K. myopori as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (Tmin, Topt, and Tmax). The Briere-1 model performed best in describing the developmental rate of cumulative life stages. Two ecological niche models, CLIMEX and Maxent, were used to predict the geographic distribution of K. myopori in its native range and globally. Overall predictions of environmental suitability differed greatly across models. The CLIMEX model accurately predicted known invasive and native localities, while the Maxent model failed to predict the native localities and parts of the invasive range. Based on the CLIMEX model, K. myopori has the potential to establish in many regions of the globe.
The biocontrol values of natural enemies are strongly correlated to their ability to regulate the density of their host/prey. For parasitoids, apart from parasitism and host feeding, unsuccessful host stinging (i.e., stings that were aborted, abandoned, or discontinued without oviposition or host feeding) can also negatively affect their hosts and host populations. Although several studies have reported unsuccessful host stinging and its impacts on hosts, the effects of this type of attack on host life table parameters are still unclear. In the present study, we used the parasitoid Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and its host Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) to investigate the influence of unsuccessful host stinging on host populations under laboratory conditions at. Biological parameters of A. pisum were analyzed using an age stage, two-sex life table. The results of this study showed that unsuccessful host stinging was prevalent under laboratory conditions, and the frequency of this type of attack on third- and fourth-instar hosts was higher than the frequencies of parasitism and host feeding. Unsuccessful host stinging adversely impacted aphid populations, by decreasing aphid survival and reproduction, and impacts were greatest in hosts attacked at the first and fourth instars.These results indicate that unsuccessful host stinging enhances the biological control impact of A. asychis attacking A. pisum, and its effect on host populations should also be considered when selecting and mass rearing of parasitoids for biological control.
Black soldier fly larvae, Hermetia illucens (L.), are used to convert organic waste streams into insect-based animal feeds. We tested their ability to retain alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from feeding substrates, which has important implications for their use in aquaculture. When supplementing a chicken feed diet with increasing concentrations of salmon oil (0–42%) over an increasing number of days (0–8), the concentrations of the three omega-3 acids in larvae increased significantly. Larval survival and biomass accumulation were not affected. Supplementing a chicken feed diet with increasing concentrations (0–14%) of Tetraselmis chui Butcher (Chlorodendrales: Chlorodendraceae) microalgae paste also significantly increased ALA and EPA contents of the harvested larvae. However, microalgae also decreased survival, harvested biomass, and individual growth of larvae feeding on the diet with the highest supplement concentration (14%). DHA was not detected in any microalgae diet or subsequent larval tissue samples. All three omega-3 polyunsaturated fatty acids tested in this study were accumulated in dose-dependent manner, with quadratic, and occasionally linear, equations providing the best description of the observed relationships. There were significant negative correlations between several fatty acids, indicating that they may replace one another in living larvae. Our findings confirm that black soldier fly larvae can retain ingested fatty acids and change fatty acid profiles in their tissues accordingly. However, optimizing nutrient content of harvestable larvae is likely to be more complicated than simply enriching their diets with omega-3 fatty acids.
The use of selective insecticides aids farmers in maintaining pest populations below the economic threshold level. The integrated use of biological and chemical control is only possible if the effects of insecticides on natural enemies are studied. Although the IOBC/WPRS standards allow us to compare these studies worldwide, the methods used are sometimes inconsistent. This study determined the effects of ready-mix insecticides applied on pupae of Trichogramma pretiosum (Riley, 1879) (Hymenoptera:Trichogrammatidae) and compared the effects on emergence of two different methods of exposing T. pretiosum pupae to insecticides: immersed or sprayed using a Potter tower. Both methods gave the same results, indicating that they can be compared. Moreover, it is important to go beyond IOBC/WPRS classification and study the effects of pesticides on different biological parameters of natural enemies. This additional step may increase the likelihood of successful integration of biological and chemical control. Based on the emergence reduction, Chlorantraniliprole + lambda-cyhalothrin, abamectin + chlorantraniliprole, and alpha-cypermethrin + teflubenzuron were classified as innocuous (class 1). Cypermethrin + profenofos and cyproconazole + thiamethoxam were classified as slightly harmful (class 2). Methanol + methomyl and lufenuron + profenofos were classified as harmful (class 4). Abamectin + chlorantraniliprole, although classified as innocuous, reduced the parasitism, longevity, and flight capability of the adult parasitoids. None of these insecticides altered the emergence and sex ratio of the second generation.
An important step to devise appropriate pest management strategies for armyworms (Lepidoptera: Noctuidae) in Bacillus thuringiensis Berliner (Bt) crops is to determine the lethal, sublethal, and parental effects of Bt toxins on target and nontarget pest species. Here we documented the susceptibility of black armyworm, Spodoptera cosmioides (Walker), to three Cry toxins and its life-history traits feeding on dual-toxin Bt cotton and an artificial diet containing sublethal concentrations of Cry1Ac. In concentration–response bioassays, black armyworm larvae showed low susceptibility to Cry toxins, with 853 ng/cm2 as the lowest value estimated for the median lethal concentration (LC50). The decreasing rank of toxicity was Cry1F, Cry2Aa, and Cry1Ac. Foliage of dual-toxin Bt cotton varieties (Cry1Ac + Cry1F and Cry1Ab + Cry2Ae) caused higher larval mortality than Cry1Acexpressing cotton. Black armyworms showed reduced larval weight when growing on the Cry1Ac-treated diet, yet they reached adulthood and produced offspring. Interestingly, these larvae were grown on the control diet and showed reduced weight gain associated with the toxin exposure of the previous generation, indicating a parental effect of the exposure to Cy1Ac. The reduced larval weight was recovered in later instars, and there was no significant change in the population fitness of the parental armyworms or their offspring. To our knowledge, this is the first study documenting the parental effects of Bt toxins in insects. These results advance our understanding of potential responses of nontarget species when exposed to Bt toxins and contribute to design pest management programs for armyworms and other nontarget lepidopteran species exposed to Bt crops.
The tadpole shrimp [Triops longicaudatus (Leconte)] has emerged as a significant pest of rice grown in California in recent decades. The change in T. longicaudatus' pest status has coincided with changes in cultural management of residual rice straw postharvest. Policy changes have reduced the postharvest burning of fields from nearly 95% to less than 10%, promoting increased use of winter flooding as a means of accelerating straw decomposition. Field and laboratory trials were conducted from 2015 to 2017 at the Rice Experiment Station in Biggs, CA and in greenhouses at the University of California (UC) Davis to evaluate the effects of burning, flooding, and a fallow control on T. longicaudatus population dynamics. Experiments demonstrated that burning of rice straw failed to suppress densities of hatching T. longicaudatus and actually had the reverse effect, causing a 51% increase in numbers hatching, perhaps as a result of burning triggering termination of multiyear T. longicaudatus egg dormancy. Winter flooding had no measurable effect on T. longicaudatus hatch. Thus, these changes in winter cultural practices do not appear to be responsible for the emergence of T. longicaudatus as a major rice pest.
The rice stink bug, Oebalus pugnax (F.), is the most important pest of headed rice, Oryza sativa L., in the United States. Numerous studies have attempted to quantify the impact of O. pugnax feeding on rice yield and grain quality, but these studies have often produced conflicting results. Across mid-south U.S. rice, thresholds based on sweep net sampling are used to determine the need for insecticide applications, but few studies have related sweep net captures to rice quality parameters. Field trials were conducted in Louisiana in 2015 and 2016 that used different rates of insecticides to establish rice plots with mean O. pugnax infestations ranging from 0.8 to 24.6 insects per 10 sweeps. Insecticide applications improved panicle weight and head yields as well as decreased percentage peck. A series of linear regressions examined relationships between O. pugnax captures and rice yield and quality parameters, including panicle weight, head yield (% whole kernels), and peck (discolored grains). Mean O. pugnax sweep net captures across all sampling dates in both years were significantly and negatively correlated to panicle weight and head yield and positively correlated to percentage peck. Peck was negatively correlated with head yield. Results from sampling at different maturity stages indicate sweep net captures at grain fill and soft dough stages had the greatest influence on rice yield and quality parameters, respectively. Further research into impacts of milling quality reductions on farm revenue and the influence of cumulative infestations over grain development is needed to improve economic thresholds for O. pugnax in rice.
Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring pest that severely damages urban and plain afforestation trees in northern China. Cold hardiness is an important strategy for the insect to survived during low winter temperatures. Understanding the strategy of S. insularis might provide insights for pest management approaches. To assess the key factors affecting cold hardiness, we measured the supercooling point, freezing point, total water content, total fat content, glycogen content, and total protein content of overwintering larvae.The relationships between supercooling points, temperature, body size, and nutrients were analyzed.The results showed that the supercooling point and freezing point of the larvae decreased first, reached the lowest point in January, and then increased during the rest of the overwintering period.The supercooling point positively correlated with the daily average temperature and the daily minimum temperature. Total lipid content negatively correlated with the supercooling point, while glycogen content had a significant positive correlation with the supercooling point.The temperature may have a major impact on cold hardiness, whereas individual body size may have no significant influence over cold tolerance. During the overwintering process, glycogen and total lipid contents may directly affect cold hardiness.Therefore, the lipid and carbohydrate metabolism may play a role in the cold tolerance of S. insularis larvae.This study provides a physiological and biochemical basis for future metabolic studies on S. insularis larva and the research of overwintering strategies.
Drosophila suzukii (Matsumura), or spotted wing drosophila, has become a major pest concern for berry growers in the United States. In this study, we evaluated the economic impacts of D. suzukii on the Maine wild blueberry industry from two perspectives. The first analysis estimated the state-level economic impacts of D. suzukii on the wild blueberry industry in Maine in the absence of control. We found that D. suzukii could result in drastic revenue losses to the industry, which could be over $6.8 million under the worst-case scenario (assuming a 30% yield reduction). In the second analysis, we used Monte Carlo simulation to compare the expected revenues under different management strategies for a typical wild blueberry farm in Maine. The analysis focused on a decision-making week during the harvesting season, which the grower can choose in between three control strategies: no-control, early harvest, or insecticide application. The results suggested that insecticide applications are not economically optimal in most low infestation risk scenarios. Furthermore, although the early harvest strategy is one of the strategies to avoid D. suzukii infestations for wild blueberry production in Maine, the tradeoff is the revenue loss from the unripe crop. Using the simulation results, we summarized optimal harvest timing regarding the fruit maturity level under different D. suzukii infestation risk scenarios, which can minimize the revenue loss from adopting the early harvest management strategy.
The use of aerosol mating disruption for management of the navel orangeworm Amyelois transitella (Walker) in California tree nuts has increased markedly. This treatment suppresses pheromone monitoring traps in neighboring orchards as well as in the orchard under treatment. The current study, therefore, addresses the interrelated topics of which attractant is most effective, how the number of adults captured is affected by trap design, and what sex is captured. Under most circumstances, wing traps baited with phenyl propionate (PPO) captured more adults than those baited with a 5-compound kairomone blend. Adding a pheromone lure along with the dispenser for the experimental attractant increased the number of adults captured with PPO both in and near-mating disruption. In contrast, addition of a pheromone lure along with the kairomone blend only increased the number of adults captured in orchards near but not under mating disruption. Delta traps, which are preferred by the industry, captured fewer adults than wing traps. Improvements in the number of adults captured with PPO in delta traps from addition of a pheromone lure and from design modifications were additive. Both sexes were captured by all attractants and trap designs tested, and the sex ratio was highly variable. Open traps like the wing trap captured a slightly higher proportion of males than closed traps. These findings are discussed in the context of management of the navel orangeworm.
Tuta absoluta (Meyrick) is one of the most devastating pests of tomato in both open field and greenhouse production settings that significantly reduce yield and quality of the fruit. Being a new invasive pest, information on the pest bio-ecology, including host-rage and effects of plant species on its various fitness traits are virtually lacking. This study involved a field survey to establish the realized host range and laboratory experiments to evaluate the preference for, and fitness effects of T. absoluta on different plant species. In the field, T. absoluta was recovered from only four solanaceous plant species: tomato (Solanum lycopersicum L.), eggplant (S. melongena L.), black nightshade (S. nigrum L.), and gubbain (S. dubium Fr.). In choice and no-choice tests, tomato was the most preferred host of T. absoluta having the highest number of eggs deposited, followed by black nightshade, French bean Phaseolus vulgaris L., and chilli pepper Capsicum frutescens. Larvae developed quickest on tomato followed by black nightshade and French bean. The percentage survival to adulthood was significantly higher on tomato, compared to survival on black nightshade and French bean. Rearing of T. absoluta on tomato or black nightshade had no significant effect on pupal mass and length as well as adult size for both sexes. Fecundity and longevity, as well as oviposition preference of T. absoluta, were not affected by rearing on different plants. These findings confirm the oligophagous nature of the pest with high preference to tomato.
Mating disruption is used to help manage the navel orangeworm on approximately 200,000 ha of tree nut crops. Aerosol dispensers are the most common formulation, and all formulations use an incomplete pheromone blend consisting solely of (Z11,Z13)-hexadecadienal. Profile analysis (examination of capture and males in pheromone traps as a function of spatial density of dispensers) demonstrated a sharp drop of males captured with a very low density of dispensers, and then an approximately linear relationship between 90 and approaching 100% suppression. This near-linear portion of the profile includes both dispenser densities in which crop protection has been demonstrated, and densities in which it is unlikely. Suppression of males in pheromone traps was lost the next night after dispensers were removed, suggesting that the active ingredient was not persistent in the orchard environment. During most of the summer preharvest period, turning the dispensers off 1 or 2 h before the end of the predawn period of sexual activity provides the same amount of suppression of sexual communication as emission throughout the period of sexual activity. This suggests that encountering the pheromone from the mating disruption dispensers had a persistent effect on males. During the autumn postharvest period, only emission prior to midnight suppressed communication on nights on which the temperature fell below 19°C by midnight. These findings and the analysis will help manufacturers refine their offerings for mating disruption for this important California pest, and buyers of mating disruption to assess cost-effectiveness of competing offerings.
The green peach aphid [Myzus persicae (Sulzer)] is an important pest of amaranth grown for leaf consumption (i.e., leafy amaranth) in the tropics. Aphids reduce the amount of fresh leaf yield of amaranth and the value of leafy amaranth as aphid-infested leaves are not marketable. Our objective was to evaluate Amaranthus species selected by a breeding program in East Africa to develop cultivars for leaf consumption with resistance to M. persicae. We focused on antibiosis to determine whether varieties of Amaranthus spp. could be grown without producing an aphid population. Artificial infestations of aphids were placed on multiple selections of three species of Amaranthus: two selections of A. blitum, four selections of A. hybridus and one selection of A. hypochondriacus. Aphid populations were assessed over a 5-wk period. Evaluations of vegetative yield, leaf damage symptoms, and specific leaf area (SLA) were made of the seven selections at the end of this experiment. Aphid populations assessed 49 d after planting differed significantly (P ≤ 0.001) among the amaranth species and within selections of the same species.The selections of A. blitum had the lowest aphid populations, and A. hybridus had the highest populations. Selections of A. hybridus produced the most marketable leaves (i.e., aphid free).The fresh weight of A. blitum were the lowest of the seven selections, whereas A. hybridus had the greatest fresh leaf weight. Implications of these finding for further promotion of amaranth breeding are discussed related to pest management for leaf production.
Chinese pear psylla (Cacopsylla chinensisYang et Li) is a serious orchard pest that causes declines in fruit quality through feeding damage and the spread of pathogens. The rapid development of chemical pesticide resistance has become a severe problem in controlling pear psylla. Thus, the development of natural pesticides to replace conventional chemical pesticides is urgently needed. Here, we found that the essential oil of peppermint (Mentha haplocalyx Briq. [Lamiales: Labiatae]) is an ideal agent for controlling pear psylla based on experiments in the laboratory and the field. The major constituents of peppermint essential oil were found including menthol (49.73%), menthone (30.52%), α-pinene (3.60%), and α-terpineol (3.81%). This oil and chemicals in it performed serious contact toxicity against the winter-form adults and nymphs of pear psylla, yielding LD50 values of 2.54, 10.71, 2.77, 5.85, and 12.58 µg/adult and 1.91, 9.56, 2.18, 4.98, and 12.07 µg/nymph, respectively. Furthermore, the essential oil strongly repelled the adults of pear psylla with 78% repellence at the highest concentration tested in aY-tube olfactometer in the laboratory. The combined effect of the two factors made peppermint essential oil a natural pesticide, which achieved a maximum reduction of round to 80.9% in winter-form adult population and round to 67.0% in nymph population at the concentration of 4.0 ml/L in the field. Additionally, it had no effect on the natural enemies of pear psylla in the field. Therefore, peppermint essential oil has potential as an alternative to chemical pesticides for pest control in integrated pest management programs in pear orchards.
Stable fly (Stomoxys calcitrans L.) remain a significant pest affecting livestock and rural communities on the Swan Coastal Plain around Perth, Western Australia. Vegetable crop residues remaining after harvest enable stable fly development. Left untreated they can produce from several hundred to >1,000 stable fly/m2 of post-harvest residues. We studied the effect of burial and compaction of sandy soils on adult emergence of stable fly and house fly (Musca domestica L.) (Diptera: Muscidae). Adults of both fly species can move up through 50 cm of loose, dry sand, however at depths greater than 60 cm, emergence rapidly declines with <5% of adults surviving under 100 cm of soil. Burial of stable fly larvae and pupae under 15 cm of soil followed by compaction using a static weight dramatically reduced adult emergence. Moist soil compacted at ≥3 t/m2 completely prevented stable fly emergence whereas house fly emergence was not affected. One t/m2 of compaction resulted in <5% emergence of stable fly buried as pupae. Soil that was easily compactible (i.e., high silt, fine sand and clay content) reduced stable fly emergence more than soil with more coarse sand and low clay content. This study demonstrates the potential for a novel and chemical-free option for controlling stable fly development from vegetable crop post-harvest residue. Field trials are needed to confirm that burial and compaction of vegetable post-harvest residues using agricultural machinery can dramatically reduce the subsequent emergence of adult stable fly on a large scale.
During dispersal into fruit-bearing wild blueberry fields, blueberry maggot flies were highly active during all daylight hours as revealed by trap captures, although in one trial afternoon activity was greater than morning activity. Flies were not captured in traps at night, although observations in growth chambers showed that their activity at night, measured as displacement of position, was equal to daylight conditions. Flies were shown to fly at low altitude, just above the crop canopy, and screen fencing was shown to be effective at reducing colonization of plots, presumably due to their low height during flight. Over a 4-yr mark–capture study, colonization rate was shown to be low at 9.7 m/d, although a separate 2010 study showed higher rates at 14.1 and 28.0 m/d. Movement was shown to be nondirectional or random in the field, but a constrained random walk exhibiting direction into the field. Weed cover and high fruit density were associated with higher fly relative abundance, suggesting these field characteristics served as attractors slowing colonization rate into a field. Transect trap studies showed the temporal and spatial pattern of fly colonization into commercial wild blueberry fields, one of a slow wave that penetrates into the field interior as the season progresses. There is also an increase in fly abundance within-field edges and adjacent forest. The ‘stacking’ of flies along a field edge and slow movement rate into a field was shown through simulation to be a result of nondirectional short-distance dispersal of flies.
Wild and managed bees provide effective crop pollination services worldwide. Protected cropping conditions are thought to alter the ambient environmental conditions in which pollinators forage for flowers, yet few studies have compared conditions at the edges and center of growing tunnels. We measured environmental variables (temperature, relative humidity, wind speed, white light, and UV light) and surveyed activity of the managed honey bee, Apis mellifera L.; wild stingless bee, Tetragonula carbonaria Smith; and wild sweat bee, Homalictus urbanus Smith, along the length of 32 multiple open-ended polyethylene growing tunnels. These were spaced across 12 blocks at two commercial berry farms, in Coffs Harbour, New South Wales and Walkamin, North Queensland, Australia. Berry yield, fresh weight, and other quality metrics were recorded at discrete increments along the length of the tunnels. We found a higher abundance and greater number of flower visits by stingless bees and honey bees at the end of tunnels, and less frequent visits to flowers toward the middle of tunnels. The center of tunnels experienced higher temperatures and reduced wind speed. In raspberry, fruit shape was improved with greater pollinator abundance and was susceptible to higher temperatures. In blueberry, per plant yield and mean berry weight were positively associated with pollinator abundance and were lower at the center of tunnels than at the edge. Fruit quality (crumbliness) in raspberries was improved with a greater number of visits by sweat bees, who were not as susceptible to climatic conditions within tunnels. Understanding bee foraging behavior and changes to yield under protected cropping conditions is critical to inform the appropriate design of polytunnels, aid pollinator management within them, and increase economic gains in commercial berry crops.
Populations of the brown stink bug, Euschistus servus (Say), in Florida peach orchards were monitored during the 2017 and 2018 growing seasons using yellow pheromone-baited pyramid traps. Peaches were evaluated at harvest for the presence of stink bug injury. A relationship between E. servus trap capture and fruit injury was used to estimate the economic injury level (EIL) for varying scenarios of crop price, per-hectare yield, and control costs. Economic thresholds were then set based on observed E. servus population trends and expected rates of increase. Thresholds were lowest in the period immediately following shuck split due to the rapid increase in E. servus populations during this period. Euschistus servus trap capture trended downward at the time of harvest. Therefore, increased E. servus management early in the Florida peach season provides the greatest overall benefit, whereas late season populations decline independent of management actions. The proposed EIL for Florida peaches determined by this study is 5.53 E. servus per trap over a 14-d trapping period, which was surpassed in only 16 of the 60 recorded trapping periods. This suggests that the current recommended spray frequency may not be economically justified.
Insecticides mixed in sugar-protein baits or insecticides alone have been used to control tephritid fruit flies for many years. Here, effects of cyantraniliprole, spinetoram, and the biopesticide Chromobacterium subtsugae extract in sucrose-yeast extract bait or alone on kill and oviposition of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera:Tephritidae), were evaluated in the laboratory. Flies were exposed to dry insecticide bait or insecticide alone in the presence or absence of a nontoxic food strip. Spinetoram alone caused greater mortality than cyantraniliprole alone, while cyantraniliprole in bait caused mortality as high as spinetoram bait and greater mortality than cyantraniliprole alone. Chromobacterium subtsugae extract alone but not in bait caused significant mortality compared with controls, but was much less effective than cyantraniliprole and spinetoram. Spinetoram alone reduced oviposition more than cyantraniliprole alone. However, cyantraniliprole bait reduced oviposition as much or more than spinetoram alone or spinetoram bait. Cyantraniliprole and spinetoram baits caused greater mortality when a nontoxic food strip was absent than present, but there was no corresponding reduction in oviposition. Chromobacterium subtsugae extract did not significantly reduce oviposition compared with controls. Potential benefits of using cyantraniliprole baits as an additional or alternative method to using more toxic spinosyn insecticides for controlling R. indifferens warrant study.
The presence of large colonies of aphids is associated with a devastating novel necrotic disease of cabbage (Brassica oleracea var. capitata) in Ghana that is thought to be of viral etiology. In this study, we used molecular taxonomic tools to identify the aphid species present on these diseased cabbage plants. This was confirmed using two key features for morphological identification, involving the length of cornicles and shape of cauda for the wingless forms of the aphids. Two species of aphids were identified and their distribution in Ghana indicated. One was the generalist aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) but the most abundant was the brassica specialist aphid, Lipaphis erysimi pseudobrassicae (Davis) (Hemiptera: Aphididae), which is one of the most destructive pests of brassica crops in some countries in Africa and other parts of the world. L. erysimi has been reported in Benin, Mali, South Africa, India, China, and United States, but this is the first formal report of L. erysimi pseudobrassicae in Ghana. The correct identification of L. erysimi is crucial, suggesting that it has recently become one of the most common species of aphid found on cabbage plants in Ghana.
Use of heated air to create lethal temperatures within infested wood serves as a nonchemical treatment option against western drywood termites, Incisitermes minor (Hagen). When treating a whole or large portion of the structure, however, the presence of hard-to-heat areas (structural heat sinks) and potential risk of damaging heat-sensitive items are recognized as important challenges. To address these challenges, we tested if the incorporation of a volatile essential oil would increase the overall efficacy of heat treatments against the drywood termites. To choose an essential oil for use, we tested the volatile action of several candidate compounds against individual termites using a fumigant toxicity assay. As a proof-of-concept experiment, field-collected termites were housed in small wooden arenas and subsequently subjected to 2-h heat treatment at various air temperatures within a gas chromatography oven. A simulated heat sink and essential oil treatment was also included in the experimental design. Analyses of lethal temperatures (LTemp50 and LTemp99 values), probabilities of mortality, and survivorship data over time suggested that 1) the presence of a heat sink significantly increased the minimum air temperature needed for complete kill of the termites and 2) the volatile essential oil added at the site of a heat sink effectively counteracted the impact of the heat sink. The use of volatile essential oils makes it possible to effectively kill drywood termites even in areas which might not reach lethal temperatures (∼50°C), potentially improving the overall efficacy of heat treatments while reducing the risk of heat damage.
Ants are significant structural and agricultural pests, generating a need for human-safe and effective insecticides for ant control. Erythritol, a sugar alcohol used in many commercial food products, reduces survival in diverse insect taxa including fruit flies, termites, and mosquitos. Erythritol also decreases longevity in red imported fire ants; however, its effects on other ant species and its ability to be transferred to naïve colony members at toxic doses have not been explored. Here, we show that erythritol decreases survival in Tetramorium immigrans Santschi (Hymenoptera: Formicidae) in a concentration-dependent manner. Access to ad-libitum water reduced the toxic effects of erythritol, but worker mortality was still increased over controls with ad-lib water. Foraging T. immigrans workers transferred erythritol at lethal levels to nest mates that had not directly ingested erythritol. Similar patterns of mortality following erythritol ingestion were observed in Formica glacialis Wheeler (Hymenoptera: Formicidae), Camponotus subarbatus Emery (Hymenoptera: Formicidae), and Camponotus chromaiodes Bolton (Hymenoptera: Formicidae). These findings suggest that erythritol may be a highly effective insecticide for several genera of ants. Erythritol's potential effectiveness in social insect control is augmented by its spread at lethal levels through ant colonies via social transfer (trophallaxis) between workers.
Insecticide resistance in the German cockroach, Blattella germanica (L.), is a significant challenge to the pest management professionals worldwide. We collected 24 field populations of B. germanica from different localities in Taiwan island, reared them for one to two generations, and evaluated them for their resistance to deltamethrin, propoxur, and fipronil using the surface-contact method. Results showed that deltamethrin resistance ratio ranged from 1.5 to 817.5×. Among the strains, TC Supermarket, TC Sanshang Logistics, TCTHSR, and TC 1Taichungsteak strains showed very high resistance to deltamethrin, which mortality ranged between 0 and 33% at 7-d post-treatment. On the other hand, resistance to propoxur and fipronil RR were 0.70–7.13× and 1.67–3.72×, respectively. Synergism studies using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) suggested the major involvement of cytochrome P450 monooxygenase and minor involvement of esterases. However, deltamethrin resistance in two strains (i.e., TC Supermarket and TCTHSR) was not affected by both PBO and DEF, indicating that other mechanisms are involved in the resistance, including kdr resistance. Evaluation of the field strains using commercial gel baits containing fipronil, imidacloprid, hydramethylnon, and indoxacarb for up to 7 d resulted in 24.4–100%, 11.3–78.5%, 15.8–75.5%, and 63.3–100% mortality, respectively. We found that high deltamethrin resistance in some strains could affect the performance of fipronil, imidacloprid, and indoxacarb baits, indicating the potential involvement of cytochrome P450 monooxygenase in reducing the effectiveness of the bait toxicants.
Suzany A. Leite, Mateus P. dos Santos, Geverson A. Resende-Silva, Daniela R. da Costa, Aldenise A. Moreira, Odair L. Lemos, Raul Narciso C. Guedes, Maria A. Castellani
The Neotropical coffee leaf miner, Leucoptera coffeella (Guérin-Mèneville & Perrottet, 1842), is a key pest species of unshaded coffee plantations in Neotropical America, particularly in Brazil, where pest management involves intensive insecticide use. As a consequence, problems of resistance to conventional insecticides are frequent, and more recently developed insecticide molecules, such as diamide insecticides, are at risk of becoming ineffective. Thus, a survey of resistance to the diamide insecticide chlorantraniliprole was carried out in high-yield coffee-producing areas in the State of Bahia, Brazil. The likelihood of control failure with this insecticide was also assessed. Spatial dependence among the insect sampling sites was assessed and spatial mapping of chlorantraniliprole resistance and risk of control failure was carried out. The frequency of chlorantraniliprole resistant populations was high (34 out of 40 populations, or 85%), particularly in western Bahia, where 94% of the populations were resistant. Resistance levels ranged from low (<10-fold) to moderate (between 10- and 40-fold) with more serious instances occurring in western Bahia. This results in lower chlorantraniliprole efficacy among these populations, with a higher risk of control failure and exhibiting spatial dependence. These findings invite attention to problems with the intensive use of this relatively recent insecticide and demand management attention, but they suggest that local, farm-based management efforts are likely to be the most effective actions against resistance problems in this pest species.
The oriental fruit moth, Grapholita molesta (Busk, 1916), is one of the most important pests in apple orchards in southern Brazil. Chemical control is still the most commonly used strategy for pest control. The aim of this study was to determine the resistance evolution of seven South Brazilian populations to four insecticides (chlorantraniliprole, lufenuron, chlorpyrifos, and fenitrothion). Bioassays were paired with metabolic analyses of glutathione-S-transferase (GST), carboxylesterases (α-NA and β-NA), and acetylcholinesterase (AChE) to understand the possible role with phytosanitary strategies in the insects' susceptibility. Insect populations were collected in the municipalities of Campo doTenente, Lapa and Porto Amazonas, Fraiburgo, São Joaquim, and Vacaria and multiplied in the laboratory. Two susceptible and two resistant populations were used as references. The bioassays showed that five populations were considered more resistant to organophosphates, six to lufenuron and two to chlorantraniliprole when compared with the sensitive population. None of the field populations had greater resistance than the resistant laboratory population. The enzymatic activity of AChE and GST was elevated in most of the populations that were less susceptible to organophosphates and lufenuron. The populations originating from orchards that used sexual confusion techniques had the greatest susceptibility based on toxicological and biochemical bioassays. Populations under pressure from various compounds had high GST, α and β-NA activity. There is evidence that a diversity of control strategies can provide better resistance management.
The diamondback moth, Plutella xylostella (L.), is a worldwide insect pest of cruciferous crops. Although insecticides have long been used for its control, diamondback moth rapidly evolves resistance to almost any insecticide. In insects, juvenile hormone (JH) is critically involved in almost all biological processes. The correct activity of JH depends on the precise regulation of its titer, and juvenile hormone esterase (JHE) is the key regulator. Thus, JH and JHE have become important targets for new insecticide development. Trifluoromethyl ketones are specific JHE inhibitors, among which 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) has the highest activity. The interaction effects between pretreatment with or combination of OTFP and the insecticides diafenthiuron, indoxacarb, and Bacillus thuringiensis (Bt) were investigated in diamondback moth larvae to determine OTFP's potential as an insecticide synergist. In third-instar larvae, both pretreatment and combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron, indoxacarb, and Bt at all set concentrations. In fourth-instar larvae, combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron and indoxacarb at all set concentrations. However, it increased or synergized the toxicity of Bt at lower concentrations despite the limited effect at higher concentrations. Our results indicated that the effect of OTFP on the toxicities of insecticides varied with the type and concentration, larval stage, and treatment method. These findings contribute to the better use of OTFP in diamondback moth control.
Thrips tabaci Lindeman is a widely distributed agricultural pest China, which causes damage to many vegetables and cash crops. However, the population genetic variation of this pest in China remains unknown. In this study, the genetic diversity and structure of T. tabaci on Allium hosts collected from 12 geographic locations were evaluated based on mitochondrial cytochrome oxidase subunit I (COI) sequences. Six haplotypes were identified in 247 T. tabaci individuals from 12 geographic locations. All the identified T. tabaci haplotypes were thelytokous populations. The strongest genetic differentiation and relatively low gene flow were found between QHXN and other locations, which might be due to geographic barriers, such as high altitude Qinghai-Tibet Plateau. The lowest genetic variation was found in eastern and southern regions, with only one haplotype identified. The Mantel test showed no correlation between genetic distance and geographical distances. High gene flow between locations with substantial geographical distances suggested that migration of T. tabaci across China might be facilitated through human activities. The results of demographic analysis suggested that T. tabaci in China have undergone a recent demographic expansion. The possible influences of T. tabaci invasion history and human activities on the current haplotype geographical distribution were interpreted and the implications of these findings for T. tabaci management were discussed.
Wing polyphenism (alate and apterous morphs) in aphids is a trade-off between dispersal and reproduction. How bacterial communities are associated with wing polyphenism in aphids is still not clearly understood. This study used 16S rRNA sequencing to examine the differences in diversity of the bacterial community between alate and apterous morphs in Aphis citricidus, the main vector of the Citrus tristeza virus. Eighty-one operational taxonomic units (OTUs) belonging to 37 orders, 34 classes, and 13 phyla were identified from all samples. Among these OTUs, Wolbachia (79.17%), Buchnera (17.64%), and Pseudomonas (2.99%) were the dominant bacterial genera. The diversity of symbionts varied between the two morphs; apterous morphs had more bacterial diversity (69 OTUs belonging to 45 families, 21 classes, and 12 phyla) than alate morphs (45 OTUs belonging to 36 families, 15 classes, and 10 phyla). In addition, the abundance of five OTUs was significantly different between two morphs. Among these OTUs, two Pseudomonas species (Pseudomonas_brenneri [OTU21] and unclassified_ Pseudomonas [OTU13]) represented a high proportion (3.93% and 2.06%) in alate morphs but were present in low abundance (0.006% and 0.002%) in apterous morphs. RT-qPCR showed consistent results with high-throughput DNA sequencing. The preliminary survey showed the difference in composition and frequency of bacteria between alate and apterous morphs. Thus, the results contribute to anew insight of microorganisms that may be involved in wing dimorphism and helpful for controlling the dispersal of this pest through artificial elimination or reinfection of bacterial symbionts or targeting symbiosis-related host genes by RNA interference in future.
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an important pest of the cultivated potato (Solanum tuberosum (L.) [Solanales: Solanaceae]). With its broad resistance toward commonly used insecticides, it is clear that more sophisticated control strategies are needed. Due to their importance in insect development, microRNAs (miRNAs) represent a potential tool to employ in insect control strategies. However, most studies conducted in this area have focused on model species with well-annotated genomes. In this study, next-generation sequencing was used to catalogue the miRNAs produced by L. decemlineata across all eight stages of its development, from eggs to adults. For most stages, the length of miRNAs peaked between 21 and 22 nt, though it was considerably longer for the egg stage (26 nt). Global profiling of miRNAs revealed three distinct developmental clusters: 1) egg stage; 2) early stage (first, second, and third instar); and 3) late stage (fourth instar, prepupae, pupae, and adult). We identified 86 conserved miRNAs and 33 bonafide novel miRNAs, including stage-specific miRNAs and those not previously identified in L. decemlineata. Most of the conserved miRNAs were found in multiple developmental stages, whereas the novel miRNAs were often stage specific with the bulk identified in the egg stage. The identified miRNAs have a myriad of putative functions, including growth, reproduction, and insecticide resistance. We discuss the putative roles of some of the most notable miRNAs in the regulation of L. decemlineata development, as well as the potential applications of this research in Colorado potato beetle management.
The Mediterranean fruit fly, Ceratitis capitata (Weidemann), is one of the most economically important tephritid species worldwide. It has spread across six geographic regions as a result of successful invasions and continues to cause substantial losses to agricultural communities. Our study examined 1,864 flies originating from 150 localities, using mitochondrial DNA sequencing methods. We tested for population structure and revealed the genetic diversity for 1,592 specimens gathered from 144 wild fly collections from 46 countries representing the entire geographic range for this species. We also include in this study 272 Sterile Insect Technique (SIT) specimens from four SIT facilities. We recovered 202 haplotypes from the current sampling and updated previously published work to reveal a total of 231 haplotypes for this pest. These data show population structure at and below the regional level for these collections, shedding light on the current demographics for this species. We observed four common haplotypes, seen among 62% of the samples sequenced that have worldwide distribution. Three haplotypes were seen in SIT flies, with one seen as the predominant haplotype. Our work showed that two of the haplotypes were private to SIT flies, not present among wild fly collections. However, a third haplotype common among wild fly collections was also seen in one SIT facility but at a low frequency based on the current sampling. We provide guidance on the interpretation of these methods for the source estimation of current and future infestations.
The development of polymerase chain reaction (PCR) markers to identify theY chromosome of Ceratitis capitata Wiedemann has permitted the detection of sperm transferred to females during mating. However, a molecular technique to quantify the sperm transferred has not yet become available. The current method to quantify the amount of sperm has been the direct counting of sperm heads. Thus, the purpose of this research was to develop and validate an accurate molecular method of diagnosis based on the application of an absolute quantitative real-time PCR, which allows the assessment of the quantity of sperm stored in the spermathecae. For this, Y-specific sequences were used to re-design and test distinct sperm markers. From the amplification product of samples detected as strong positives in conventional PCR, a cloning process of the target sequence was carried out to build the required standard curve. A series of known dilutions of this standard material was prepared for the absolute quantification process. A Roche Lightcycler 480 Real-Time PCR System and SYBRGreen fluorescent dye were used to quantify the sperm contained in the spermathecae of 4-d-old mated females and virgins. Wild-type and Vienna-8 strain sterile males were used to quantify the sperm transferred at four mating durations (10, 30, 60, and 90 min) under laboratory conditions. To validate the reported quantitative method, our results were compared by counting sperm heads under a fluorescent microscope using the same experimental design. In addition, DNA samples were also evaluated and compared by conventional PCR.
The tomato leafminer, Tuta absoluta (Meyrick), is a highly destructive pest of tomatoes, causing damage to leaves, stalks, buds, and fruits. Native to South America, T. absoluta is now found throughout Europe, South Asia, Africa, parts of Central America, and the Caribbean. Adults are small, with a wingspan of approximately one cm and lack distinctive markings, making morphological identification difficult. Larvae are also difficult to identify and resemble those of many other gelechiids. Due to the extensive time spent and expertise required for morphological identification, and the imminent threat to the North American tomato crop, we have developed a rapid molecular test for discriminating individual specimens of T. absoluta using a probe-based real-time polymerase chain reaction (PCR) assay. The assay is able to quickly distinguish T. absoluta from similar-sized moth specimens that are attracted to T. absoluta pheromone lures in the United States and is also able to identify larvae of T. absoluta. Decreased identification time for this critical pest will lead to more rapid identification at ports of entry and allow for more efficient trap screening for domestic monitoring programs.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen ‘Candidatus Liberibacter asiaticus’ (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized.
Rhopalosiphum padi L. is one of the predominant aphids affecting wheat crops worldwide. Therefore, the identification of resistant genotypes and the understanding of molecular response mechanisms involved in wheat resistance to this aphid may contribute to the development of new breeding strategies. In this study, we evaluated the resistance of 15 wheat cultivars to R. padi and performed morpho-histological and gene expression analyses of two wheat cultivars (BRS Timbaúva, resistant and Embrapa 16, susceptible) challenged and unchallenged by R. padi. The main findings of our work are as follows: 1) most Brazilian wheat cultivars recently released are resistant to R. padi; 2) Green leaf volatiles are probably involved in the resistance of the BRS Timbaúva cultivar to the aphid; 3) trichomes were more abundant and larger in the resistant cultivar; 4) the internal morphology did not show differences between cultivars; 5) the lipoxygenase-encoding gene was downregulated in the susceptible cultivar and basal expression remained level in the resistant cultivar; and 6) the expression of resistance-related proteins was induced in the resistant but not in the susceptible cultivar. Lipoxygenase is the first enzyme in the octadecanoic pathway, a well-known route for the synthesis of signaling molecules involved in the activation of plant defense. The overall analyses suggest that the key steps in BRS Timbaúva resistance to R. padi may be presence or absence of green leaf volatiles decreasing the aphid preference and the action of nonglandular trichome as a physical barrier, which allows continuous lipoxygenase-encoding gene expression.
Heat stress compromises wheat resistance to Hessian fly (HF, Mayetiola destructor (Say)) (Diptera: Cecidomyiidae) infestation. The objective of this research is to analyze the molecular basis of heat-induced loss of wheat resistance to HF infestation using RNA Sequencing (RNA-seq). To this end, two resistant wheat cultivars ‘Molly' and ‘Caldwell’ containing the resistance genes H13 and H6, respectively, were infested with an avirulent HF biotype GP and treated with different temperatures to examine the impact of heat stress on their resistance phenotypes. Tissue samples collected from HF feeding sites in Molly plants were subjected to RNA-seq analysis to determine the effect of heat stress on transcript expression of genes in wheat plants. Our results indicate that resistance to HF infestation in Caldwell is more sensitive to heat stress than that in Molly, and that heat stress down-regulates most genes involved in primary metabolism and biosynthesis of lignin and cuticular wax, but up-regulate most or all genes involved in auxin and 12-oxo-phytodienoic acid (OPDA) signaling pathways. Our results and previous reports suggest that heat stress may impair the processes in wheat plants that produce and mobilize chemical resources needed for synthesizing defensive compounds, weaken cell wall and cuticle defense, decrease OPDA signaling, but increase auxin signaling, leading to the suppressed resistance and activation of susceptibility.
The carob moth, Spectrobates ceratoniae Zeller, is the most destructive pest of pomegranate groves of Iran. Seasonal population dynamics of the pest was studied in pomegranate orchards of Sirvan, Ilam province, in southwestern Iran for 2 yr (2016/2017). Sampling distribution of the pest larvae on pomegranate fruits was evaluated by Taylor's power law and Iwao's patchiness index, and a fixed-precision sequential sampling plan of the pest was developed using Green's model. The adult population peaked in June. The activity period of the larvae was observed from June to October and peaked in October. Sampling distribution of the larvae on pomegranate fruits was random. Estimated optimum sample sizes ranged from 1 to 44 and 1 to 16 fruits at precision levels of 0.25 and 0.1, respectively.
This study evaluated the fumigant ethanedinitrile (EDN) against the cigarette beetle, Lasioderma serricorne, and phosphine-resistant and susceptible lesser grain borer, Rhyzopertha dominica, life stages under laboratory conditions. Eggs of both species were the most susceptible stage to EDN. EDN is, therefore, a promising alternative because eggs are generally tolerant to most common fumigants. Lasioderma serricorne eggs were the most susceptible with an LC50 estimated of 50.4 ppm, followed by adults, pupae and larvae with LC50 values of 160.2, 192.5, and 446.6 ppm, respectively, after 24-h exposure at 25°C. Eggs of phosphine-susceptible (LC50 = 11.2 ppm) and resistant (LC50 = 12.0 ppm) R. dominica strains were more susceptible to EDN than were adults of both strains, with LC50 values of 27.7 and 36.0 ppm, respectively. Lasioderma serricorne mixed life stage cultures were completely controlled at concentrations ≥2,000 ppm at 24 h. Fumigation with 600 ppm was enough to suppress adult emergence in the case of the phosphine-susceptible R. dominica strain (USDA), while an average of only 4.0 adults emerged from the phosphine-resistant R. dominica strain (Belle Glade) compared with 514.3 adults in the control. Lasioderma serricorne was more tolerant to EDN than both R. dominica strains. EDN caused 61.8 and 68.2 % inhibition of R. dominica (USDA) cytochrome c oxidase activity at concentrations of 0.0038 and 0.0076 mM in vitro, respectively, and it did not inhibit its activity in the case of an in vivo assay. These results suggest that cytochrome c oxidase may not be the main target for EDN toxicity.
The mating attributes in relating to parasitism and progeny production capacity of the parasitoid Habrobracon hebetor Say, using Plodia interpunctella (Hübner) as a host, were investigated in laboratory studies. The results indicated that 100% of the host larvae were parasitized by different individuals of H. hebetor females that were mated by the same male. Mating duration did not differ significantly among different successive matings with different females and had no effect on the rate of parasitism. In general, pairs that had their copulation early after emergence exhibited the maximum rate of parasitism as compared to delayed intervals. Moreover, the age of the H. hebetor females had no effect on the percentage of parasitism. The maximum parasitism percentage was recorded for the H. hebetor individuals that had been developed from the age group of the 6-d-old adults. The male: female ratios did not differ significantly among the female age groups. The percentage of parasitism clearly indicated a decrease with the increase of the male: female ratio. Overall, the results of the present work can be further utilized in mass rearing and release of H. hebetor in biological control programs in stored product protection.
MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the posttranscriptional repression of target genes in insect species. In the present paper, we studied the miRNAs in Indian meal moth (Plodia interpunctella (Hübener)), one of the most economically important stored grains pests around the world. In total, 12 small RNA libraries from four developmental stages of P. interpunctella were constructed, and 178 known and 23 novel miRNAs were identified. In addition, the expression profiles of these miRNAs were assessed across different developmental stages and miRNAs that were highly expressed in eggs, larvae, pupae, and adults were identified. Specifically, 100, 61, and 52 miRNAs were differentially expressed between eggs and larvae, larvae and pupae, and pupae and adults, respectively. The KEGG and GO analysis of the predicted target genes suggested the essential roles of miRNAs in the regulation of complex development of P. interpunctella. Importantly, we also found a set of miRNAs might be involved in the larval metamorphic molting process, with their expressions increasing and then decreasing during the larva-pupa-adult stages of P. interpunctella. In conclusion, the current paper has discovered numerous miRNAs, and some key miRNAs that might be responsible for regulating development in P. interpunctella. To our knowledge, this is the first study to document miRNAs and their expression patterns in interpunctella, and those findings would lay an important molecular foundation for future functional analysis of these miRNAs in P. interpunctella.
Resistance in pest insects to the grain fumigant phosphine (PH3) poses a threat to trade and food security. The possible pleiotropic effects of PH3 resistance on development and reproduction were investigated in the red flour beetle, Tribolium castaneum (Herbst), by introgressing two genes known to be major contributors to strong resistance (tc_rph1 and tc_rph2) into a susceptible background. The tc_rph2 allele was the G135S variant, whereas the identity of tc_rph1 allele was unknown but could have been one of the three known variants (L119W, V123F, or S349G). The introgressed resistant strain was 288× more resistant than the susceptible strain, based on mortality after a 20 h fumigation with PH3. Molecular screening confirmed that the introgressed strain was homozygous for the resistance genes, but was otherwise indistinguishable from the susceptible strain based on screening with 12 neutral DNA markers. We found no differences of consequence in developmental time between the susceptible and introgressed resistant strains. Similarly, the number of F1 adults produced by these strains was more or less equal, as was the weight of individual F1 adults. The conclusions remained the same regardless of whether the experiments were conducted on a flour-based medium or wheat. Thus, we found no evidence that being fully strongly PH3 resistant (i.e., homozygous for tc_rph1 and tc_rph2) has major consequences in terms of development or reproduction in T. castaneum.
Botanical insecticides, including essential oils (EOs), can be considered as appropriate alternatives to synthetic insecticides for controlling stored product pests. In this study, potential of nano-formulations of the Tasmanian blue gum (TBG) EO to control Callosobruchus maculatus Fabricius (Coleoptera, Bruchidae) were evaluated under laboratory condition. Two nano-emulsion formulations of the EO were provided using gum Arabic and Span 80 as surfactants. Contact as well as fumigant toxicities of the formulations to the beetle adults were compared with the bulk EO in 1, 2, and 3 d after treatment. Results showed that all formulations were toxic to the adults. After 1, 2, and 3 d of treatment, the estimated LC50 values in contact and fumigant applications varied from 1.37 to 8.53 ppm and 0.05 to 0.44 ppm for various formulations. Both nano-formulations cause significant stability enhancement of the EO. Moreover, the EO had significant repellent and ovicidal effects on the insect. The insecticidal effects of the EO in nano-formulations were significantly greater than in the bulk form. The EO constituted 22 compounds, from 5 classes. Eucalyptol (43.79%) is the main constituent of the TBG EO.
European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), has been present in the United States for over 100 yr and documented on >200 plant species, including economically valuable crops. The reported preferred host of O. nubilalis is corn, Zea mays L. (Cyperales: Poaceae), although it is considered to be a generalist agricultural pest. Life cycles of the two pheromone races, E and Z, align with the seasonality of different agricultural plants. Since the introduction of Bt corn in 1996, overall O. nubilalis presence has declined and suggests that alternative crop plants might not be suitable hosts. We investigated plant vegetation preference of third-instar Z-race O. nubilalis for leaf disks of corn and a variety of other crops using 48 h no-choice and choice tests. Z-race larvae gained more mass on V6 non-Bt field corn leaf disks in comparison to other plant species options. Additionally, a preference for non-Bt field corn leaf disks was observed in most comparisons. Higher consumption of cucumber, Cucumis sativus L. (Cucurbitales: Cucurbitaceae), leaf disks as compared to non-Bt field corn leaf disks suggested an ability to feed on excised leaf tissues of a plant species that does not induce defenses to herbivory.
Plant genotype influences plant suitability to herbivores; domesticated plants selected for properties such as high fruit yield may be particularly vulnerable to herbivory. Cultivated strains of highbush blueberry, Vaccinium corymbosum L. can be high-quality hosts for larvae of the gregariously feeding notodontid Datana drexelii (Hy. Edwards). We conducted an experiment assessing D. drexelii larval survival and pupal weight when fed foliage from five blueberry cultivars: ‘Bluecrop', ‘Bluetta', ‘Blueray', ‘Lateblue', and ‘Jersey'. We complemented this experimental work with repeated bush-level surveys of a managed blueberry patch for naturally occurring D. drexelii larval clusters. Larval survival and pupal weight were significantly higher on ‘Lateblue' foliage than from the ‘Bluecrop', ‘Bluetta', and ‘Jersey' cultivars. The blueberry patch surveys found more D. drexelii larval clusters on ‘Bluehaven', ‘Collins', and ‘Darrow' bushes than on the cultivars ‘Earliblue' and ‘Jersey'. The low D. drexelii occurrence and performance on the ‘Jersey' cultivar suggests that this variety may be appropriate for areas where this pest is common; conversely, their high occurrence on ‘Bluehaven' ‘Collins’, and ‘Darrow’ suggests that these cultivars may be particularly vulnerable. Cultivar-level variation in herbivore vulnerability highlights how understanding plant–pest interactions can help manage agricultural species.
Brown marmorated stink bug (Halyomorpha halys) (Stål) is a household nuisance pest that seeks shelter in buildings during the winter months. It has been found in a variety of cavities and spaces between building elements, as well as in the objects stored within buildings. This experiment examined the cavity tightness preferences for these insects as they settled in winter refugia. Adult overwintering H. halys were placed in two types of simulated refugia made from rigid material. Each type had a cavity of constant width, while one had a flat lid and constant tightness, and the other had a sloped lid that became tighter as insects moved inside. Adults were allowed to enter and settle, then their locations were recorded. In sloped lid cavities, H. halys tended to settle where the cavity tightness was between 4.5 and 5.5 mm. In the flat lid cavity boxes, H. halys tended to move all the way back. In both configurations, H. halys had a significant tendency to orient their heads towards the cavity entrance. A field comparison of cavity tightness in refugia with less rigid cardboard substrates was also performed, with spacers consisting of one or two layers of 3-mm cardboard. This comparison found differences in cavity selection by sex, with males more likely to pick single-spaced layers, and females more likely to select double-spaced layers. Understanding these preferences could be useful for collection, pest management, trap design, and study of impacts on structures.
Ana Karen Beltran-Beltran, Ma. Teresa Santillán-Galicia, Ariel W. Guzmán-Franco, Daniel Teliz-Ortiz, María Alejandra Gutiérrez-Espinoza, Felipe Romero-Rosales, Pedro L. Robles-García
The incidences of Citrus leprosis virus C (CiLV-C) and Orchid fleck dichorhavirus Citrus strain (OFV-citrus) were determined in field populations of Brevipalpus mites from 15 citrus-producing states in Mexico. Mites were collected from orange, grapefruit, mandarin, lime, and sweet lime orchards. Brevipalpus yothersi (Baker) (Trombidiformes: Tenuipalpidae) was the most abundant species followed by Brevipalpus californicus (Banks) (Trombidiformes: Tenuipalpidae), which confirmed previous reports. The viruses CiLV-C and OFV-citrus were found in both mite species. The incidence of CiLV-C, OFV-citrus and both viruses simultaneously (CiLV-C and OFV-citrus) was 17.2, 10.3, and 3.4% (n = 116) for B. yothersi, and 12.5, 20.8, and 4.1% (n = 24) for B. californicus, respectively. No significant difference was found when the incidence of these viruses was compared between both mite species. The importance of our results in relation to the epidemiology of leprosis is discussed.
Florida's rice stink bug complex comprises three species; Oebalus pugnax (F.), O. insularis (Stal), and O. ypsilongriseus (DeGeer), the latter two of which are invasive and exclusive to Florida within the United States. A series of surveys were conducted in 2017 and 2018 to determine the relative abundance of the three species throughout Florida's rice growing region within the Everglades Agricultural Area, in addition to comparing their seasonality within crop and noncrop habitats. Sampling occurred in commercial rice fields and adjacent transects of graminaceous noncrop hosts using sweep nets. Oebalus pugnax (52.7%) and O. insularis (61.7%) were the most abundant species in 2017 and 2018, respectively. Both species were more prevalent in rice fields compared to transects of noncrop hosts. Oebalus ypsilongriseus remained in low abundance relative to O. pugnax and O. insularis, and did not differ in numbers collected among rice and noncrop hosts. Of the noncrop hosts in transects, Panicum dichotomiflorum (fall panicum) was the most abundant across both years. This study is the first report of Oebalus species feeding on Echinochloa crus-galli (common barnyardgrass) in Florida. This study shows that the invasive O. insularis continues to increase in abundance, and has surpassed O. pugnax in terms of regional populations. These results emphasize the need for additional studies to assess the interactions among O. insularis and other Oebalus species in addition to its feeding behavior in Florida rice.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere