Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The parasitic mite Varroa destructor (Acari: Varroidae) is a major cause of overwintering honey bee (Apis mellifera) colony losses in the United States, suggesting that beekeepers must control Varroa populations to maintain viable colonies. Beekeepers have access to several chemical varroacides and nonchemical practices to control Varroa populations. However, no studies have examined large-scale patterns in Varroa control methods in the United States. Here we used responses from 4 yr of annual surveys of beekeepers representing all regions and operation sizes across the United States to investigate use of Varroa control methods and winter colony losses associated with use of different methods. We focused on seven varroacide products (amitraz, coumaphos, fluvalinate, hop oil, oxalic acid, formic acid, and thymol) and six nonchemical practices (drone brood removal, small-cell comb, screened bottom boards, powdered sugar, mite-resistant bees, and splitting colonies) suggested to aid in Varroa control. We found that nearly all large-scale beekeepers used at least one varroacide, whereas small-scale beekeepers were more likely to use only nonchemical practices or not use any Varroa control. Use of varroacides was consistently associated with the lowest winter losses, with amitraz being associated with lower losses than any other varroacide product. Among nonchemical practices, splitting colonies was associated with the lowest winter losses, although losses associated with sole use of nonchemical practices were high overall. Our results suggest potential control methods that are effective or preferred by beekeepers and should therefore inform experiments that directly test the efficacy of different control methods. This will allow beekeepers to incorporate Varroa control methods into management plans that improve the overwintering success of their colonies.
Whitefly-transmitted Tomato yellow leaf curl virus (Family Geminiviridae; Genus Begomovirus) severely restricts tomato production in the Southeastern United States. Whitefly and tomato yellow leaf curl virus management studies typically investigate control tactics individually, but successful management of this pest complex more often relies on a combination of tactics. This study examined the individual and combined effects of tomato yellow leaf curl virus-resistant cultivars, insecticides, and metallic reflective mulch on whiteflies, tomato yellow leaf curl virus disease incidence, and marketable tomato yields using split-split plot trials over 3 yr. Reflective mulch significantly reduced whitefly adults and nymphs and tomato yellow leaf curl virus symptom severity in all 3 yr of the study. Reflective mulch treatments also provided greater marketable tomato yield in 2 out of 3 yr. Imidacloprid and cyantraniliprole treatments reduced whitefly adults and nymphs' establishment and marginally increased yields, but there was no significant insecticide effect on tomato yellow leaf curl virus incidence/symptom severity compared with the non-treated check. Virus-resistant tomato cultivars did not influence whitefly populations, but provided consistent reduction in virus disease incidence. Interactions between host plant resistance and insecticide treatments ranged from strongly additive in the standard white plastic mulch treatment to only marginally additive in the reflective mulch treatments in terms of enhancing tomato yields. tomato yellow leaf curl virus-resistant tomato cultivars and reflective mulch provided the bulk of the protection against tomato yellow leaf curl virus disease incidence. However, it was the combination of all the best tactics (reflective mulch, cyantraniliprole, ‘Security’ hyb. tomato yellow leaf curl virus-resistant) that provided the maximum increase in marketable tomato yield (2.8-fold) over the least effective combination (white mulch, no whitefly insecticide, ‘FL47′ hyb. tomato yellow leaf curl virus-susceptible).
The southern rice black-streaked dwarf virus (SRBSDV) causes significant economic damage to rice crops. This virus is transmitted to rice plants by the planthopper Sogatella furcifera (Horváth) in a persistent, circular, and propagative manner. Researchers currently lack suitable methods for assaying the activity of SRBSDV in vitro and preserving the virus all year. We used a microinjection method to directly inject SRBSDV extracts into the hemocoel of S. furcifera nymphs. SRBSDV was subsequently detected by Reverse Transcription-Polymerase Chain Reaction in more than 56.7% of the insects after 5 d and 60% of healthy rice plants fed by these insects also became SRBSDV infected. Moreover, injecting planthopper with an extract of SRBSDV-infected rice plant that had been frozen at –80°C for 220 d caused 63.3% to become viruliferous. These results indicate that SRBSDV can be successfully transmitted to S. furcifera by microinjection, and that extracts of SRBSDV-infected rice plants frozen at –80°C for 220 d still contain sufficient active SRBSDV to infect S. furcifera. We provide a novel way to preserve SRBSDV all year by injecting S. furcifera with the SRBSDV extract.
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a global pest that infests vegetable and field crops within the Brassica family. A genetically engineered strain of P. xylostella, OX4319L, carrying a ‘self-limiting’ gene, has shown potential for managing P. xylostella populations, using sustained releases of OX4319L male moths. In order for such a strain to provide control, the transgenic individuals must exhibit attraction to female P. xylostella sex pheromone and adequate dispersal in the field. In this study, we tested these key traits. First, we compared the responses of the OX4319L male moths to a synthetic female sex pheromone source in wind tunnel trials to those of males from three other strains. We found that OX4319L males responded comparably to strains of non-engineered males, with all males flying upwind towards the pheromone source. Second, we used mark-release-recapture studies of a wildtype P. xylostella strain, from which the OX4319L strain was originally developed, to assess dispersal under field conditions. Released males were recaptured using both pheromone-baited and passive traps within a 2.83 ha circular cabbage field, with a recapture rate of 7.93%. Males were recaptured up to the boundary of the field at 95 m from the central release point. The median dispersal of males was 14 m. These results showed the progenitor strain of OX4319L retained its ability to disperse within a host field. The results of these experiments are discussed in relation to the potential for the effective use of engineered male-selecting P. xylostella strains under field conditions.
Foxglove aphid (Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae)) is one of the principal aphid pests of greenhouse ornamental crops in North America. Biological control of foxglove aphid mostly relies on the use of Aphidius ervi Haliday (Hymenoptera: Braconidae). However, studies indicate that A. ervi may not be adapted to search for A. solani, and that in response to parasitoid attack aphids can drop and/or disperse, which may aggravate an infestation. Our goal was to further describe the searching behavior of A. ervi in the presence of foxglove aphids, the corresponding defensive behavior of foxglove aphid and the short- and medium-term effects on both pest dispersal and control by A. ervi. Behavioral observations were done on top and bottom leaves infested with foxglove aphid and a high release rate of A. ervi. Parasitoids tended to land on top leaves; however, more aphids were parasitized on bottom leaves, leading to equal numbers of parasitoid attacks in both locations. Most aphids dropped off the plant in the presence of a parasitoid. In large cage experiments, aphids were allowed to distribute naturally and A. ervi was released. The parasitoid still caused a high rate of aphid dropping. However, only a few aphids were able to successfully reach new plants, and most of these mummified over time. Our studies confirm that parasitoid-induced dispersal of foxglove aphid in greenhouse crops does occur, but also suggests this should not necessarily be a barrier to adoption of biological control, as A. ervi controls the aphids over time.
This study examined the effects of seven constant and fluctuating temperature profiles with corresponding averages of 12 to 38°C on the life history of the Punjab, Pakistan-sourced Tamarixia radiata (Waterston) released in California for biological control of Diaphorina citri Kuwayama. One linear and seven nonlinear regression functions were fit to egg-to-adult development rate data to characterize thermal performance curves. Temperature fluctuations significantly affected both development and longevity of T. radiata. Estimates of degree-days predicted by the linear model were 30% higher for the fluctuating regime than the constant regime. Nonlinear model estimations of theoretical minimum and maximum developmental thresholds were lower for the fluctuating regime when compared to the constant regime. These predictions align with experimental observations. Parasitoids reared under fluctuating profiles at low average temperatures developed faster (15°C) and survived longer (15–20°C) when compared to those reared under constant regimes with corresponding means. In contrast, high average fluctuating temperatures produced parasitoids with an extended developmental period (35°C) and reduced longevity (30–35°C). A meta-analysis of published T. radiata development datasets, together with the results of this study, indicated convergence in degree-days and theoretical minimum developmental thresholds among geographically distinct parasitoid populations. These findings demonstrate the significant effects of temperature on T. radiata life history and have important implications for optimization of mass-rearing and release efforts, improvement of predictions from climate modeling, and comparison of T. radiata population performance across climatic gradients and geographic regions.
Chrysoperla comanche (Banks) and its sibling species Chrysoperla rufilabris (Burmeister) are voracious predators of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), an invasive pest that vectors a bacterium responsible for the lethal and incurable citrus greening disease. The Comanche lacewing naturally occurs in Southern California, whereas C. rufilabris is currently one of only two commercially available green lacewing in the United States. These sister species can be separated by larval morphological traits, by differences in courtship songs, and possibly by three nuclear genes wingless, PepCK, ATPase, yet they are not distinguishable based on the mitochondrial barcode gene (COI). Releasing in a new area a biological control agent capable of hybridizing with a resident species may pose risks that range from local displacement to irreversible loss of genetic identity. Therefore, we performed no-choice laboratory crosses to assess pre- and postzygotic isolation. We show that fertile and viable hybrid progeny could be readily obtained in interspecific crosses and backcrosses and, although there is a trend toward lower hybrid fitness, postzygotic isolation is overall weak and might not prevent loss of genetic identity under natural conditions. It remains to be determined if differences in courtship songs will prevent hybridization in the wild, as shown for other green lacewings. We also report a low prevalence of Rickettsia infection in both species.
Compared with the numerous natural enemies against insect pests that have been identified, the commercialization of natural biological control resources remains very limited. To increase the use of natural enemies for biological control, determining how to improve the low efficacy, slow speed, and high cost of natural enemies is very important. Mediterranean species of The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodoidea), increasingly threatens many crops in China, and control primarily depends on chemical insecticides. Here, the effect of ethanol extracts from two plants, Agrimonia pilosa (Ledeb) (Rosales: Rosaceae) and Melia azedarach (Linn) (Meliaceae: Melia), on predominant natural enemies of B. tabaci was investigated using a leaf dipping or spraying method. The results showed that the ethanol extract of A. pilosa significantly improved the infectivity of the fungus Isaria javanica (Friedrichs & Bally) (Ascomycota: Hypocreales), and the mortality of whiteflies caused by the combination of fungus (105 spores/mL) with the extract of A. pilosa (2 mg/mL dried powder of A. pilosa containing 0.0942 mg/mL total polyphenols) was 81.6%, which was significantly higher than that caused by the fungus only. However, the ethanol extract of M. azedarach had no effect on fungus infectivity. Additionally, insecticide tolerance of the predator Pardosa pseudoannulata was also significantly improved by the extract of A. pilosa. The longevity of the parasitoid Encarsia formosa was not affected by the extracts. These findings indicate that the extract of A. pilosa played a dual role that included improving pathogenic fungi infectivity and insecticidal tolerance of a predator and thus could be a synergist in the biological control of B. tabaci.
The Spirea citrus aphid, Aphis spiraecola Patch, and the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), are key pests of clementine mandarines in the Mediterranean basin. Severity of aphid infestations is determined by environmental variables, host plant phenology patterns, and the biological control exerted by their associated natural enemies. However, there is no information about the role these limiting and regulating factors play. Aphid densities, citrus phenology, and associated predators that overwinter in the crop were monitored weekly throughout two flush growth periods (February to July) in four clementine mandarin groves; relationships between these parameters and environmental variables (temperature and precipitation) were studied. Our results show exponential increase in aphid infestation levels to coincide with citrus phenological stages B3 and B4; shoots offer more space and nutritional resources for colony growth at these stages. Duration of these phenological stages, which was mediated by mean temperature, seems to importantly determine the severity of aphid infestations in the groves. Among those studied, the micro-coccinellids, mostly Scymnus species, were the only group of predators with the ability to efficiently regulate aphid populations. These natural enemies had the highest temporal and spatial demographic stability. Aphid regulation success was only achieved through early presence of natural enemies in the grove, at the aphid colonization phase. Our results suggest that conservation strategies aimed at preserving and enhancing Scymnus sp. populations may make an important contribution to the future success of the biological control of these key citrus pests.
Metarhizium rileyi, a well-known entomopathogenic fungus, could open up new vistas in biological control of insect pests; however, due to its intrinsic shortcomings, such as long pathogenic process, its application is largely limited. To explore which process, the invasion or the following in vivo development, is the main factor responsible for the long pathogenic process, the lethal effect of M. rileyi against Spodoptera litura (Fabricius) was determined by conidial topical application and hyphae body injection, and the host immune response was also monitored. Results showed when larvae were inoculated by conidial topical application, the pathogenicity of M. rileyi varied greatly depending on the larval instar and conidia concentration, and LC50 values ranged from 6.24 × 106 to 6.06 × 109 conidia/ml while LT50 values fluctuated from 4.35 to 9.43 d. However, in vivo study showed when hyphal bodies (Hbs) of M. rileyi were injected into host hemocoel, they would not be recognized by the host's immune system as invaders. There were no significant differences in the hemocytes and phenoloxidase activity between the infected and control larvae at the initial 44 h, indicated that the fungus was able to successfully avoid the attack from the cellular and humoral immune systems, therefore, it could multiply freely in the hemocoel. The in vivo development time of M. rileyi tended to remain constant for 2–3 d regardless of the initial inoculated numbers. Considering no detectable defense response was observed during in vivo development, it can be concluded that host nonself-recognition system does not respond to the hemolymph borne-Hbs.
For many years, an area-wide fruit fly control campaign against the Mexican fruit fly, Anastrepha ludens (Loew) has been implemented in some regions of Mexico and Texas, using the sterile insect technique (SIT) as its principal component. To improve the efficiency of the SIT, a genetic sexing strain based on black pupae mutation (bp) was developed for A. ludens, namely, ‘Tapachula-7′ (Tap-7 genetic sexing strains [GSSs]). This strain was introduced into the AW-IPM program recently and allows male-only releases for SIT applications. Here, we report the genetic and biological characterization of a new mutation, slow larvae (sl), which was introduced to the original translocation of the Tap-7 GSS resulting in two new GSS (slow-7 and Tap/slow-7). In both GSSs, the translocated wild-type males emerge from brown pupae that develop faster than females. The females are homozygous for sl mutation in the slow-7 GSS and homozygous for sl and bp mutations in theTap/slow-7 GSS, reaching larval maturity 2 d after most of the wild-type males, allowing the separation of most males during pupariation. The potential use of the slow-7 and Tap/slow-7 GSSs in mass rearing and large-scale population suppression programs is discussed.
Whitefly pests, including the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), are economically important in agriculture. With the annual growth of the domestic fresh fruit export market, various quarantine treatment methods are being used to export strawberries of better quality. The objective of the present study was to evaluate the effects of gamma rays on the development and reproductive sterility of B. tabaci and T. vaporariorum. In both species, the eggs were completely inhibited from hatching at 50 Gy, and the emergence of third-instar nymphs was completely suppressed at 150 Gy. Some adult B. tabaci and T. vaporariorum spawning occurred at 100 and 70 Gy, respectively; however, at these irradiation levels, F1 hatchability was completely inhibited. Dosimetry results showed that the penetrating power of gamma ray in the strawberry-filled box was the lowest at the mid-box position. Therefore, B. tabaci and T. vaporariorum were placed in the middle of the strawberry-filled box and irradiated. A gamma-ray irradiation of 100 Gy suppressed the development and reproduction of eggs and adults in both B. tabaci and T. vaporariorum. Our data suggest that at least 100 Gy should be used for the control of these two species of whitefly for strawberry export.
Traumatic insemination (TI) can be injurious to females, and females have evolved various paragenital structures to mitigate these impacts. We examined the mating behavior of Orius insidiosus (Say) and the consequences of single and double matings for female fitness. A total of 100 virgin females (4–6-d old) were directly observed while they mated with virgin males. Some of these females were mated a second time with a different, nonvirgin male 3–5 d later, after they oviposited in sunflower stems. Females were held in isolation, fed eggs of Ephestia kuehniella Zeller, and reproductive success was tracked for 30 d. Six females died during their first copulation (6%), and another within 48 h, without laying eggs. Four percent of the females died during their second copulations. Copulations lasting less than 90 s usually did not result in successful fertilization, and duration of copula was positively correlated with egg fertility in singly-mated females. Duration of copula was more than halved in second matings, twice as variable, and negatively correlated with 30 d fecundity. Thirty-seven percent of singly-mated females and 31% of twice-mated females were infertile, with fewer than half of all females producing 88% of all eggs. We conclude that O. insidiosus females are likely monandrous in the wild, and that TI in this species is inefficient, contributing to high variation in female fitness. Thus, mating involves a significant mortality risk for females, despite their possession of complex paragenital structures that ostensibly mitigate copulatory injury.
Over a period of 5 yr (2012–2016), we conducted laboratory and field studies on activity, movement, and response to trap placement of adult Drosophila suzukii (Matsumura) in wild blueberry, Vaccinium angustifolium Aiton, fields in Maine. When measuring temporal patterns in fruit infestation, we found that D. suzukii females are most active in the morning and that they are 10 times more likely to lay eggs in blueberries at the top of the plant canopy compared with berries located in the lower part of the bush. Flies were found to be more abundant in fruit-bearing (crop) fields compared with pruned (vegetative) fields based on trap capture of adults. They are also most abundant along edges of fields compared with interiors. Trap efficiency is significantly better in traps 1.2 m above the ground and above the crop canopy of this low-growing crop plant than within the crop canopy. Three experiments involving the marking of laboratory-reared flies with fluorescent marker, their release, and capture with traps along a grid in fields suggest that: 1) fluorescent markers do not affect the distance moved of marked flies, 2) dispersal rates are not different between sexes, 3) there is little difference in the dispersal pattern through pruned fields and fruit-bearing fields, and 4) flies disperse at a low rate of 0.1–30 m per day, with an average of 5 m per day, but that long-distance dispersal over 1–2 km is feasible based on statistical model extrapolation.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a destructive insect pest of cruciferous plants that has developed resistance to almost every listed commercial insecticide. Cantharidin as an animal-derived biopesticide is a natural defensive compound produced by Meloidae insects with toxicity to many insects including P. xylostella. Norcantharidin is an important substitute of cantharidin and has similar insecticidal activities to cantharidin. Although the toxicity of cantharidin and norcantharidin to P. xylostella has been reported, little research has focused on the effects of cantharidin or norcantharidin on the behavior of P. xylostella. In this study, we investigated the feeding behavior of third-instar larvae and the oviposition preference of adult P. xylostella in order to explore the effects of different concentrations of cantharidin and norcantharidin. Results show that cantharidin and norcantharidin have antifeedant effect on P. xylostella larvae. The values for AFC50 were 13.0228 and 149.4210 mg/ml, respectively. Furthermore, the oviposition deterrence rate of cantharidin on P. xylostella ranged from 49.37 to 58.24% and that of norcantharidin was from 20.88 to 33.33%. These results suggest cantharidin and norcantharidin may have repellent and antifeedant effect on P. xylostella, which could contribute toward using biopesticides to manage P. xylostella and may provide a new strategy for integrated pest management.
Bradysia odoriphaga Yang et Zhang is a serious belowground pest of Chinese chives (Allium tuberosum). Our previous studies have indicated that B. odoriphaga females prefer to oviposit near the roots of Chinese chives rather than the roots of other plants, and that the performance (longevity and fecundity) of B. odoriphaga offspring was better on Chinese chives than on Lettuce (var. ramosa Hort.), Onion (Allium cepa) and Potato (Solanum tuberosum) but little is known about how the volatiles released by Chinese chives affect the host-finding and oviposition behaviors of B. odoriphaga. Here, we used gas chromatography-mass spectrometry and determined that Chinese chives releases the following volatiles: methyl allyl disulfide, β-myrcene, cis-ocimene, diallyl disulfide, nonane, n-dodecane, n-tetradecane, and n-hexadecane; quantities released were highest for methyl allyl disulfide and diallyl disulfide. In addition to eliciting strong responses in females in electroantennography assays, the latter two sulfur compounds and their mixtures attracted females in Y-tube olfactometer assays. The addition of methyl allyl disulfide, diallyl disulfide, or a mixture of the two compounds at a 1:5 ratio to chive plants increased oviposition when compared to control plants. These results indicate that methyl allyl disulfide and diallyl disulfide, either alone or in combination, influence the host-seeking behavior of B. odoriphaga.
Myoporum spp. (Lamiales: Scrophulariaceae) native to Australia and New Zealand have been introduced into North America and have been widely planted as shrubs and ground covers in the California urban landscape. The invasive thrips, Klambothrips myopori Mound and Morris, invaded California in 2005 and feed exclusively on Myoporum. However, some commercial cultivars have suffered extensive damage, whereas others have not. In field studies and laboratory feeding tests of six different potential host species or cultivars, Myoporum laetum and Myoporum ‘Pacificum’ were identified as most suitable host plants of K. myopori. In laboratory trials, K. myopori failed to complete development on M. ‘Clean n Green’ and M. ‘Putah Creek’. Of the six varieties of Myoporum tested, K. myopori damage was only observed on M. laetum and M. ‘Pacificum’. Although K. myopori can successfully colonize and reproduce on several varieties of Myoporum, they demonstrated a preference for M. laetum and M. ‘Pacificum’ in laboratory and field trials.
The ability to mass-rear insects in high densities is a precondition for the edible insect industry but the space requirement has to be determined specifically for each species. Mass-rearing methods for Ruspolia differens Serville (Orthoptera: Tettigoniidae), one of the most consumed edible insect species in East Africa, are currently lacking. Though, these methods are urgently needed to enhance the food security in the region and to reduce the pressure on the wild populations. Here, we experimentally evaluated the effect of rearing density and rearing environment on the survival of R. differens nymphs. We conducted two experiments; in Experiment 1 we used small 0.15-liter rearing containers and in Experiment 2, larger 0.75-liter containers. The rearing densities ranged from 4 to 300 individuals per liter and we used three different rearing environments (‘net’, ‘spikes’, and ‘oat sprouts’). We found that the survival of R. differens nymphs is strongly density-dependent. The suitable rearing density for young R. differens nymphs should be ≤36 nymphs per liter, as in higher densities the mortality of nymphs increases rapidly over the course of time. With rearing densities ≤36 nymphs per liter, a survival rate of 60% can be expected up to 28 d after rearing. The studied environments only had a minor effect on the survival. These results create the basis for the efforts to upscale the rearing of R. differens in the future.
During an assessment of various insecticides against sap beetles, Carpophilus sp., it was noted that at least some males everted their reproductive structures (referred to as aedeagus from here forward) when treated with a spinosyn insecticide, spinetoram. This response to spinosyns or other insecticides is not documented in the literature even though sap beetles have been included in numerous insecticide assays and spinosyn insecticides have been in widespread commercial use for >20 yr. Additionally, other insect species have not been documented to show a similar aedeagus eversion response to spinosyns or other insecticides. The objective of this study was to further examine eversion of the aedeagus when sap beetles were exposed to different rates of two spinosyn insecticides, spinetoram and spinosad. Additionally, we examined whether a similar response would occur in other insects when three species of Coccinellidae (Coleoptera) and one species of Curculionidae (Coleoptera) were exposed to spinetoram. Our results show that male sap beetles respond to both spinosyns by everting the aedeagus, females did not have an analogous response. No similar response was observed for the assayed species of Coccinellidae or Curculionidae.
The swede midge (Contarinia nasturtii Kieffer) is an invasive insect in North America whose feeding has caused a decline of over 60% of total canola acreage in Ontario, Canada since 2011. Temperature-dependent development and mortality information are important to develop an effective pest management strategy for this insect; as the most comprehensive study on C. nasturtii development was completed on populations from the United Kingdom in the 1960s, new geographically relevant information is needed. Contarinia nasturtii eggs, larvae, pupae, and adults were reared from wild populations collected from Elora, Ontario, and allowed to develop at different temperatures. Resulting development rates were fit to a series of growth models and the model with the best relative goodness-of-fit was selected to represent the given life stage. Eggs from Ontario populations developed more quickly than their UK counterparts at temperatures below approximately 17°C, but more slowly at temperatures above 17°C. The same phenomenon was observed in larvae at 20°C. Pupae from both populations had similar development rates, and adult longevity was similar as well. This information will inform the management of C. nasturtii, and may help prevent its spread to other canola-producing regions of North America.
The banana moth, Opogona sacchari (Bojer, 1856), is a polyphagous pest that causes serious damage to different crops around the world, particularly to bananas in southern Brazil.The insect is designated a quarantine pest in several countries including Argentina, the main consumer market for bananas produced in southern Brazil.To provide support for the management of O. sacchari, the present study investigated the biology and thermal requirements at eight temperatures (18, 22, 25, 28, 30, 32, 33, and 34 ± 1°C) and constructed a fertility life table at five temperatures (18, 22, 25, 28, and 30 ± 1°C). Above 30°C, the mortality of all life stages was 100%; the best temperature for development was 25°C. Based on this information, an ecological zoning of the pest was developed for Brazil.The lower temperature threshold was 8.6°C.The zoning indicated that the pest does not occur in regions with warmer climates, corresponding to the actual distribution of this pest in Brazil.
Spodoptera litura (Fabricius) is economically important in many countries. Many biopesticides have been developed and studied to control this pest species; however, few natural products from marine organisms have been studied for their pesticidal efficiency. This study compared the acute contact toxicity of solvent extracted from the viscera of Holothuria atra and isolated triterpene glycoside compounds on third-instar S. litura. Our results showed that crude methanolic extracts were the most toxic to the larvae (LC50 ~ 10.37 mg/ml) compared with other crude extracts and contained the bioactive compound 3,4-dihydroxybenzoic acid (LC50 ~ 6.01 mg/ml). All crude extracts and isolated triterpene glycoside compounds inhibited carboxylesterase activity. The efficiency and effectiveness of H. atra extractions and triterpene glycoside compounds against S. litura indicate their potential use in integrated pest management programs and the overall value of marine species as natural sources of insecticidal compounds.
The control of boll weevil, Anthonomus grandis grandis Boh., relies primarily on synthetic insecticides. Although insecticides are registered to spray cotton fields against boll weevils, only a few offer satisfactory control and most have broad-spectrum action. Alternatively, spinosyns have been recommended against lepidopteran pest species in cotton and are considered comparatively of reduced risk to nontargets. The susceptibility of nine populations of boll weevil to spinosad and spinetoram was determined through dried residue on squares and cotton leaves. Furthermore, control efficacy of spinosad and spinetoram compared with the standard organophosphate malathion was determined for caged adults at two different positions within the plant canopy or treated cotton leaves after different spray intervals. Boll weevil susceptibility varied across the nine populations and tested spinosyns. The lethal concentrations (LC50s and LC90s) varied from 8.62 to 32.25 and 49.86 to 281.70 mg a.i./l for spinosad and from 2.17 to 15.36 and 8.58 to 69.36 mg a.i./l for spinetoram. The location of boll weevil within the plant canopy affected the insecticide efficacy with higher mortality when caged on upper parts rather than on lower parts of cotton plants (>85% vs <45% of control) across all three insecticides. In addition, dried residues of spinosyns resulted in adult mortality >80% until the end of the evaluation period (8 d), while the standard malathion caused only 10% at this last evaluation time. Thus, we can conclude that both spinosyns promoted prolonged adult mortality using recommended field rates compared with the standard malathion.
Thrips (Thysanoptera:Thripidae) and tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), are among the most important insect pests of cotton, Gosssypium hirsutum, in the mid-southern United States. These pests are currently managed primarily by insecticides; however, a new Bt toxin, Cry51Aa2.834_16 is under evaluation for control of thrips and tarnished plant bug. Experiments were conducted to evaluate the behavioral response of thrips and tarnished plant bug to Bt Cry51Aa2.834_16. Adult thrips avoided Bt Cry51Aa2.834_16 cotton in field choice tests and in separate field tests of Bt and non-Bt cotton not treated with insecticides. In a greenhouse choice test, approximately twice as many adult thrips and eggs were found on non-Bt compared with Bt Cry51Aa2.834_16 cotton. Similarly, in a field test of nontreated Bt Cry51Aa2.834_16 and non-Bt cotton, 68% of adult thrips collected were found on non-Bt cotton. In cotton that was not sprayed with insecticides, Bt Cry51Aa2.834_16 did not affect the distribution of tarnished plant bug within the canopy, although more square and flower injury was caused by tarnished plant bug in non-Bt cotton. Adult tarnished plant bug exhibited a nonpreference for diet containing lyophilized Bt Cry51Aa2.834_16 leaves and for excised Bt Cry51Aa2.834_16 squares in choice tests with non-Bt squares.The behavioral responses of these pests when exposed to this new Bt toxin will play a key role in the efficacy and potential resistance management strategies if this new technology is incorporated in an overall cotton insect pest management system.
Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) populations are maintained in wild host plants such as trees that act as pest reservoirs from where beetle infestation of maize granaries take place. In this study, we assessed the suitability of plant species sold and transported as firewood as well as other plant species in Mozambique as hosts for P. truncatus. Prostephanus truncatus was only recorded from three tree species, which are sold as firewood, i.e., Brachystegia spiciformis, Strychnos spinosa, and Colophospermum mopane. The pest survived and bred in 13 tree and 7 grass species. Dry wood of several tree species and the grasses Acroceras macrum and Hyparrhenia hirta were suitable hosts for pest development. Sale and transport of certain firewood species may be an important driver of the spread of this pest. The importance of dry maize stalks and several grass species in sustaining pest populations is described for the first time. Several grass species are used as thatch or fencing material and, together with maize crop residues close to small-scale granaries, may provide significant sources of beetle infestation.
Sipha maydis Passerini (Heteroptera: Aphididae) is a cereal pest with an extensive geographical range that includes countries in Europe, Asia, Africa, and South America. Reports of S. maydis in the United States have been infrequent since it was first detected in California, 2007. Two studies, focused (NW CO) and multistate (OK, TX, NM, CO, UT, WY), were conducted to determine the distribution and host range of S. maydis in the Rocky Mountain and Southern Plains states over a 3-yr period, 2015–2017. In 2015, focused sampling in NW Colorado found S. maydis at 59% of the 37 sites, primarily on wheat. Sipha maydis did not survive extreme winter temperatures from late December 2015 to early January 2016 that ranged from –9.0 to –20.9°C over a 9-d period, which resulted in no aphids detected in 2016. In the multistate study, S. maydis occurred in 14.6% of 96 sites sampled in 2015, 8% of 123 sites in 2016, and 9% of 85 sites in 2017 at wide range of altitudes from 1,359 to 2,645 m. Sipha maydis occurred mainly in NW and SW Colorado and NE New Mexico along with a few sites in NE Colorado, SE Utah, and SE Wyoming. This aphid mainly infested wheat followed by a variety of eight wild grass species. No parasites, predators, sexual morphs, or significant plant damage occurred at the sites. Sipha maydis utilized 14 hosts in the United States including 8 new host records, which expands its host range to 52 plant species worldwide. Sipha maydis may be of concern to wheat, barley, and sorghum production in the United States if its populations continue to increase.
Daniela T. Pezzini, Christina D. DiFonzo, Deborah L. Finke, Thomas E. Hunt, Janet J. Knodel, Christian H. Krupke, Brian McCornack, Andrew P. Michel, Christopher R. Philips, Adam J. Varenhorst, Robert J. Wright, Robert L. Koch
Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country's total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States.
Daniela T. Pezzini, Christina D. DiFonzo, Deborah L. Finke, Thomas E. Hunt, Janet J. Knodel, Christian H. Krupke, Brian McCornack, Andrew P. Michel, Roger D. Moon, Christopher R. Philips, Adam J. Varenhorst, Robert J. Wright, Robert L. Koch
Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (>100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean.
Helicoverpa zea Boddie is a common economic pest of cotton (Gossypium hirsutum L.), including transgenic cotton varieties that express Bacillus thuringiensis (Bt). Helicoverpa zea oviposition is similar in Bt and non-Bt cotton, but behavior of H. zea larvae can be different in the presence of Bt, with neonates moving away from terminals faster in single-toxin Bt than non-Bt cotton or avoiding Bt-treated diet in the lab. We quantified H. zea oviposition and larval distribution on structures within cotton plants in small plot experiments of Cry1Ac + Cry1F cotton for 2 yr under different irrigation and nitrogen treatments. More eggs were oviposited on plants receiving nitrogen application during 2016 and on leaves in the top section of irrigated plants during 2017, but other treatment effects on eggs or larvae were minimal. Helicoverpa zea eggs were most common on leaves in the top third of plants at position zero and middle section of cotton plants throughout the season, but some oviposition occurred on fruiting structures as well. First and second instars were more common on squares in the top section of plants during 2016 and bolls in the middle and lower sections during 2017 due to oviposition lower in the canopy during 2017. During both years, third through fifth instars were more common on bolls in the middle and lower section of plants closer to the main stem. These findings have resistance management implications as extended larval feeding on bolls could optimize nutrition, decrease Bt susceptibility, and potentially influence behavioral resistance.
Matsuone is a well-known sex pheromone of the genus Matsucoccus (Hemiptera: Margarodidae), including species Matsucoccus matsumurae (Kuwana), Matsucoccus resinosae Bean & Goldwin, and Matsucoccus thunbergianae Miller & Park. In this study, we investigated the effects of matsuone dose and trap height on the capture of M. thunbergianae and developed an alternative synthesis of racemic matsuone. In field trapping experiments, M. thunbergianae males showed dose-dependent attraction to (6R,10R/S)-matsuone from 100 μg up to an approximate saturation level of 1,600 μg per rubber septum lure. Traps baited with (6R,10R/S)-matsuone and installed 50 cm above ground level attracted more males than traps 100 and 150 cm above ground level. To reduce synthesis procedures, time, and labor, we developed a new synthetic route to racemic matsuone and conducted field experiments with the product. Although traps baited with the racemic matsuone were less attractive than traps baited with (6R,10R/S)-matsuone synthesized by a previously reported method, the new synthetic route could be an economically favorable alternative to the previous method used in production of lures for field application.
Rômulo Sátiro de Medeiros, Germano Lopes Vinha, José Cola Zanuncio, Carlos Frederico Wilcken, Claubert Wagner Guimarães de Menezes, Marcus Alvarenga Soares, Amélia Guimarães Carvalho
Brontocoris tabidus Signoret (Heteroptera: Pentatomidae) is a zoophytophagous predator of lepidopteran defoliators of eucalyptus in Brazil. This predator complements its diet with plants, which is fundamental for its population maintenance. The objective was to evaluate the B. tabidus development, reproduction, and life table parameters in the field on Eucalyptus cloeziana F. Muell. (T1), Psidium guajava Linn (Myrtales: Myrtaceae) (T2), or without plants (T3). The parameters estimated were: net reproductive rate (Ro); generation duration (DG); time for the population to double in size (TD); intrinsic population growth rate (rm), survival rate (lX), specific fertility (mx), life expectancy (ex), and mortality risk (qx). Ro, DG,TD, and rm were higher in the T1 and T2 than in T3. Plant presence favored the lx, mx, and qx. Ex values were 36.1 and 56.9 in the T3 and T1, respectively. The B. tabidus fertility, longevity, and life table parameters improvement on E. cloeziana and P. guajava plants are due to the water and nutrients obtained from them. B. tabidus can be reared with Tenebrio molitor Linnaeus (Coleoptara: Tenebrionidae) pupae on E. cloeziana or P. guajava plants in the field.
As high tunnel vegetable production acreage increases in the United States, so does the need for management strategies tailored to their unique growing environment. Cucumbers are an ideal crop in these systems; they can be vertically trellised to maximize the production area and provide high yields to balance the increased costs associated with high tunnel construction. One of the most limiting factors in cucurbit production in general is the cucumber beetle complex and the bacterial pathogen they transmit. In this study, we investigated the optimal size of netting installed on high tunnels to prevent cucumber beetle colonization while maintaining ventilation to reduce heat stress. Of the three mesh sizes investigated across 4 yr, the intermediate mesh with a pore size of 0.72 × 0.97 mm was optimal to exclude cucumber beetles, maintain ventilation, and produce the highest yields for both cucumber and melon plants. The smallest (0.16 mm2) and intermediate mesh sizes resulted in secondary pest outbreaks (e.g., aphids), which did not occur in open tunnels and to a lesser extent in tunnels covered with the largest (1.00 × 4.00 mm) mesh. Despite these secondary pests, yield was higher in small- and intermediate-sized mesh treatments due to relief from cucumber beetle infestations, including striped (Acalymma vittatum Fabr. (Coleoptera: Chrysomelidae)) and spotted (Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae)) beetles. Overall, we conclude that insect exclusion netting is an effective method to exclude cucumber beetles from high tunnels, but mesh size should be carefully considered when weighing the collective effects on yield and primary/secondary pest abundance.
The melon aphid, Aphis gossypii Glover, is a cosmopolitan pest that infests and damages a wide range of crop plants, especially cucurbits. It is a host of the coccinellid predator, Hippodamia variegata (Goeze), that has the potential to suppress the pest on leaves of cucumber plants grown in greenhouses. Melon aphids were reared on either Storm or Khasib cucumber cultivars to determine whether there would be a difference in their development and reproduction. The aphids from each cultivar were fed to H. variegata adults to assess their effects on the life history of the predator. The aphid population reared on Khasib leaves increased faster than the population on Storm leaves; however, the predators fed aphids from Storm leaves had a higher rate of population growth. Thus, the intrinsic rate of increase and net reproductive rate were greater for aphids reared on Khasib leaves but lower for H. variegata fed those aphids compared with aphids reared on the Storm cultivar. Additionally, clean and aphid-infested leaves from both cultivars were analyzed for total flavonoids, phenol, and chlorophyll, and the density of leaf trichomes was measured. The Storm leaves contained higher amounts of flavonoids and phenol, less chlorophyll, and a greater density of trichomes. Regardless of cucurbit cultivar, aphid feeding increased the flavonoids and phenol content and decreased the amount of chlorophyll.
The most effective traps tested against western cherry fruit fly, Rhagoletis indifferens Curran, have been the Yellow Sticky Strip (YSS) rectangle made of styrene and the three-dimensional yellow Rebell cross made of polypropylene. However, three-dimensionalYSS styrene traps have never been tested against this or any other fruit fly. The main objectives of this study were to determine the efficacies of 1) YSS cross, Rebell cross, YSS cylinder, and YSS rectangle traps, 2) Rebell cross versus Rebell rectangle traps, and 3) YSS tent versus YSS rectangle traps for R. indifferens. For 1), theYSS cross caught more flies than the Rebell cross of equivalent surface area and more than a smaller YSS cylinder, but not any more than a YSS rectangle of similar surface area as the YSS cross. For 2), a Rebell cross caught more flies than a rectangle of equivalent surface area made of Rebell panels. For 3), YSS tent and YSS rectangle traps of equivalent surface area did not differ in fly captures. Results suggest that the YSS cross was more effective than the Rebell cross due to its color and that when trap color is highly attractive, three-dimensional shape may be unimportant, whereas it could be when trap color is less attractive. A new trap modeled after the YSS cross, compact but with high trap surface area to increase fly captures, could be an effective option or addition to rectangles for monitoring R. indifferens.
Drosophila suzukii (Matsumura) is an invasive species of vinegar fly that infests soft-skinned and stone fruits. Since its first detection in the United States, D. suzukii has become a prominent economic threat in fruit crop industries, particularly affecting caneberry and sweet cherry growers. This study examined the susceptibility of tart cherries (Prunus cerasus) to D. suzukii and sampled for larvae and adult D. suzukii during the tart cherry growing season. Four tart cherry cultivars (Montmorency, Balaton, Carmine Jewel, and Kántorjánosi) were tested at three different ripeness stages (unripe, ripening, and ripe), in no-choice laboratory bio-assays. Field monitoring and sampling revealed that first adult D. suzukii detection occurred on 16 June, and first field larval D. suzukii detection occurred on 28 July. Adult D. suzukii populations increased through late August, and high numbers of adults overlapped with the tart cherry harvest. Lab assays indicated that tart cherry cultivars generally became more susceptible to D. suzukii as they ripened. As the fruit developed, °Brix (sugar content) increased and firmness generally decreased. Tart cherry °Brix and firmness were not correlated with the number of D. suzukii eggs per gram of fruit, but showed a significant interaction effect with the number of larvae and adults per gram of fruit. This study shows that tart cherries are largely not susceptible to D. suzukii when unripe and become susceptible as soon as the fruits change color, suggesting that fruits should be protected as soon as they begin to ripen and D. suzukii populations begin to rise.
Ceratitis capitata (Wiedemann, 1824) is the main insect pest of fruits worldwide. The objective of this study was to evaluate the toxicity and residual effects of the ready-to-use toxic baits Success 0.02CB (0.24 g of active ingredient [a.i.] per liter of spinosad) and Gelsura (6 g of a.i./liter of alpha-cypermethrin) and to compare them with other food lures containing spinosad and malathion mixed with hydrolyzed protein (Biofruit 5% and Flyral 1.25%), Anamed without dilution or sugarcane molasses (7%) against adult C. capitata in laboratory and greenhouse trials. Ceratitis capitata adults were highly susceptible to all toxic bait formulations (mortality > 80%) until 96 h after exposure. The lowest LT50 (hours) of toxic baits were 2.32 (Gelsura at 4,000 mg/liter), 4.26 (Gelsura at 2,000 mg/liter), 4.28 (Anamed + malathion) and 4.89 (sugarcane molasses + malathion), while formulations containing spinosad (Biofruit, Flyral, Anamed and Success 0.02CB) showed LT50 of approximately 11 h. Without rain, Gelsura (2,000 mg/liter) and all spinosad formulations provided mortality superior to 80% 14 d after application. Gelsura and Anamed + spinosad showed higher resistance to a 5-mm simulated rain, similar to Anamed + malathion, while the other formulations had its efficacy decreased. All toxic baits were effective on adult C. capitata in residual experiments without rain while Anamed + spinosad caused high adult mortality after 5 to 25 mm rains. Gelsura and Anamed + spinosad can be used to replace toxic baits containing malathion for C. capitata population management.
Plutella xylostella (L.) is a microlepidopteran found in all brassica-producing regions of the world. However, no economic injury level (EIL) has been established for this pest in collard greens. Therefore, studies evaluating the EIL of P. xylostella in this crop based on the number of caterpillars per plant can assist pest monitoring and the most effective time for pest control, ensuring profits and the use of pesticides only when required. The present study assessed leaf consumption of caterpillars at different levels of infestation and determinined the EIL for P. xylostella in collard greens. Based on the yield reduction index of collard greens for P. xylostella, EIL was estimated for different scenarios of pest control costs, setting the market value of the bunch of collard greens, and, alternatively, with prices varying and the control cost fixed. In simulated scenarios for 7 d after infestation, the number of caterpillars per plant was always below 1.38, whereas for 10 d, the maximum number was 1.25 caterpillars per plant. When simulating scenarios with different market values for the bunch of collard greens the lower the price of the collard greens bunch, the higher the mean number of caterpillars per plant to compensate the application cost. The mean number of caterpillars per plant ranged from 4.59 to 0.38 in the evaluation for 7 d, and from 4.17 to 0.35 caterpillars per plant for 10 d according to the price of the bunch of collard greens.
The native banana-spotting bug, Amblypelta lutescens lutescens Distant, is a major polyphagous insect pest of many tropical and subtropical horticultural crops in Australia, including high-valued commodities such as avocado (Persea americana Mill. (Laurales: lauraceae)). The cryptic nature of A. l. lutescens makes it difficult to sample, and much about its ecology and behavior remains poorly understood. A lure based on the main components of the semiochemicals emitted by male A. l. lutescens, which is attractive to adult males, adult females, and nymphs, has been developed and incorporated into a trap, facilitating sampling of A. l. lutescens in the field. A 2-yr study investigated the spatial and temporal dynamics of the pest in two conventionally managed avocado (cv. Shepard) orchards using a grid (36 m × 36 m) of traps across each. In each year of the study, higher numbers of A. l. lutescens were recorded from October to June. In one field, spatial clustering of adults was detected in close proximity to an adjacent lime [Citrus aurantiifolia (Christm.) (Rutales: rutaceae) Swingle] crop that was not managed with insecticides during the study. Spatial clustering of nymphs was detected adjacent to native riparian vegetation in the other field. The results suggest that source populations of A. l. lutescens could originate from neighboring crops that host A. l. lutescens and from riparian vegetation. Focused sampling of trees at the interface with these vegetation types could lead to early pest detection, timely suppression, and therefore improved pest management.
Most field studies on Cimex lectularius are conducted in residential or hospitality industrial settings. Cimex lectularius infestations in office settings are reported, but are rarely studied. An office environment (~875 m2) consisting of 105 cubicles or pod-seating areas with persistent C. lectularius sightings over a 2-yr period was evaluated for 90 d through intensive trapping to determine C. lectularius distribution and to eliminate the infestation. The study area was partially occupied during the study period. Two treatments of amorphous silica dust (112.5 g dust in total) were applied 29 and 57 d after the first day of monitoring. A total of 32 C. lectularius were captured by interceptors over a period of 55 d. Dry ice traps captured eight additional C. lectularius. Visual inspections identified one chair with live C. lectularius and eggs. The infestation was eliminated on 69 d after initial installation of interceptors. Spatial analysis using Ripley's K and L functions showed a high level of aggregation up to a 15 meter scale. Dispersal of C. lectularius in office settings was limited. Intensive trapping plus limited insecticide dust treatments effectively detected and eliminated C. lectularius.
The brown planthopper, Nilaparvata lugens Stål., is a major insect pest causing serious damage to the rice crop in many rice-producing countries. The aim of the study was to determine the inheritance characteristics and realized heritability of resistance to imidacloprid in N. lugens from Banyumas, Central Java Province, Indonesia. The five generations of selection increased the resistance ratio (RR) from 46.20-fold at generation 45 (G45) to 150.39-fold (G49) compared with the laboratory-susceptible population. The LC50 values of imidacloprid for the progeny of reciprocal crosses, F1 and F1’, showed no significant differences, indicating that imidacloprid resistance was inherited autosomally in N. lugens. The degree of dominance (D) values for F1 and F1’ were 0.65 and 0.64, respectively, suggesting that imidacloprid resistance in N. lugens was expressed as an incompletely dominant trait. Chi-square analysis based on the monogenic hypothesis indicated that imidacloprid resistance in N. lugens was polygenic. Furthermore, the estimation realized heritability value (h2) was 0.0893. These results would be useful to determine an effective resistance management strategies in N. lugens.
Maize (Zea mays L.) is one of the most important and widely cultivated crops in Argentina. Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a common maize pest capable of causing significant yield losses and is most destructive in late-planted maize in subtropical regions, going through five to six generations per growing season. The Bacillus thuringiensis (Bt) trait Herculex I Insect Protection technology by Dow AgroSciences and Pioneer Hi-Bred (HX I, event DAS-Ø15Ø7-1), expressing Cry1F protein, was launched in the 2005–2006 season in Argentina and was widely adopted because of the high level of efficacy against S. frugiperda, as well as other pests such as Diatraea saccharalis (J.C. Fabricius). However, increased late-season plantings, limited adoption of refuge, and properties of S. frugiperda biology (high number of generations and migratory behavior) have led to high S. frugiperda exposure to Cry1F and resistance selection pressure. Field efficacy monitoring has been conducted throughout the main maize production areas in Argentina from 2009 to 2016. Laboratory monitoring has been conducted throughout the same areas from 2010 to 2015. Here, we describe changes in field efficacy of HX I and the results of laboratory-based susceptibility monitoring conducted using purified Cry1F protein. Increases in larval survival and crop damage were evident throughout the 2012–2016 period and spanned the majority of maize production areas in Argentina. Over the same period, random larval collections showed increasing survivorship on diet containing purified Cry1F protein. These field and laboratory studies confirmed that resistance to Cry1F has developed and is now widely distributed in S. frugiperda populations in Argentina.
The corn earworm, Helicoverpa zea (Boddie), is managed in corn and cotton in the United States primarily using transgenic cultivars that produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). However, increasing reports of resistance to one or more Bt proteins threaten the continued efficacy of Bt traits. To better understand the development of resistance of H. zea to Bt corn and cotton in the southeastern United States, we monitored for resistance to Cry1A.105 and Cry2Ab2 among 22 field populations of H. zea collected in non-Bt and Bt corn expressing Cry1A.105 + Cry2Ab2 during 2017 and 2018. Colonies were established in the laboratory and progeny were screened in diet-overlay bioassays to purified Cry1A.105 and Cry2Ab2 proteins. Compared with two susceptible laboratory colonies, all 14 field colonies tested with Cry1A.105 were highly resistant, with resistance ratios (RRs) ranging from 13.5 to >4,000. For Cry2Ab2, 19 colonies were tested and RRs ranged from 0.26 to 33.7. Field populations were significantly more susceptible to Cry2Ab2 than Cry1A.105. We documented variability in F0 and F1 pupal weight and developmental rates of natural populations of H. zea, but observed no significant correlation with susceptibility to either Cry1A.105 or Cry2Ab2. Our results expand on the recent reports of H. zea resistance to Cry1A and Cry2A proteins and will aid in the design and deployment of future pyramided crops in the United States.
Tetranychus cinnabarinus (Boisduval), i.e., carmine spider mite, is a worldwide pest that can cause serious damage to plants. Problems of resistance have arisen since abamectin usage in the control of T. cinnabarinus. Unfortunately, there are only limited data on the extent of this problem. To understand the development of abamectin resistance in the carmine spider mite, we prokaryotically expressed an intradiol ring-cleavage dioxygenase (ID-RCD) gene sequence, TcID-RCD1, which had a significant upregulated expression of over 7.7 times in an abamectin-resistant strain (AbR) when compared with that of a susceptible strain (SS). The crude enzyme activity also indicated that the AbR had a higher activity than that exhibited in SS. When susceptible individuals were treated with abamectin, TcID-RCD1 was also overexpressed. Furthermore, using the RNA interference (RNAi) technique, TcID-RCD1 was successfully knocked down, with the expression level decreasing significantly to approximately 39% in the SS strain compared with the control. And the mortality of mites feeding on dsTcID-RCD1 increased significantly when treated with abamectin. These results strongly suggest that TcID-RCD1 is involved in abamectin resistance in T. cinnabarinus.
In this study, the sensitivity of 20 field populations of Chilo suppressalis (Walker) from five provinces in China to seven insecticides was evaluated during 2016–2018. The results indicated that 20 field populations of C. suppressalis had evolved moderate to high levels of resistance to triazophos (RR 64.5–461.3) and chlorpyrifos (RR 10.1–125.0). Furthermore, C. suppressalis exhibited low to moderate levels of resistance to abamectin (RR 6.5–76.5) and decreased susceptibility to cyantraniliprole (RR 1.0–34.0). The population collected from Nanchang in Jiangxi Province (JXNC) showed high resistance to chlorantraniliprole (RR 148.3–294.3), and other geographical populations remained susceptible to moderate levels of resistance (RR 1.0–37.5). In contrast, C. suppressalis remained susceptible to low levels of resistance to spinetoram (RR 1.0–6.7) and spinosad (RR 1.0–4.6). Significant correlations were found between the Log LC50 values of chlorantraniliprole and cyantraniliprole, chlorpyrifos and triazophos, as well as cyantraniliprole and chlorpyrifos and triazophos. Similarly, significant correlations were found among abamectin, chlorpyrifos, and triazophos. In addition, a significant correlation was also observed between the activity of the detoxification enzymes and the log LC50 values of chlorantraniliprole, cyantraniliprole, abamectin, chlorpyrifos, and triazophos. The findings provide an important reference for implementing effective resistance management strategies and the development of new insecticides in insect pest control.
Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.
Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts.
Ironwood trees (Casuarina equisetifolia subsp. equisetifolia L.) are ecologically and economically important trees in tropical and subtropical regions of the Indo-Pacific. Ironwood is one of the dominant tree species in Guam, but since 2002, this tree has been declining dramatically. A previous study showed that numerous sick or dead trees were under termite attack. However, the species of termites were not identified. As a first step to investigate causal relationships between termites and ironwood tree death, we assigned termites collected from ironwood trees to species using a combination of morphological characters and DNA barcoding of the 12S, 16S, COI, COII, and ITS2 regions. Based on morphology and comparisons to reference sequences in NCBI GenBank, the most likely species assignments were Nasutitermes takasagoensis (Nawa) (Blattodea: Termitidae) found to infest 45 trees, followed by Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae) (2 trees), Microcerotermes crassus Snyder (Blattodea: Termitidae) (2 trees), and an additional unidentified Microcerotermes species (1 tree) with no close sequence match to identified species in NCBI GenBank. However, taxonomic revisions and broader representation of DNA markers of well-curated specimen in public databases are clearly needed, especially for the N. takasagoensis species complex.
Calliptamus italicus L. is an important pest on the desert and semidesert steppes along the Sino-Kazakh border. To elucidate the molecular mechanism of its continuous outbreaks, we studied 11 different geographic populations of C. italicus to determine: 1) the complete sequences of the entire mitochondrial cytochrome oxidase subunit I (COI) and mitochondrial cytochrome oxidase subunit II (COII) genes, and 2) performed genetic diversity, differentiation, gene flow, and molecular variation analyses. Of the 11 populations, theYining County (YNX) population had the highest haplotype diversity and Pi values. There are significant differences in Tajima's D and Fu's Fs (P < 0.05). The fixation index Fst values of the total C. italicus population were 0.03352, and its gene flow Nm values of the total C. italicus population were 15.32. Taken together, there were five main findings: 1) the current genetic differentiation of C. italicus arose within populations; 2) genetic exchange levels were high between geographical populations; 3) genetic variation level was low; 4) C. italicus populations likely expanded in recently, and 5) there was no significant correlation between genetic distance and geographic distance for any geographic population. Findings from this study indicate that frequent gene exchange between populations may enhance the adaptability of C. italicus along the Sino-Kazakh border, leading to frequent outbreaks.
Lygus lineolaris (Palisot de Beauvois) is one of the most important pests on cotton in the United States. Previous research showed that transgenic cotton plants expressing the Bacillus thurigiensis (Bt) crystalline protein Cry51Aa2.834_16 (designated MON 88702) have insecticidal effects on nymphal L. lineolaris. The present study is the first to examine effects of a Bt-expressing cotton on feeding by a heteropteran like L. lineolaris. We compared stylet probing behaviors of third-instar nymphs on pin-head squares (i.e., buds <3 mm wide) of MON 88702 cotton versus nontransgenic (control) DP393 plants using AC-DC electropenetrography. Waveforms were quantified based on appearances previously characterized and correlated with adult L. lineolaris feeding behaviors; nymphal and adult waveforms had the same appearance. Generalized third-instar feeding included maceration of tissues during cell rupturing (waveform CR), tasting/testing during a waveform called transition (T), and ingestion (I); all were similar between MON 88702 and DP393 plants. However, the number of events and duration of each waveform were different between treatments. Relative to nymphs on DP393, those on MON 88702 spent more time overall in stylet probing, due to increased number of maceration events per probe and longer durations of tasting/testing, per waveform event, per probe, and per insect; yet, ingestion events were shorter and more frequent. These findings support that MON 88702 cotton plants were less palatable and/or preorally digestible to L. lineolaris nymphs than DP393, suggesting antixenosis for MON 88702. Transgenic cotton antixenosis could positively affect cotton pest management by reducing feeding of L. lineolaris nymphs and protecting crop yield.
Acylsugars have been shown to provide activity against numerous insect pests of tomatoes. Comparison of acylsugar levels in four tomato plant lines, FA7/AS, FA2/AS, CU071026, and ‘Yellow Pear’, found that the acylsugar contents in the elevated acylsugar lines were significantly higher than the commercial Yellow Pear (control) tomato plant line. Adult choice tests indicated that the tomato psyllid, Bactericera cockerelli, preferred to settle on the Yellow Pear and FA2/AS lines over the line with the highest content of acylsugars, FA7/AS, and the parental line, CU071026. The no-choice test demonstrated that adults laid fewer eggs on the high acylsugar tomato lines than on the control tomato line, Yellow Pear. For all high acylsugar lines, the relative growth index of the psyllid was significantly lower compared with the commercial line, indicating a reduced potential for population growth. Although some tomato psyllids completed their life cycle on the high acylsugar tomato plant lines, the percent survival of psyllids to the adult stage when developing on the high acylsugar lines was significantly less (range = 43.7–57.1%) than on the commercial tomato line (83.8%). All mortality occurred during the early stages of development (egg stage to third instar), which has implications for acquisition and transmission of Candidatus Liberibacter solanacearum, the causal agent of tomato vein greening disease. Therefore, with reduced attractiveness for tomato psyllids and significantly reduced survival, the high-acylsugar tomato plant lines have the potential to be part of an integrated pest management program for this pest.
The sugarcane aphid Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae) has emerged as a potential threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since the late summer of 2013, finding and advancing M. sacchari-resistant germplasm has been a priority for all stakeholders involved. We evaluated 23 sorghum genotypes for resistance to the sugarcane aphid by testing for tolerance, and antixenosis. In addition, nine sorghum germplasm were evaluated for the expression of antibiosis. Free-choice and no-choice tests were conducted to explore the functional categories of resistance. Levels of resistance to M. sacchari were compared with the known resistant ‘TX 2783′ and the susceptible ‘KS 585′. Sorghum entries AG1201, AG1301, W844-E, and DKS 37-07 were identified as expressing tolerance, antibiosis, and antixenosis, while H13073 expressed antibiosis and GW1489 expressed both tolerance and antibiosis. These resistant sorghums identified during this study will have a significant impact on reducing economic damage from the sugarcane aphid infestations.
Spodoptera frugiperda (J.E. Smith) is a major pest of cowpea, (Vigna unguiculata [L] Walp.) (Fabales: Fabaceae), and to date, few tactics are available to control this pest.This study was conducted to evaluate whether cowpea commercial cultivars and landrace varieties express antibiosis to S. frugiperda. The commercial cultivars were developed by the Brazilian Agricultural Research Corporation (Embrapa), and the landrace varieties were obtained from indigenous communities of Mato Grosso do Sul, Brazil. The effects of the cowpea genotypes (commercial cultivars and landrace varieties) were assessed on the development, survival, and reproductive capacity of the insect. Out of six genotypes, the two landraces were the most resistant to the pest. Landrace Juti decreased larval weight and survival, and no larvae reached the pupal phase. Landrace Nioaque adversely affected the larval and pupal weight, the period of development from larva to pupa, adult emergence, and the period of development from larva to adult. The cultivar Fradinho was classified as moderately resistant for reducing the larval and pupal weights, and delaying the period of development from larva to pupa. The cultivar Miranda was susceptible regarding the growth and survival of S. frugiperda, however, females reared on this cultivar laid a lower number of eggs. The resistant genotypes, especially the landrace varieties are promising for future plant breeding programs, with the objective of developing resistant cultivars to S. frugiperda larvae.
Mayara C. Lopes, Arthur V. Ribeiro, Thiago L. Costa, Lucas de P. Arcanjo, Elizeu S. Farias, Abraão A. Santos, Rodrigo S. Ramos, Tamíris A. de Araújo, Marcelo C. Picanço
The pea leafminer, Liriomyza huidobrensis (Blanchard), is an important pest of tomato crops worldwide. Conventional sampling plans are the starting point for the development of pest control decision-making. The present study aimed to develop a conventional sampling plan for L. huidobrensis during the vegetative and reproductive stages of tomato (Solanum Lycopersicum L.). The best sampling unit for vegetative and reproductive stages of tomato crops was determined. The frequency distributions of L. huidobrensis densities in tomato crops were assessed, and the ideal number of samples to constitute the sampling plan was determined. The basal leaf of the middle section of the plant canopy was the best plant part for sampling. Pea leafminer densities were fitted to the negative binomial distribution with a common aggregation parameter (Kcommon = 0.7289) that represents all tomato fields. The sampling plan consists of 73 samples per field, irrespective of field size (1, 5, or 10 ha). Evaluations using this sampling plan were performed in 47 min, 1 h 9 min, and 1 h 25 min at a cost of US$1.74, US$2.54, and US$3.12 per sampling in fields of 1, 5, and 10 ha, respectively. The sampling plan developed in this study may lead to more well-informed decision-making for controlling L. huidobrensis in tomato fields up to 10 ha. Additionally, it is inexpensive (up to US$3.12 per sampling area), fast (up to 1 h 25 min per sampling area), and practical (it can be used in tomato crops at the vegetative and reproductive stages).
Gaseous ozone, an oxidizing agent used as a disinfectant in food processing and preservation, has potential for the control of stored product insects. In this study, we investigated ozone for the management of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), a serious stored product insect pest. We exposed eggs, immature stages within wheat kernels, and adults of the rice weevil to 200-ppm ozone for 12, 24, 36, 48, and 60 h. Insects were placed at 5, 15, or 25 cm depth within a wheat mass in PVC pipes (10 cm in diameter, 30 cm in height) and exposed to ozone. Egg eclosion was recorded 10 d after treatment (DAT), and immature stages were observed for adult emergence 28 DAT. Adults were observed for survival immediately after ozone exposure and again at 1 and 2 DAT. Egg eclosion was significantly lower at 5 cm compared with 25 cm at all exposure times, but not the 12-h exposure time. For each exposure time tested, significantly lesser adults developed from kernels and none of the adults survived at the 5 cm depth compared with the 15 and 25 cm depths. Survival rate of adults was significantly higher at 25 cm depth than at 15 cm depth at the 24–60 h. The deeper the insect in the grain mass, the higher the survival rate. The work reported suggests that ozone is effective in killing all life stages of S. oryzae; however, the efficacy of the gas is dependent on the concentration, exposure time, depth, and gas loss.
The effect of 105°C steam or hot air on adult mortality of three species of stored-product insect pests outside wheat kernels of 12.5, 14.5 and 16.5% moisture content was investigated. The species were Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae), and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). In the case of S. oryzae, young adults and immature stages inside wheat kernels were also tested. The mortality of insects inside kernels was higher at lower moisture contents of wheat treated with hot air, whereas moisture content did not significantly affect mortality of insects treated with steam. In the hot air treatment, all adults of the three species outside kernels had 100% mortality when the treatment time was 75 s for wheat with 16.5% moisture content, and 60 s for 12.5 and 14.5% wheat. In the steam treatment, the time to reach 100% mortality of adults outside kernels was 1 s at any moisture content and without significantly affecting germination. The young adults and immature stages of S. oryzae inside kernels required 90 s to reach 100% mortality in hot air, whereas 3 s was needed in steam. The treatment to reach 100% mortality of insects inside kernels caused a 20% drop in germination in steam and 81% drop in hot air.
A key component in the management of resistance to fumigant phosphine in stored products pests is their early detection and implementation of control strategies. Currently, resistance testing involves exposing adults to a specific discriminating concentration over a fixed time period (20–48 h). Although it is widely adopted, this test takes significant time for assay preparation (up to 4 wk) as well as diagnosis (1–2 wk). To address these lacunae, we have established a ‘quick knockdown test’ using a key grain insect pest, rice weevil, Sitophilus oryzae (L.). Susceptible, weakly and strongly phosphine-resistant reference strains were exposed to a threshold concentration of phosphine over short exposure periods (min to h). The time to knockdown (KT) responses to phosphine were characterized at 2 (1,440 ppm) and 5 mg/liter (3,600 ppm). The time to 99.9% KT (KT99.9) at 2 mg/liter was 12.52 min for the susceptible adults, compared with 167.9 and 1,510 min in the case of weakly and strongly resistant phenotypes, respectively. As anticipated, increasing the concentration of phosphine to 5 mg/liter halved the KT99.9 (81.57 min) to separate weakly and strongly resistant populations than it was required at 2 mg/liter. We validated the KT99.9 value for the 5 mg/liter against field-derived populations of S. oryzae. The results were aligned with the existing Food and Agriculture Organization approach, confirming that the proposed ‘quick test’ is a reliable tool to rapidly diagnose resistance in this species.
The red flour beetle, Tribolium castaneum (Herbst), is a serious pest of stored product worldwide. Cold tolerance or cold hardiness is an important ecophysiological trait related directly to survival, fitness, and distribution of insects. In this study, the effects of four thermal regimes, i.e., control (C), cold acclimation (CA), rapid cold hardening (RCH), and fluctuating-acclimation (FA), were examined for their effects on cold tolerance, supercooling point (SCP), lower lethal temperature (LLT), and chill-coma recovery time (CCRT) of the red flour beetle. In addition, changes in cryoprotectant (trehalose, sorbitol, and myo-inositol) levels were investigated under each thermal treatment. The results documented a substantial enhancement in the SCP, cold hardiness, and cryoprotectant levels of the adults of T. castaneum under CA regimes. The lowest SCP, highest trehalose and myo-inositol contents, and, subsequently, the greatest survival rate were observed in cold-acclimated beetles. In addition, coordination between cryoprotectant level, SCP, and cold tolerance of the pest was observed. The highest and lowest CCRT were observed at control and CA, respectively. In RCH regime with the highest impact, LLT reached the lowest level of –22°C. As most of the mortality of T. castaneum occurred at a temperature above the SCP, so this pest could be considered as a chill-susceptible insect.
Modified atmospheres such as hermetic storage are widely used for the control of stored grain insect pests. To improve their effectiveness, there is need to better understand insect responses to low-oxygen environments. Adult Callosobruchus maculatus F. (Coleoptera: Chrysomelidae: Bruchinae) on cowpea and Sitophilus oryzae L. (Coleoptera: Curculionidae) on wheat were exposed to hypoxia treatments consisting of 1, 3, and 5% oxygen levels for 14 d. Acoustic activity was monitored during the experiment, and insect mortality and grain quality were examined immediately after the hypoxia treatments. Adult emergence was assessed 45 d post-treatment. All three hypoxia treatments eliminated acoustic activity of both species within 4 d. There was neither insect survival for both species nor significant grain damage immediately after 14-d exposure to hypoxia treatments. No adult insects emerged 45 d post-exposure on grains maintained at 1% oxygen level for 14 d. However, at 3 and 5% oxygen levels, there were eggs on cowpea, holes in wheat, and emerging adults for both insect species 45 d post-exposure. Although insect activity ceased within 4 d when hypoxia was maintained below 5%, there is need to explore exposure beyond 14 d for 3 and 5% oxygen levels, to ensure to avoid potential adult emergence from eggs and other insect life stages post-treatments. Maintaining 3–5% hypoxia conditions for a longer duration would ensure insufficient oxygen is available for progeny development.
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive pest that has established in much of the United States. Adventive populations of an effective Asian egg parasitoid of H. halys, Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), have been detected in several states, including Virginia, and its geographic range is expanding. Documenting changes in its distribution and abundance have thus become key research priorities. For these specific purposes, surveillance of T. japonicus over large geographic areas using sentinel H. halys egg masses may not be optimally efficient, and examination of alternative sampling tactics is warranted. In 2016, sentinel H. halys egg masses were deployed as vertical transects in the canopy of female Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae) in Virginia. A brief follow-up study in 2016 using yellow sticky traps deployed in the same trees yielded captures of T. japonicus, leading to a comparison of vertical transects of sentinel eggs and yellow sticky traps in 2017. Both methods yielded T. japonicus detections only in the middle and upper tree canopies, whereas other known H. halys parasitoids were detected in the lower, middle, or upper canopies. Based on this information, a method for deploying yellow sticky traps in the middle canopy of H. halys host trees was assessed in 2017, yielding T. japonicus captures. A comparison of estimated time inputs revealed that traps were more efficient than sentinel eggs in this regard. Results are discussed in relation to the utility of each sampling method to address specific questions about the range expansion and ecology of T. japonicus.
For more than a decade, various research groups have tracked the population genetics of the oriental fruit fly, Bactrocera dorsalis (Hendel) in China and neighboring countries using mitochondrial cytochrome c oxidase subunit I (COI) DNA. Although most research has reported high levels of mtDNA variation, to date no efforts have been made to integrate and compare the results from these studies simultaneously. Here, we show that: 1) despite the fact that a large portion of the sampling effort has focused on the Yunnan province beginning in 2005, each subsequent study recovers only a small number of previously sampled haplotypes; 2) new haplotypes of B. dorsalis remain to be found, a projection of new haplotypes versus the number of individuals sampled suggest that sampling the species mtDNA diversity is far from reaching an asymptote; 3) it is unlikely that the observed genetic variation is the result of NUMTs (nuclear mitochondrial DNA), as most differences between haplotypes are silent substitutions; and 4) although all studies employed the 3′ end of COI, the length of COI fragment sequenced differs among studies, making comparisons challenging. Therefore, we offer these results with the caveat that mtDNA diversity might be underestimated in China.
The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), is a perennial insect pest of cultivated maize that was inadvertently introduced into North America in the early 1900s, but population densities have decreased since the widespread adoption of transgenic hybrids that express Bacillus thuringiensis (Bt) toxins. The native American lotus borer, Ostrinia penitalis (Lepidoptera: Crambidae), is among the most ancestral species described in the genus Ostrinia, and has a geographic range that coincides with that of O. nubilalis across major maize growing regions of North America. Due to the recent decrease in O. nubilalis populations, O. penitalis has become more pronounced in light trap samples intended to monitor O. nubilalis. A molecular tool based on variation in restriction endonuclease digestion pattern of a polymerase chain reaction amplified fragment of the mitochondrial cytochrome c oxidase subunit I (coxI) gene was developed and validated to differentiate these two species. This method was applied to light trap samples over a 2-yr period and achieved accurate quantification of species, and shows that O. penitalis can be prevalent in O. nubilalis first flight sampling. These methods are useful for contemporary O. nubilalis field research in North America.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere