Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.
Tetranychus urticae Koch is a cosmopolitan pest whose rapid developmental rate enables it to produce colonies of thousands of individuals within a short time period. When a solitary virgin female colonizes a new host plant, it is capable of producing male offspring through the arrhenotokous parthenogenesis; once her sons mature, oedipal mating occurs and the female will produce bisexual offspring. To analyze the effect of arrhenotokous reproduction on population growth, we devised and compared separate life tables for arrhenotokous and bisexual populations of T. urticae using the age-stage, two-sex life table theory. For the cohort with bisexual reproduction, the intrinsic rate of increase (r), finite rate (λ), net reproductive rate (R0), and mean generation time (T) were 0.2736 d−1, 1.3146 d−1, 44.66 offspring, and 13.89 d, respectively. Because only male eggs were produced during the first 8 d of the oviposition period and the cohort would soon begin bisexual reproduction, it would be theoretically wrong to calculate the population parameters using the survival rate and fecundity of an arrhenotokous cohort. We demonstrated that the effect of arrhenotokous reproduction could be accurately described and evaluated using the age-stage, two-sex life table. We also used population projection based on life table data, quantitatively showing the effect that arrhenotokous reproduction has on the growth potential and management of T. urticae.
China is the largest producer and exporter of royal jelly (RJ) in the world, supplying >90% of the global market. The high production of RJ in China is principally owing to the high RJ-producing lineage of honeybees (Apis mellifera ligustica Spinola, 1806) established by beekeepers in the 1980s. We describe the development of high royal jelly-producing honeybees and the management of this lineage today. Previous research and recent advances in the genetic characterization of this lineage, and the molecular markers and mechanisms associated with high RJ production are summarized. The gaps in our knowledge and prospects for future research are also highlighted.
Beneficial organisms like the honey bee, Apis mellifera L. (Hymenoptera: Apidae), are heavily affected by pest control practices that incorporate insecticides. Safer alternatives as the spinosad-based formulation GF-120 have been developed to overcome this issue. Though both the low concentration of spinosad and the ultra-low-volume application rate of GF-120 are supposed to have a low acute toxicity in honey bee foragers, to our knowledge such claims have not been explicitly proven. We thus carried out a series of experiments to assess the effect of GF-120, malathion, and Spintor (spinosad) on honey bee foragers when applied at two concentrations (80 and 1,500 ppm) and two application rates (low density rate [LDR]—80 drops of 5mm diameter per square meter; high density rate [HDR]—thousands of 200 -µm-diameter droplets per square meter). Interestingly, the three pesticides caused low mortality on foragers when applied at LDR-80, LDR-1,500, or HDR-80. However, HDR-1,500 caused a very high mortality. Based upon these results, we developed a computer program to estimate the average number of foragers that are exposed at LDR and HDR. We found that more foragers receive a lethal dose when exposed at HDR than at the other rates. Our results support the hypothesis that the impact of GF-120 and malathion upon honey bees is minimal when applied at LDR and that computer simulation can help greatly in understanding the effects of pesticides upon nontarget species.
A comparative assessment of apiaries in urban, rural, and agricultural areas was undertaken in 2013 and 2014 to examine potential honey bee colony exposure to neonicotinoid insecticides from pollen foraging. Apiaries ranged in size from one to hundreds of honey bee colonies, and included those operated by commercial, sideline (semicommercial), and hobbyist beekeepers. Residues in and on wax and beebread (stored pollen in the hive) were evaluated for the nitro-substituted neonicotinoid insecticides imidacloprid and its olefin metabolite and the active ingredients clothianidin, thiamethoxam, and dinotefuran. Beebread and comb wax collected from hives in agricultural landscapes were more likely to have detectable residues of thiamethoxam and clothianidin than that collected from hives in rural or urban areas (∼50% of samples vs. <10%). The maximum neonicotinoid residue detected in either wax or beebread was 3.9 ppb imidacloprid. A probabilistic risk assessment was conducted on the residues recovered from beebread in apiaries located in commercial, urban, and rural landscapes. The calculated risk quotient based on a dietary no observable adverse effect concentration (NOAEC) suggested low potential for negative effects on bee behavior or colony health.
Planting floral margins in agricultural landscapes has been shown to increase the abundance of pollinators in agro-ecosystems. However, to create efficient margins, it is necessary to use attractive, not weedy native plants with different blooming periods to prolong the availability of floral resources. Six native perennial plants of the Lamiaceae with different blooming periods were studied in a randomized block design, with the final aim to select the most efficient plants in floral mixtures by studying relationships between their floral phenology, floral density, and attractiveness to pollinators in Central Spain. In addition, their spatial expansion, i.e., potential weediness, was estimated under the field conditions, as the final purpose of the plants is to be implemented within the agro-ecosystems. The results showed that plant species with higher floral density (Nepeta tuberosa L. and Hyssopus officinalis L.) showed significantly higher attractiveness to pollinators and enhanced the attractiveness of floral mixtures. Species that bloomed in early spring (Salvia verbenaca L.) and in summer (Melissa officinalis L. and Thymbra capitata L.) did not efficiently contribute to the attractiveness of the mixtures to pollinators. In addition, besides high floral density of Salvia officinalis L. and N. tuberosa in the spring, warm and dry weather in spring 2012 enhanced the activity of bees, while cold and rainy weather in spring 2013 enhanced the activity of hoverflies. None of the plants showed weedy growth and so posed no danger of invading adjacent crops.
The honey bee, Apis mellifera L., is host to a variety of microorganisms. The bacterial community that occupies the adult worker gut contains a core group of approximately seven taxa, while the hive environment contains its own distribution of bacteria that is in many ways distinct from the gut. Parasaccharibacter apium, gen. nov., sp. nov., is a hive bacterium found in food stores and in larvae, worker jelly, worker hypopharyngeal glands, and queens. Parasaccharibacter apium increases larval survival under laboratory conditions. To determine if this benefit is extended to colonies in the field, we tested if P. apium 1) survives and reproduces in supplemental pollen patty, 2) is distributed throughout the hive when added to pollen patty, 3) benefits colony health, and 4) increases the ability of bees to resist Nosema. Parasaccharibacter apium survived in supplemental diet and was readily consumed by bees. It was distributed throughout the hive under field conditions, moving from the pollen patty to hive larvae. While P. apium did not significantly increase colony brood production, food stores, or foraging rates, it did increase resistance to Nosema infection. Our data suggest that P. apium may positively impact honey bee health.
Thrips are important pests of peanut. They cause severe feeding injuries on peanut foliage in the early season. They also transmit Tomato spotted wilt virus (TSWV), which causes spotted wilt disease. At-plant insecticides and cultivars that exhibit field resistance to TSWV are often used to manage thrips and spotted wilt disease. Historically, peanut growers used the broad-spectrum insecticides aldicarb (IRAC class 1A; Temik) and phorate (IRAC class 1B; Thimet) for managing thrips and thereby reducing TSWV transmission. Aldicarb has not been produced since 2011 and its usage in peanut will be legally phased out in 2018; therefore, identification of alternative chemistries is critical for thrips and spotted wilt management. Here, eight alternative insecticides, with known thrips activity, were evaluated in field trials conducted from 2011 through 2013. In addition, different application methods of alternatives were also evaluated. Imidacloprid (Admire Pro), thiamethoxam (Actara), spinetoram (Radiant), and cyantraniliprole (Exirel) were as effective as aldicarb and phorate in suppressing thrips, but none of the insecticides significantly suppressed spotted wilt incidence. Nevertheless, greenhouse assays demonstrated that the same alternative insecticides were effective in suppressing thrips feeding and reducing TSWV transmission. Spotted wilt incidence in the greenhouse was more severe (∼80%) than in the field (5–25%). In general, field resistance to TSWV in cultivars only marginally influenced spotted wilt incidence. Results suggest that effective management of thrips using alternative insecticides and subsequent feeding reduction could improve yields under low to moderate virus pressure.
Asian citrus psyllid (Diaphorina citri Kuwayama) transmits a bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) putatively responsible for a devastating citrus disease known as Asiatic huanglongbing (HLB) (citrus greening disease). The psyllid and disease have invaded many citrus-growing regions including the United States, where the disease is seriously jeopardizing the Florida citrus industry. We recently concluded research that showed CLas transmission rates are increased when citrus flush is present. Flush is any new leaf growth ranging in development from first emergence up until the leaves are fully expanded yet still tender. In an experiment with seedlings of a rootstock cultivar ‘US-942’, a 1-wk infestation of 20 Asian citrus psyllids from an infected colony resulted in 53–60% of seedlings becoming infected when flush was present compared with only 7% when no flush was present. In a second experiment with ‘US-942’, 77–97% of seedlings became infected when flush was present compared with 40% when no flush was present. A similar experiment with ‘Valencia’ sweet orange resulted in 23, 80, and 3% seedlings becoming infected when young, older, or no flush was present, respectively. Young plants are therefore more likely to contract HLB if flush is present, with older flush promoting higher infection rates under the conditions of this study. Based on this finding, healthy citrus should be protected from Asian citrus psyllid infestations throughout a flush. To evaluate germplasm for CLas resistance, inoculations using infected Asian citrus psyllid would best be achieved if flush is present.
Life-table analysis yielded demographic parameter values that indicate that Tenebrio molitor (L.) pupae are potentially more suitable factitious prey to mass-produce the predator Podisus maculiventris (Say) and are more suitable prey than the larvae. P. maculiventris developed faster (23.2 vs. 25.5 d), weighed more (females 80.9 vs. 66.6 mg and males 64.7 vs. 53.7 mg), and had a higher survival rate (0.88 vs. 0.7), fecundity, and reproductive output (87.1 vs. 22.8 eggs/female) when reared on pupae compared with larvae of T. molitor. The total protein content and soluble protein content were significantly higher in pupae (60.2 and 23%, respectively) than larvae (53.1 and 14.4%, respectively). Lipid content was significantly lower in pupae (32.1%) than larvae (35.9%), and larvae had more polyunsaturated fatty acids (83.6 vs. 56.6 mg/g) and less oleic (0.1 mg/g) and steric (6.1 mg/g) acids than pupae (37.3 and 12.3 mg/g, respectively). The total sugar content was not significantly different between pupae and larvae. However, larvae had significantly more fructose than pupae, but pupae had more galactose, glucosamine, glucose, mannose, and trehalose than larvae. Differences in nutritional composition and its impact on predator demographic parameters are potential factors that make the pupal stage a better food source.
The use of genetic sexing strain (GSS) insects in the sterile insect technique (SIT) makes necessary the revision of quality parameters of some stressful steps used during the packing process for aerial release because of possible differences in tolerance between fly strains. Here, we determined the effect of three periods of hypoxia (12, 24, and 36 h at pupal stage), three cage densities (1.0, 1.3, and 1.5 flies/cm2), two different foods (protein/ sugar (1/24) and Mubarqui), and three chilling times (20 min [control], 90, and 180 min) on the quality parameters of flies of two Anastrepha ludens (Loew) strains (bisexual and GSS Tapachula-7). In general, the response to stressful conditions of both fly strains was qualitatively equivalent but quantitatively different, as flies of both strains responded equally to the stressful factors; however, flies of Tapachula-7 exhibited lower quality parameters than the control flies. Thus, hypoxia affected the flying ability but not the emergence or longevity of flies. The food type affected the adult weight; protein/sugar produced heavier flies that also survived longer and had a greater mating propensity. Flies under the lowest density were better fliers that those at the other two densities. Increasing chilling time reduced flight ability but not longevity or mating propensity. The implications of these findings for the use of A. ludens GSS in SIT programs are discussed herein.
Densoviruses (DVs) are a group of viruses that contain a linear single-stranded DNA genome between 4–6 kb in length. Herein, we report a DV with a 5,480-nt genome, isolated from tobacco aphid (Myzus persicae nicotianae Blackman), named MpnDV. Unlike the genome of M. persicae densovirus (MpDV), which possesses five open reading frames (ORFs), the genome of MpnDV contains four putative ORFs—the nonstructural protein 1 (NS1) and NS2 from MpnDV are 98 - and 52-amino acids longer than those of MpDV, respectively, at the N-terminus, and the capsid proteins (VP) are 102 amino acids longer at the C-terminus than those of MpDV. Mapping of the MpnDV transcripts by RACE method indicated that the ORF of NS2 started at nt 340 and the right two putative ORFs were combined together by deleting two introns, one of 95 bp located at nt 2,932–3,026 and the other of 145 bp located at nt 4,715–4,859, suggesting transcript mapping was necessary for analyzing of genome organization. Alignment analysis indicated that MpnDV shows 97% sequence identity with MpDV, and that the shortened ORFs resulted from nucleotide indels, suggesting MpnDV and MpDV were two isolates of the same virus. Thus, MpnDV and MpDV clustered together in a tree-based analysis. The prevalence of MpnDV infection in wild populations of tobacco aphids differed among 29 locations; 34% of the 622 individuals sampled were positive. The genome organization, transcript strategy, and widespread distribution in wild populations suggest that MpnDV might possess a biological function different from that of MpDV.
Cotesia ruficrus (Haliday), a gregarious larval endoparasitoid, is an important biological control agent of various pest species. The developmental interactions between the host rice leaf folder, Cnaphalocrocis medinalis (Guenée), and its koinobiont parasitoid, C. ruficrus, were investigated for the first time under laboratory conditions. The effects of host instar at parasitization on the development time, clutch size, and survival of C. ruficrus were determined. The results showed that the parasitoids starting parasitism in the fourth-instar larvae had the shortest development duration and highest fecundity. Meanwhile, the growth of the host parasitized by C. ruficrus in various instars was also observed. The results indicated that the growth of the parasitized larvae was significantly inhibited, compared with unparasitized ones, irrespective of the host instar at oviposition. In addition, the effect of parasitism on food consumption and utilization of the fourth-instar larvae was determined, suggesting that the nutritional physiology of the host was affected by parasitism. Wet or dry weight gain, food consumption, and fecal matter were all significantly reduced in the parasitized larvae in contrast with the unparasitized larvae. Parasitization by C. ruficrus could significantly increase the approximate digestibility of the host.
The objectives were to evaluate the efficiency of entomopathogenic fungi against Plutella xylostella (L.) and the compatibility of the most virulent isolates with some of the insecticides registered for use on cabbage crops. Pathogenicity tests used isolates of Beauveria bassiana, Metarhizium rileyi, Isaria fumosorosea, Isaria sinclairii, and Lecanicillium muscarium standardized at a concentration of 107 conidia/ml. Cabbage leaf discs were immersed in these suspensions, and after evaporation of the excess water, were placed 10 second-instar larvae of P. xylostella, totaling 10 leaf discs per treatment. Mortality was assessed 7 d after treatment, and the isolates that caused mortality >80% were used to estimate LC50 and LT50. The compatibilities of the most virulent isolates and the insecticides were tested from the mixture of these into the culture medium, and after solidifying, the medium was inoculated with an aliquot of the isolated suspension. The following parameters were evaluated: growth of the colony, number and viability of conidia after 7 d. The isolated IBCB01, IBCB18, IBCB66, and IBCB87 of B. bassiana, LCMAP101 of M. rileyi, and ARSEF7973 of I. sinclairii caused mortality between 80 and 100%, with LC50 and LT50 between 2.504 to 6.775 × 104 conidia/ml and 52.22 to 112.13 h, respectively. The active ingredients thiamethoxam and azadirachtin were compatible with the entomopathogenic fungi. The results suggest that the use of these isolates is an important alternative in the pesticidal management of P. xylostella, with the possible exception of the associated use of chemical controls using the active ingredients thiamethoxam or azadirachtin.
The effect of supplementing hemolymph of the black soldier fly, Hermetia illucens (L.), or the Chinese oak silkworm, Antheraea pernyi (Guérin-Méneville), to a basic insect-free artificial medium for the tachinid Exorista larvarum (L.) was investigated. The supplementation (20% w/w) was based on the assumption that insect additives may optimize the media for this parasitoid. Egg hatch, pupal and adult yields, and sex ratio did not differ among the enriched and basic media. Preimaginal development was faster on both hemolymph-enriched media than on the basic medium. Despite the shorter development on the medium supplemented with H. illucens hemolymph than on the basic medium, on the two media puparium weights were comparable. The female flies reared on the medium enriched with H. illucens hemolymph did not lay more eggs, but the latter yielded significantly more puparia compared with the control females. Conversely, the medium enriched with A. pernyi hemolymph yielded lower female puparium weights than the basic medium and produced only one ovipositing female out of the five obtained female adults. These results indicate that the in vitro development of E. larvarum improved when the basic artificial medium was enriched with H. illucens hemolymph, whereas the supplementation with A. pernyi hemolymph negatively affected the quality of the in vitro-reared females.
Roger I. Vargas, Steven K. Souder, Joseph G. Morse, Elizabeth E. Grafton-Cardwell, David R. Haviland, John N. Kabashima, Ben A. Faber, Bruce Mackey, Peter Cook
During 2012–2013, solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide were weathered during summer (8 wk) and winter (12 wk) in five California citrus-growing counties (Kern, Ventura, Orange, Tulare, and Riverside). In addition, TMR wafers without DDVP and with a Hercon Vaportape II insecticidal strip were compared with TMR dispensers with DDVP at Exeter and Riverside. Weathered treatments were shipped every week (overnight delivery) to Hawaii and frozen for a later bioassay in a 1,335-ha coffee plantation near Numila, Kauai Island, HI, where Mediterranean fruit fly, Ceratitis capitata (Wiedemann), oriental fruit fly, Bactrocera dorsalis Hendel, and melon fly, Bactrocera cucurbitae Coquillett, were all present. We compared trap captures of the three species, C. capitata, B. dorsalis, and B. cucurbitae, for the five different weathering locations. Captures of C. capitata, B. dorsalis, and B. cucurbitae with Mallet TMR dispensers (with DDVP) were not significantly different for the five locations. Captures with the Mallet TMR dispenser without DDVP and Vaportape were similar to those for Mallet TMR with DDVP, although there were some slight location differences. In conclusion, based on these results, the Mallet TMR dispenser could potentially be used in California habitats where large numbers of detection traps are currently deployed. Use of Vaportape with dispensers would not require them to be registered with US Environmental Protection Agency (EPA). Dispensers for use as Male Annihilation Technique (MAT) devices will be tested further in Hawaii.
The leek moth, Acrolepiopsis assectella (Zeller), was first discovered in Ottawa, Canada, during the 1993 growing season, representing the first known occurrence of this species in North America. Since then, it has become a significant concern in Allium vegetable production including garlic, leeks, and onions. Acrolepiopsis assectella was first detected in the contiguous United States during the 2009 growing season in northern New York. In this study, we evaluated the development of the US A. assectella population in the laboratory and commercial onion fields. Our results showed that this population required 443.9 degree-days to complete its life cycle on onions in the laboratory. The development of A. assectella on onion did not significantly differ from populations reared on garlic or leeks. Field studies revealed three distinct flight periods for overwintered, first- and second-generation adult males in northern New York. Life cycle duration in the field ranged from 4 to 8 wk. The degree-day prediction model evaluated in this study provided accurate estimates of the occurrence of the following generation. We conclude that this model can help growers to implement appropriate management strategies for different life stages in a timely manner and lessen damage by this new invasive pest.
Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) larvae are cryptic, internal tissue-feeding pests of palm trees that are difficult to detect; consequently, infestations may remain hidden until they are widespread in an orchard. Infested trees and propagable offshoots that develop from axillary buds on the trunk frequently are transported inadvertently to previously uninfested areas. Acoustic methods can be used for scouting and early detection of R. ferrugineus, but until now have not been tested on multiple trees and offshoots in commercial date palm orchard environments. For this report, the acoustic detectability of R. ferrugineus was assessed in Saudi Arabian date palm orchards in the presence of commonly occurring wind, bird noise, machinery noise, and nontarget insects. Signal analyses were developed to detect R. ferrugineus and another insect pest, Oryctes elegans Prell (Coleoptera: Scarabaeidae), frequently co-occurring in the orchards, and discriminate both from background noise. In addition, it was possible to distinguish R. ferrugineus from O. elegans in offshoots by differences in the temporal patterns of their sound impulses. As has been observed often with other insect pests, populations of the two species appeared clumped rather than uniform or random. The results are discussed in relation to development of automated methods that could assist orchard managers in quickly identifying infested trees and offshoots so that R. ferrugineus infestations can be targeted and the likelihood of transferring infested offshoots to uninfested areas can be reduced.
The palm weevil, Rhynchophorus vulneratus, is native to Southeast Asia and was recovered from an infested Canary Islands date palm in Laguna Beach, California, USA, in 2010. The detection of this potentially destructive palm pest initiated a detection, containment, and eradication program that was reliant, in part, on the deployment of bucket traps loaded with aggregation pheromone and baited with fermenting fruit. A key question that pertained to the deployment of traps was “how far can R. vulneratus fly?” This question could not be answered and in response to this knowledge deficit, computerized flight mill studies were conducted with field-captured R. vulneratus in an outdoor screen house in Sumatra, Indonesia. Of the 63 weevils tethered to flight mills, ∼27% failed to fly >1 km in 24 h and were excluded from analyses. In total, 46 weevils (35 females and 11 males) flew >1 km on flight mills and of these adults, the average total distance flown in 24 h was significantly greater for females (∼32 km) when compared with males (∼15 km). A small proportion of females (∼16%) flew 50-80 km, and one female flew 100.1 km in 24 h. Flying weevils exhibited an average weight loss of ∼13–17% and non-flying control weevils (n = 27) lost 10–13% body weight in 24 h. The distribution of flight distances for female and male weevils combined was leptokurtic, which suggests that faster than expected spread by R. vulneratus may be possible in invaded areas.
It has been demonstrated that the application of juvenile hormone analog, methoprene, reduces the time required for sexual maturation and enhances mating success in several species of tephritid fruit flies. This study examined the effect of different concentrations of methoprene incorporated into the diet of adult flies and distinct sugar:protein (S:P) ratios on sexual maturity and pheromone emission of Anastrepha obliqua males. Diets with 0.2 and 0.5% of methoprene accelerated sexual maturation of males compared with untreated males. In subsequent assays, the enhancement of male pheromone emission and sexual maturation by the incorporation of 0.02% methoprene into a 24:1 (S: P) diet was confirmed. Among the volatiles released by males, (Z)-3-none-nol and (Z,Z)-3,6-nonadienol were emitted at higher quantities by flies treated with methoprene than untreated ones. The results show that methoprene accelerates sexual maturation of mass-reared A. obliqua males and increases their mating propensity. This would reduce the time required to attain sexual maturation by sterile males, thus decreasing fly handling costs and improving the efficacy of the sterile insect technique.
Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an agricultural pest with high reproductive potential, widespread distribution, and high resistance to different types of insecticides. Although diamondback moth is a common research subject, questions remain regarding its spatial and temporal host plant usage patterns and preferences within agroecosystems. We examined the adult oviposition and larval feeding preferences of the diamondback moth to assess the potential of alternate host plants as either reservoirs or trap crops. Adult females and third and fourth instars were offered multiple plant species within the plant family Brassicaceae to examine contact preferences and larval ingestion rates. Adult oviposition and larval feeding preferences were identical, with garden cress (Lepidium sativum) (L.) highly preferred, followed by wintercress (Barbarea vulgaris) (L.) and black mustard (Brassica nigra) (L.). Ingestion rates varied among tested plants, with the lowest rate on black mustard and highest on aubretia (Aubretia deltoidea) (L.). Highly preferred plant species were determined to be unfavorable for larval growth and potentially lethal to neonates, suggesting their possible use as trap crops. Understanding ovipositional and larval feeding preferences of diamondback moth can also aid in the development of more accurate monitoring and control strategies for this pest.
This study was performed to investigate the activity of 19 dichloromethane-soluble fractions obtained from the methanolic extracts of 10 Annonaceae species against the fall armyworm, Spodoptera frugiperda (J. E. Smith). The stem bark of Duguetia lanceolata A. St.-Hil. showed the highest insecticidal activity, with a median lethal time (LT50) of 61.4 h and a median lethal concentration (LC50) of 946.5 µg/ml of diet. The dichloromethane-soluble fractions from six D. lanceolata specimens were subjected to evaluation of their activities against S. frugiperda and metabolomic analysis using hydrogen (1H) nuclear magnetic resonance (NMR) spectroscopy. Although all of the samples affected S. frugiperda mortality, their insecticidal activities varied according to the sample used in the experiments. Using partial least squares regression of the results, the D. lanceolata specimens were grouped according to their metabolite profile and insecticidal activity. A detailed analysis via uni- and bidimensional NMR spectroscopy showed that the peaks in the 1H NMR spectra associated with increased insecticidal activity could be attributed to 2,4,5-trimethoxystyrene, which suggests that this substance is involved in the insecticidal activity of the stem bark fraction of D. lanceolata.
G. S. Cruz, V. Wanderley-Teixeira, J. V. Oliveira, F. S. C. Lopes, D. R. S. Barbosa, M. O. Breda, K. A. Dutra, C. A. Guedes, D. M. A. F. Navarro, A. A. C. Teixeira
Spodoptera frugiperda (Smith 1797) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L. Its control is often achieved through repeated applications per season of insecticides, which may lead to adverse effects on the ecosystem. Thus, the study of alternative methods with less environmental impact has expanded to include the use of essential oils. These oils are products of the secondary metabolism in plants, and their insecticidal activity has been widely demonstrated in populations of many pest insects. This study evaluated the insecticidal activities of essential oils from Eucalyptus staigeriana, Ocimum gratissimum, and Foeniculum vulgare on Spodoptera frugiperda. Gas chromatography–mass spectrometry profiles and contact toxicity of these oils as well as their sublethal effects on larvae and reproductive parameters in adults were evaluated. All three oils had sublethal effects on S. frugiperda; however, the oil of O. gratissimum showed the best results at all doses tested. These essential oils may have promise for control of S. frugiperda.
Rice water weevil (Lissorhoptrus oryzophilus Kuschel) is a common pest of rice production in the United States whose larvae cause yield loss by feeding on the roots. We conducted studies from 2011–2013 on M-202 and M-206, two commonly grown California medium grain rice varieties, to determine if M-206 demonstrated tolerance to rice water weevil damage. Observations from field studies suggested the possibility of a level of tolerance in M-206 that was more prevalent at high seeding rates. We did this study using two different experimental units, open and ring plots. In both units, we quantified grain yields across four levels, 56, 112, 168, and 224 kg/ha, of seeding rates to detect potential yield recovery by M-206. In the open plots, we used naturally occurring weevil populations compared with controls that reduced the populations with insecticides. In the ring plots, we tested three levels of weevil infestation, none, low, and high, to look at the weevil density effects on yield and scarred plants. Our studies showed that M-206 and M-202 had generally similar densities of immature weevils and yield. Compensation for yield loss did not occur at higher seeding rates. These results suggest that M-206 does not have the ability to tolerate rice water weevil damage better than M-202. There was weak evidence that the number of scarred plants increased as plant density was reduced. The results are discussed in relation to the utility of this study to grower choices of varieties for long-term rice water weevil management.
Eradication programs for the boll weevil (Anthonomus grandis grandis Boheman) rely on pheromone-baited traps to trigger insecticide treatments and monitor program progress. A key objective of monitoring in these programs is the timely detection of incipient weevil populations to limit or prevent re-infestation. Therefore, improvements in the effectiveness of trapping would enhance efforts to achieve and maintain eradication. Association of pheromone traps with woodlots and other prominent vegetation are reported to increase captures of weevils, but the spatial scale over which this effect occurs is unknown. The influences of trap distance (0, 10, and 20m) and orientation (leeward or windward) to brush lines on boll weevil captures were examined during three noncropping seasons (October to February) in the Rio Grande Valley of Texas. Differences in numbers of captured weevils and in the probability of capture between traps at 10 or 20 m from brush, although often statistically significant, were generally small and variable. Variations in boll weevil population levels, wind directions, and wind speeds apparently contributed to this variability. In contrast, traps closely associated with brush (0 m) generally captured larger numbers of weevils, and offered a higher probability of weevil capture compared with traps away from brush. These increases in the probability of weevil capture were as high as 30%. Such increases in the ability of traps to detect low-level boll weevil populations indicate trap placement with respect to prominent vegetation is an important consideration in maximizing the effectiveness of trap-based monitoring for the boll weevil.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is the most important insect of maize, Zea mays L., but knowledge of its interaction with water deficit on maize production is lacking. A series of greenhouse experiments using three infestation levels of the western corn rootworm, D. virgifera virgifera, under well-watered, moderately dry, and very dry soil moisture levels were conducted to quantify the interaction of western corn rootworm and soil water deficit on B73 × Mo17 maize growth and physiology. Three separate experiments were conducted. Soil moisture regimes were initiated 30 d postplanting for experiments using neonate and second-instar larvae and 30 d postinfestation in the experiment using eggs. In the neonate and second-instar experiments, there were no significant differences among western corn rootworm levels in their effects on leaf water potential, shoot dry weight, and root dry weight. The interaction of western corn rootworm and soil moisture significantly impacted the larval recovery in the neonate experiment, but no other significant interactions were documented between soil moisture levels and rootworm infestation levels. Overall, the results indicate that under the conditions of these experiments, the effect of water deficit was much greater on plants than the effect of western corn rootworm and that the interactions between water deficit and western corn rootworm levels minimally affected the measured parameters of plant performance.
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), is a polyphagous wood-boring insect native to Asia. Since it invaded North America in the 1990s, the beetle has been continuously targeted by quarantines and eradication programs in the United States and Canada. We examined the potential for development of new species-associations between A. glabripennis and hymenopteran parasitoids collected from cerambycids and other wood-boring insects infesting red maple (Acer rubrum L.) trees in the mid-Atlantic region of the United States. Results of our study showed that five groups of braconid parasitoids (Ontsira mellipes Ashmead, Rhoptrocentrus piceus Marsh, Spathius laflammei Provancher, Heterospilus spp., and Atanycolus spp.) successfully attacked early instars of A. glabripennis larvae infesting red maple logs and produced both male and female progenies. One species, O. mellipes, was continuously reared on A. glabripennis larvae inserted inside small red maple sticks for over 50 generations, and produced female-biased progeny (∼6:1 female to male ratio) at each generation. Continuous rearing of O. mellipes on A. glabripennis larvae did not significantly increase the parasitism and mean number of progeny produced per parasitized host. Together, these findings demonstrate that some North American parasitoids may be able to develop new associations with A. glabripennis and thus should be further studied under semifield or field conditions for possible use in biocontrol.
Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding insect native to Asia, threatens at least 16 North American ash (Fraxinus) species and has killed hundreds of millions of ash trees in landscapes and forests. We conducted laboratory bioassays to assess the relative efficacy of systemic insecticides to control emerald ash borer larvae in winter 2009 and 2010. Second- and third-instar larvae were reared on artificial diet treated with varying doses of emamectin benzoate (TREE-äge, Arborjet, Inc., Woburn, MA), imidacloprid (Imicide, J. J Mauget Co., Arcadia, CA), dinotefuran (Safari, Valent Professional Products, Walnut Creek, CA), and azadirachtin (TreeAzin, BioForest Technologies, Inc., Sault Ste. Marie, Ontario, and Azasol, Arborjet, Inc., Woburn, MA). All of the insecticides were toxic to emerald ash borer larvae, but lethal concentrations needed to kill 50% of the larvae (LC50), standardized by larval weight, varied with insecticide and time. On the earliest date with a significant fit of the probit model, LC50 values were 0.024 ppm/g at day 29 for TREE-äge, 0.015 ppm/g at day 63 for Imicide, 0.030 ppm/g at day 46 for Safari, 0.025 ppm/g at day 24 for TreeAzin, and 0.027 ppm/g at day 27 for Azasol. The median lethal time to kill 50% (LT50) of the tested larvae also varied with insecticide product and dose, and was longer for Imicide and Safari than for TREE-äge or the azadirachtin products. Insecticide efficacy in the field will depend on adult and larval mortality as well as leaf and phloem insecticide residues.
The local abundance of male spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae), was evaluated in the province of Quebec at 112 locations between 2002–2012 using pheromone-baited traps deployed on lower branches near the ground level (GL) or in the tree canopy (TC; three traps at GL and TC for each location); in addition, the presence of second instars (L2) was assessed at each location on three balsam fir branches. Numbers of moths captured at GL and TC were highly correlated, and the regression parameters did not vary between years. Consequently, estimates of L2 based on pheromone trap catches are precise independent of trap location, and deploying traps at ground level (rather than in the tree canopy) does not come with a loss of accuracy in L2 assessments. Relationships between moths (x) and L2 (y) exhibited strong nonlinearity and were most adequately described by exponential functions of the form: ln (y + 1) = [ß0 + ß1 × k ln (x)]. A conservative threshold of 100 males per trap at GL (corresponding to one L2 per branch) may be used to guide forest managers in the transition from endemic to epidemic populations. Relationships between L2 and moths are likely influenced by the number of traps per site; hence, the tentative threshold above is only valid for jurisdictions relying on three traps per site. Considering the economic importance and rising populations of spruce budworm, rigorous quality control programs must be implemented promptly to ensure a steady supply of standardized pheromone lures across years.
In southern Mexico and Central America, the southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) commonly colonizes host trees simultaneously with Dendroctonus mesoamericanus Armendáriz-Toledano and Sullivan, a recently described sibling species. We hypothesized that cross-species pheromone responses by host-seeking beetles might mediate joint mass attack, bole partitioning, and reproductive isolation between the species. Previous studies had indicated that D. frontalis females produce frontalin and that female D. mesoamericanus produce frontalin, endo-brevicomin, and ipsdienol (males of both species produce endo-brevicomin and possibly ipsdienol). In field trapping trials in the Mexican state of Chiapas, D. frontalis was attracted to the lure combination of turpentine and racemic frontalin; racemic endo-brevicomin enhanced this response. In a single test, D. mesoamericanus was attracted in low numbers to the combination of turpentine, racemic frontalin, and racemic endo-brevicomin after the addition of racemic ipsdienol; in contrast, racemic ipsdienol reduced responses of D. frontalis. Inhibition of D. frontalis was generated in both sexes by (+)- and racemic ipsdienol, but by (−)-ipsdienol only in females. Logs infested with D. mesoamericanus females (the pioneer sex in Dendroctonus) attracted both species in greater numbers than either D. frontalis female-infested or uninfested logs. Our data imply that D. frontalis may be more attracted to pioneer attacks of D. mesoamericanus females, and that this could be owing to the presence of endo-brevicomin in the latter. Possible intra- and inter-specific functions of semiochemicals investigated in our experiments are discussed.
Spodoptera litura (F.) causes considerable economic damage to multiple agro-crops annually in many countries. In this study, the demography of S. litura reared on cabbage and taro was investigated using the age-stage, two-sex life table at 25 ± 1°C, 60 ± 10% relative humidity, and a photoperiod of 12: 12 (L:D) h. Our results showed that the net reproductive rate, intrinsic rate, and finite rate of population increase on cabbage (1893.1 offspring, 0.2374 d−1, and 1.2679 d−1) were all not significantly different from those on taro (1361.0 offspring, 0.2298 d−1, and 1.2584 d−1). The net consumption rate on cabbage (439.1 cm2) was, however, three times higher than that on taro (141.7 cm2). According to the population parameters, both cabbage and taro are suitable host plants for S. litura. When both the population growth rate and the consumption rate were taken into consideration, the finite consumption rate on cabbage (ω = 3.8054) was significantly higher than that on taro (ω = 1.3184). In Taiwan, taro and cabbage are commonly planted in adjacent farm plots, with taro being grown from March to November and cabbage from October to April. Because of the overlapping growth periods of the two crops, S. litura can easily propagate throughout the year by switching between the adjacent crops during the overlap periods. Pest management strategies for controlling S. litura must be thoroughly reevaluated based on ecological characteristics, including its life table and consumption rate on its major host plants.
Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae) is an important grapevine pest in Europe recently encountered in America. Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae) is amongst the most effective parasitoids for Lepidopteran species. Studies to evaluate the effect of kaolin, an inert, nontoxic mineral, on oviposition, egg hatch, and neonate mortality of these species were carried out. Efficacy on L. botrana neonate larvae, oviposition, and egg hatch was evaluated. Effects of kaolin on parasitism and emergence of T. cacoeciae from L. botrana and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs were also evaluated. Lobesia botrana egg hatch and oviposition rates were reduced, and neonate larvae mortality was significantly greater in kaolin-treated arenas and when included in synthetic neonate larvae diet. Kaolin had no effect on T. cacoeciae parasitism in both hosts. There was only a slight but statistically insignificant effect on T. cacoeciae progeny emergence from L. botrana eggs and no effect from E. kuehniella. The results involving reductions in L. botrana oviposition and egg hatch and increase in larval mortality with kaolin suggest this compound may contribute to reduction in population densities and can be considered in rational integrated pest management strategies for L. botrana. Due to the laboratory results presented on parasitoid emergence, even though field bioassays would give a more exhaustive evaluation, it appears kaolin can be compatible with T. cacoeciae in L. botrana management.
The spotted-wing drosophila (Drosophila suzukii Matsumura) is an invasive species of Asian origin that is now widely distributed in North America and Europe. Because of the female's serrated ovipositor, eggs are laid in preharvest fruit, causing large economic losses in cultivated berries and stone fruit. Modeling D. suzukii population dynamics and potential distribution will require information on its thermal tolerance. Large summer populations have been found in regions with severe winter conditions, though little is known about responses to prolonged low-temperature exposure. We used controlled chambers to examine D. suzukii fecundity, development rate, and mortality across a range of temperatures encompassing the upper and lower thresholds (5–35°C). Optimal temperatures (Topt) were found to be 28.2°C for the development of the egg-to-adult stage, and 22.9°C for reproductive output. No adult eclosion occurred below 8.1°C (Tlower) or above 30.9°C (Tupper). We also investigated survival outcomes following prolonged (42-d) low-temperature exposure to a simulated cold winter (−5, −3, −1, 1, 3, and 5°C). Adult survival was dependent on temperature, with a mean LT50 of 4.9°C. There were no effects of sex, mating status, geographic strain, and photoperiod preexposure on overwintering survival. Thirty-eight percent of females that were mated prior, but not after, prolonged low-temperature exposure produced viable offspring, suggesting that this species may undergo sperm storage. This study provides data on the thermal tolerances of D. suzukii, which can be used for models of D. suzukii population dynamics, degree-day, and distribution models.
Termites have evolved a variety of morphological, physiological, and behavioral adaptations that together increase the chances of survival in unfavorable environments. Morphological advantages (i.e., a relatively large body size, a large mass of reserves that are metabolized by reducing body water mass, a mass of cuticular lipids, and cuticular hydrocarbons) increase the cuticular resistance to water loss under desiccating conditions. However, termites are incapacitated when exposed to high levels of CO2 and can be eradicated at sufficiently high levels. Based on the results of this study, in an artificially induced high CO2 atmosphere, the loss of body water from drywood termites increased, which generally led to increased rates of mortality. Although the mechanism for the increased loss of body water under high CO2 conditions was not determined, for practical application, the time required for fumigation can be reduced because of the increase in the rate of body water loss from drywood termites in high CO2 conditions.
Two experiments were conducted to evaluate the effects of various interventions on low-level bed bug, Cimex lectularius L., populations in occupied apartments. The first experiment was conducted in occupied apartments under three intervention conditions: never treated (Group I), recently treated with no further treatment (Group II), and recently treated with continued treatment (Group III). Each apartment was monitored with pitfall-style traps (interceptors) installed at beds and upholstered furniture (sleeping and resting areas) along with ∼18 additional interceptors throughout the apartment. The traps were inspected every 2 wk. After 22 wk, bed bugs had been eliminated (zero trap catch for eight consecutive weeks and none detected in visual inspections) in 96, 87, and 100% of the apartments in Groups I, II, and III, respectively. The second experiment investigated the impact of interceptors as a control measure in apartments with low-level infestations. In the treatment group, interceptors were continuously installed at and away from sleeping and resting areas and were inspected every 2 wk for 16 wk. In the control group, interceptors were placed in a similar fashion as the treatment group but were only placed during 6–8 and 14–16 wk to obtain bed bug counts. Bed bug counts were significantly lower at 8 wk in the treatment group than in the control group. At 16 wk, bed bugs were eliminated in 50% of the apartments in the treatment group. The implications of our results in the development of bed bug management strategies and monitoring protocols are discussed.
This laboratory study reports the ability of Formosan subterranean termite, Coptotermes formosanus Shiraki, colonies to survive for at least 9 yr while restricted to a sweater box. Colonies survived by limiting queen size and worker numbers, allowing these bonsai colonies to thrive. Queen physogastry appeared to plateau with 9-yr-old queens not larger than 6-yr-old queens, but nearly triple the size of 2-yr-old queens. Nine-year-old colony worker numbers were not greater than 6-yr-old colonies, but worker numbers were greater than in 2-yr-old colonies. Such colony survival under conditions of restricted resources provides a mechanism for re-infestation of areas following extensive area-wide control efforts. “Bonsai” colonies are relevant to the ability of marginalized colonies to avoid detection and then expand and invade into areas once the large, mature colonies are eliminated, and their potential to produce alates to start new C. formosanus colonies in areas which have been subjected to colony elimination programs impacts termite management strategies.
Previous studies showed that the formic acid secreted by tawny crazy ants not only has fumigation toxicity to the red imported fire ant, Solenopsis invicta Buren (Chen et al. 2013), but also can detoxify fire ant venom (LeBrun et al. 2014). These lead us to a field study to determine if low concentrations of formic acid might be useful in repelling S. invicta. Filter paper discs treated with 1.3% or 5% formic acid (v: v) or distilled water (control) were placed on each of the 46 S. invicta mounds and a disturbance was created. For a minute or less, there were significantly more defending ants on the control discs than that on the paper discs treated with formic acid. After food was added and for the next 40 min, there were significantly more foraging ants on the control discs compared to the treated discs. At 50 min into the test, the number of foraging ants on the control and 1.3% formic acid-treated discs was similar, but both were significantly higher than that on the 5% formic acid-treated discs. In addition, the active foraging (≥10 ants stayed on or around the food) and burying behavior (soil particles were deposited around the food) continued to be inhibited by 5% formic acid. The potential application and ecological significant of this repellent effect is discussed.
Three hundred Reticulitermes virginicus (Banks) workers were exposed to three 1-cm3 wood blocks of either Quercus sp. (Red Oak), Populus sp. (Poplar), Pinus sp. (Pine), or Sequoia sp. (Redwood) placed into one of the three bioassay designs (no-, two-, and four-choice) for 21 d. Termite wood consumption was measured by wood weight loss, resistance class, and visual rating. Wood consumption rates were determined using four formulas in addition to two standardized visual rating scales (American Society for Testing and Materials [ASTM] and American Wood Protection Association [AWPA]) and a preference ranking obtained for each measure. The wood consumption formula, rating scale, and preference rankings were compared by bioassay design. The overall preference ranking of the four wood types as determined by the combination of all three designs was—1) Pine, 2) Red Oak, 3) Redwood, and 4) Poplar. Results indicate that bioassay design influenced both wood consumption and preference rankings. A no-choice design can determine aversion; a four-choice design the most preferred wood; and a two-choice design can illuminate the fine details of comparative preference. The different formulas employed for calculation of consumption rate influenced preference ranking in the no- and four-choice designs but not the two-choice design.
In termites, it is challenging to recognize the incidence of molting in workers because of their successive stationary molt, asynchronous molting among individuals, cryptic behavior, a soft and poorly sclerotized cuticle, and they immediately consume the shed exuvia of nestmates. This study describes a method in which the degree of sclerotization of the mouthparts in newly molted workers of the Formosan subterranean termite can be quantified and used to determine if an individual has recently molted, within a 36-h time frame. Changes in the tanning of mouthparts over time were used as a measure of the index of sclerotization in workers postmolting. Upon ecdysis, the primary point of articulation of the mandible already initiated sclerotization, which may allow the movement of the mandibles during the shedding of the exuvium. The sclerotization of the secondary point of articulation and the mandibular teeth, and the width of sclerotization of the mandibles, progressively increased until reaching a plateau around 36-h postecdysis, which imply that workers can regain some level of activity as early as 2 d after ecdysis. Our observations allowed for the determination of variables for the sclerotization of the mouthparts to easily identify workers that recently molted, and this method will be useful in future studies that focus on the molting activity of workers over time and space within a termite colony, in the scope of improving current control strategies for termite pests.
In Missouri, the relative abundances of subterranean termite species differ between undeveloped forest and urban landscapes. Reticulitermes hageni Banks occurs in greater relative proportions in forested landscapes, while Reticulitermes flavipes (Kollar) occurs in greater relative proportions in urban landscapes. Thus, subterranean termite communities appear to change at some point as landscapes are converted from undeveloped to urban. It is not known if communities change quickly in direct response to urban development, or if changes occur over time in altered urban landscapes. The purpose of this study is to examine how landscape factors are associated with subterranean termite communities and patterns of colonization as subdivisions are constructed and age. Subterranean termites were collected from 25 areas in Columbia, MO, that were classified along a gradient of urbanization to include 1) undeveloped landscapes; 2) recently disturbed transitional landscapes; 3) 10-yr-old subdivisions; and 4) 20-yr-old subdivisions. Subterranean termite communities were assessed by identifying species using polymerase chain reaction-based restriction fragment length polymorphisms. The interactions between landscape features and subterranean termites were examined using GIS software. Relative proportions of Reticulitermes spp. in communities of forest landscapes and urban areas are similar to previous reports for the state of Missouri. Termite communities appear to be locally eliminated after soils are disturbed or removed during subdivision development, although remnant colonies can persist in areas that are not disturbed. Reticulitermes flavipes appears to colonize subdivisions quickly regardless of historical or contemporary landscape; however, R. hageni colonization generally becomes more common as subdivisions age and gradually become more forested.
Following the elimination of all detectable termite colonies in the 32-acre Louis Armstrong Park in New Orleans, LA, in 2002–2003, termite activity was monitored by using 808 Sentricon stations. Between January 2004 and July 2005, termites were found in 8–11 stations. In August 2005, the Park was flooded by Hurricane Katrina, but termites remained active. Post-Katrina termite activity levels of 16–21 stations were recorded throughout 2006, and in October 2007, the activity drastically increased to 43 stations. This rapid increase of termite activity continued into 2008, and a total of 94 stations harbored termite activities by July 2008. Termite activity peaked at 109 stations in September 2008 and then leveled down to 64 stations in March 2009. Termite activity in the Park between 2004 and 2009 was described by a Sigmoid model with a carrying capacity of 76 stations, and a Sigmoid mid-point of 1,202 d. In April 2009, a total of 14 colonies of Coptotermes formosanus Shiraki and one colony of Reticulitermes flavipes (Kollar) were delineated by using microsatellite genotyping and mark–recapture protocol. Of the 15 colonies, eight near the Park border probably originated from existing colonies from outside, and seven C. formosanus colonies found inside the Park were probably initiated by alate pairs. Our results showed that, if surrounded by high population pressure of termites and no control measures are applied, an area cleared of termite populations by baits can be completely re-populated by termites from outside in 53 mo.
Two new insect colonies were created by separating virgin western corn rootworm, Diabrotica virgifera virgifera LeConte, males and females from both a selected laboratory colony that was being reared on eCry3.1Ab-expressing corn (Zea mays L.) and a control colony reared on its near-isoline corn. Females from the selected colony were paired with males of the control colony and vice versa to create both a selected female by control male colony (Sel♀) and control female by selected male colony (Con♀). Both colonies along with their parental colonies (eCry3.1Ab-selected and control) were evaluated on eCry3.1Ab-expressing corn and its near-isoline in seedling assays. Larvae from each colony were also used in diet toxicity experiments in order to determine the LC50 and EC50 values for the eCry3.1Ab toxin for each. Statistical analysis of seedling assay experiments did not indicate any significant colony × corn interaction but did show a significant main effect of corn type for both larval recovery and larval head capsule widths. Results from the diet toxicity assays showed the control colony to have a significantly lower LC50 value than the selected and cross colonies and a significantly lower EC50 than the selected and Con♀ colonies. Calculations of dominance values (h) of eCry3.1Ab resistance traits from seedling assays indicated that the two reciprocal cross colonies have a dominance value (h) of ∼1, suggesting dominance of the eCry3.1Ab resistance trait.
Zaiqi Pan, David Onstad, Philip Crain, Andre Crespo, William Hutchison, David Buntin, Pat Porter, Angus Catchot, Don Cook, Clint Pilcher, Lindsey Flexner, Laura Higgins
We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton.
The development of insecticide resistance in Asian citrus psyllid, Diaphorina citri Kuwayama, populations is a serious threat to the citrus industry. As a contribution to a resistance management strategy, we developed a glass vial technique to monitor field populations of Asian citrus psyllid for insecticide resistance. Diagnostic concentrations needed to separate susceptible genotypes from resistant individuals were determined for cypermethrin (0.5 µg per vial), malathion (1.0 µg per vial), diazinon (1.0 µg per vial), carbaryl (1.0 µg per vial), carbofuran (0.1 µg per vial), methomyl (1.0 µg per vial), propoxur (1.0 µg per vial), endosulfan (1.0 µg per vial), imidacloprid (0.5 µg per vial), acetamiprid (5.0 µg per vial), chlorfenapyr (2.5 µg per vial), and fenpyroximate (2.5 µg per vial). In 2014, resistance to two carbamate insecticides (carbaryl and carbofuran), one organophosphate (malathion), one pyrethroid (cypermethrin), and one pyrazole (fenpyroximate) was detected in field populations of Asian citrus psyllid in Immokalee, FL. There was no resistance detected to diazinon, methomyl, propoxur, endosulfan, imidacloprid, and chlorfenapyr. The levels of insecticide resistance were variable and unstable, suggesting that resistance could be successfully managed. The results validate the use of the glass vial bioassay to monitor for resistance in Asian citrus psyllid populations and provide the basis for the development of a resistance management strategy designed to extend the efficacy of all classes of insecticides used for control of the Asian citrus psyllid.
Excessive insecticide applications are commonly used to manage Bactrocera cucurbitae Coquillett in China. Resistance status, resistance development trends, and patterns of cross-resistance to insecticides in B. cucurbitae were investigated. Among 21 populations from Hainan Island, two populations expressed high resistance to beta-cypermethrin; seven, eight, and ten populations expressed intermediate resistance to spinosad, avermectin, and beta-cypermethrin, respectively; four, six, one, five, and four populations expressed low resistance to spinosad, avermectin, trichlorfon, beta-cypermethrin, and fipronil, respectively; and the remaining populations exhibited either minor resistance or remained susceptible. Analysis of the development of resistance showed that resistance levels to spinosad and avermectin were readily developed at 40.68- and 18.42-fold, respectively, and a spinosad-resistant strain also showed relative positive cross-resistance to beta-cypermethrin and avermectin, but relative negative cross-resistance to trichlorfon and fipronil. These data represent the most extensive survey of insecticide resistance conducted in B. cucurbitae to date, and the level of insecticide resistance in populations should be considered when designing control measures and pest management strategies.
Zea mays L. (maize) hybrids producing the Cry1F protein from Bacillus thuringiensis were first commercialized in the United States in 2003. These products demonstrated varying levels of moderate control, but not immunity to Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) (western bean cutworm). Susceptibility of western bean cutworm to Cry1F protein was assessed in field populations collected in the mid- and western United States in 2003, 2004, 2013, and 2014 using diet bioassay. A meta-analysis of 32 western bean cutworm field collections assessed for susceptibility to Cry1F was conducted to investigate changes in susceptibility over time. Based on meta-analysis results, these data suggest a 5.2-fold increase in median lethal concentration (LC50) response to Cry1F in the 2013–2014 populations compared with collections that were assessed 10 yr earlier. Widespread use of Cry1F-producing maize hybrids over the past 10 yr may have contributed to favoring western bean cutworm populations with tolerance to the Cry1F protein.
Field-evolved resistance to Cry1F maize in Spodoptera frugiperda (J.E. Smith) populations in Brazil was reported in 2014. In this study, to investigate fitness costs, we constructed a near-isogenic S. frugiperda- resistant strain (R-Cry1F) using Cry1F-resistant and Cry1F-susceptible strains sharing a close genetic background. A near-isogenic R-Cry1F strain was obtained by eight repeated backcrossings, each followed by sib-mating and selection among resistant and susceptible strains. Fitness cost parameters were evaluated by comparing the biological performance of resistant, susceptible, and heterozygous strains on artificial diet. Fitness parameters monitored included development time and survival rates of egg, larval, pupal, and egg-to-adult periods; sex ratio; adult longevity; timing of preoviposition, oviposition, and postoviposition; fecundity; and fertility. A fertility life table was also calculated. The near-isogenic R-Cry1F strain showed lower survival rate of eggs (32%), when compared with Sus and reciprocal crosses (41 and 55%, respectively). The number of R-Cry1F insects that completed the life cycle was reduced to ∼25%, compared with the Sus strain with ∼32% reaching the adult stage. The mean generation time (T) of R-Cry1F strain was ∼2 d shorter than R-Cry1F♂ × Sus♀ and Sus strains. The reproductive parameters of R-Cry1F strain were similar to the Sus strain. However, fewer females were produced by R-Cry1F strain than R-Cry1F♀ × Sus♂ and more females than R-Cry1F♂ × Sus♀. In summary, no relevant fitness costs are observed in a near-isogenic Cry1F-resistant strain of S. frugiperda, indicating stability of resistance to Cry1F protein in Brazilian populations of this species in the absence of selection pressure.
Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. Owing to its increasing resistance to conventional pesticides, new strategies need to be developed for diamondback moth control. Here, we investigated factors that modulate juvenile hormone esterase (JHE) activity and jhe (Px004817) transcription, and determined the effects of these factors on subsequent growth and development in diamondback moth. Starvation inhibited JHE activity and jhe transcription, increased mortality, and decreased the rate of molting from the third- to the fourth-instar stages. Larvae kept at 32°C molted earlier and showed increased JHE activity and jhe transcription after 24-h treatment. Exposure to 1,325 mg/liter OTFP (3-octylthio-1,1,1-trifluoro-2-propanone) delayed molting and pupation, increased pupal weight, and decreased JHE activity and jhe transcription at both 24 and 48 h. Treatment with 500 mg/liter pyriproxyfen delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. A combination of OTFP (1,325 mg/liter) and pyriproxyfen (500 mg/liter) induced the highest mortality, delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. These effects on JHE activity and jhe transcription were similar to those in insects treated only with pyriproxyfen. The results demonstrated that JHE and jhe (Px004817) were involved in the responses of diamondback moth to external modulators and caused changes in growth and development. The combination of OTFP and pyriproxyfen increased the effectiveness of action against diamondback moth.
Propoxur, a carbamate insecticide, has been used worldwide for the control of house flies (Musca domestica L.) for many decades. Resistance levels to propoxur have been detected in field populations of house flies in many parts of the world, including China. In this study, a near-isogenic house fly line (N-PRR) resistant to propoxur was used to determine the mode of inheritance. Bioassay results showed no significant differences in LD50 values or in the slope of log dose-probit lines between the reciprocal F1 and F1′ progenies, and the degree of dominance (D) was more than −1 and less than 0. Chi-square analysis of the responses of self-bred (F2, F2′) and backcross progenies (BC1, BC2, BC1′, and BC2′) indicated that a single gene was responsible for resistance. Propoxur resistance in the N-PRR strain of house fly was inherited as a single, major, autosomal, and incompletely recessive factor. These results should be useful to reveal the mode of inheritance and the development trend of propoxur resistance and develop a systematic strategy for the resistance management in house flies.
The white-backed planthopper, Sogatella furcifera (Hemiptera, Delphacidae), is one of the most devastating rice pests. For a better control strategy, various genetic studies have been conducted using reverse-transcription quantitative real-time polymerase chain reaction (qRT-PCR). The appropriate application of qRT-PCR requires reliable endogenous controls; however, studies on this aspect of the white-backed planthopper are lacking. In the present study, nine commonly used reference genes, elongation factor 1-α (EF1-α), polyubiquitin (UB), ribosomal protein S18 (RPS18), actin 1 (ACT), α-1 tubulin (TUB), glyceraldehyde-3-phosphate (GAPDH), ribosomal protein L9 (RPL9), ribosomal protein L10 (RPL10), and 18S ribosomal RNA (18S), were evaluated by qRT-PCR for their expression stability under four different experimental conditions (different developmental stages, acquisition of Southern rice black-streaked dwarf virus (SRBSDV), different tissues, and different temperature stress). These results were analyzed using four software programs (geNorm, NormFinder, BestKeeper, and the delta Ct method) and a Web-based comprehensive tool RefFinder to compare and rank candidate reference genes. According to the results of RefFinder analysis, which integrates the abovementioned four software programs, TUB was ranked as the most suitable reference gene at different developmental stages and under different temperature stress, and GAPDH and RPL9 showed the highest stability for acquisition of SRBSDV and different tissues, respectively. These results will provide a solid foundation for future gene expression study on the white-backed planthopper, and also will give aids in establishing a standardized qRT-PCR procedure for other related insects.
The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is an important cosmopolitan and extremely polyphagous species capable of causing direct and indirect damage to various crops. Insecticide resistance in melon aphids is of particular concern. To determine the basis of resistance, organophosphate (OP)-resistant strains of A. gossypii were obtained by continuous selection with dimethoate in the laboratory, and resistance mechanisms were investigated along with susceptible strains. Three resistant strains LKR-1, LKR-2, and LKR-3 exhibiting 270-, 243-, and 210-fold resistance obtained after 30 generations of selection with dimethoate, respectively, were utilized in this study. The role of acetylcholinesterase (AChE), a target enzyme for OPs and carbamates (CMs), was investigated. AChE enzyme assay revealed that there was no significant change in the activities of AChE in resistant and susceptible strains. However, AChE inhibitory assay showed that 50% of the enzyme activity in resistant strains was inhibited at significantly higher concentration of dimethoate (131.87, 158.65, and 99.29 µmolL−1) as compared with susceptible strains (1.75 and 2.01 µmolL−1), indicating AChE insensitivity owing to altered AChE. Molecular diagnostic tool polymerase chain reaction-restriction fragment length polymorphism revealed the existence of two consistent non-synonymous point mutations, single-nucleotide polymorphism, viz., A302S (equivalent to A201 in Torpedo californica Ayres) and S431F (equivalent to F331 in T. californica), in the AChE gene Ace2 of resistant strains. Further, cloning and sequencing of a partial fragment of Ace2 (897 bp) gene from susceptible and resistant strains revealed an additional novel mutation G221A in resistant strains, LKR-1 and LKR-2. Susceptible Ace2 genes shared 99.6 and 98.9% identity at the nucleic acid and amino acid levels with resistant ones, respectively. Functional analysis of these point mutations was assessed by in silico docking studies using the modeled wild-type and naturally mutated AChE2. Computational analysis showed that the conformational changes in AChE2 active site due to structural gene substitutions (A302S, S431F, and G221A) significantly reduced the level of ligand (OP-dimethoate, omethoate, and CM-pirimicarb) binding, suggesting that they are potentially associated with resistance development. These results unambiguously suggested that multiple mutations located in the enzyme active site are responsible for AChE insensitivity to dimethoate and are likely the molecular basis for dimethoate resistance in these selected field populations of A. gossypii.
Pentatomids (stink bugs) are major pests of soybean, Glycine max (L.) Merril. These pests reach high levels of infestation, cause severe damage to seeds by feeding, are linked to leaf retention, and are difficult to control. Host plant resistance is considered to be a valuable tool in integrated pest management and can assist in reducing the damage caused by stink bugs. This research evaluated the resistance of soybean genotypes in Brazil to the stink bug complex, the Neotropical brown stink bug, Euschistus heros (F.), redbanded stink bug, Piezodorus guildinii (Westwood), southern green stink bug, Nezara viridula (L.), green belly stink bug, Dichelops melacanthus (Dallas), and Edessa meditabunda (F.), by assessing infestation assay, yield reduction, seed damage, and leaf retention. Certain genotypes expressed different categories of resistance: least infested, low yield reduction, low levels of damage in seeds, and low levels of leaf retention. PI lines and IAC 78-2318 showed antixenotic resistance, and ‘IAC 100’ showed tolerance for the stink bug complex. This is the first study to evaluate several parameters of yield and seed quality using different soybean maturity groups under relatively high infestation by the three stink bugs species. The promising genotypes might be used in regions with a high incidence of stink bugs to manage their populations in combination with other integrated pest management practices.
Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.
The soybean stalk weevil, Sternechus subsignatus Boheman 1836 (Coleoptera: Curculionidae), is a very serious soybean pest in the Neotropical region. Both adults and larvae feed on soybean, causing significant yield losses. Adult survival was evaluated during three soybean growing seasons under controlled environmental conditions. A survival analysis was performed using a parametric survival fit approach in order to generate survival curves and obtain information that could help optimize integrated management strategies for this weevil pest. Sex of the weevils, crop season, fortnight in which weevils emerged, and their interaction were studied regarding their effect on adult survival. The results showed that females lived longer than males, but both genders were actually long-lived, reaching 224 and 176 d, respectively. Mean lifetime (l50) was 121.88 ± 4.56 d for females and 89.58 ± 2.72 d for males. Although variations were observed in adult longevities among emergence fortnights and soybean seasons, only in December and January fortnights of the 2007–2008 season and December fortnights of 2009–2010 did the statistically longest and shortest longevities occur, respectively. Survivorship data (lx) of adult females and males were fitted to the Weibull frequency distribution model. The survival curve was type I for both sexes, which indicated that mortality corresponded mostly to old individuals.
The paper deals with the study of the spatial distribution and the design of sampling plans for estimating nymph densities of the grape leafhopper Scaphoideus titanus Ball in vine plant canopies. In a reference vineyard sampled for model parameterization, leaf samples were repeatedly taken according to a multistage, stratified, random sampling procedure, and data were subjected to an ANOVA. There were no significant differences in density neither among the strata within the vineyard nor between the two strata with basal and apical leaves. The significant differences between densities on trunk and productive shoots led to the adoption of two-stage (leaves and plants) and three-stage (leaves, shoots, and plants) sampling plans for trunk shoots- and productive shoots-inhabiting individuals, respectively. The mean crowding to mean relationship used to analyze the nymphs spatial distribution revealed aggregated distributions. In both the enumerative and the sequential enumerative sampling plans, the number of leaves of trunk shoots, and of leaves and shoots of productive shoots, was kept constant while the number of plants varied. In additional vineyards data were collected and used to test the applicability of the distribution model and the sampling plans. The tests confirmed the applicability 1) of the mean crowding to mean regression model on the plant and leaf stages for representing trunk shoot-inhabiting distributions, and on the plant, shoot, and leaf stages for productive shoot-inhabiting nymphs, 2) of the enumerative sampling plan, and 3) of the sequential enumerative sampling plan. In general, sequential enumerative sampling was more cost efficient than enumerative sampling.
A field experiment was conducted in eight 13.6-MT steel bins containing 6.8 MT each of wheat to assess efficacy of sulfuryl fluoride or SF fumigant to control phosphine-resistant and susceptible Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Approximately 400 adults of each type of beetle were added to each bin. Additionally, muslin bags containing immature stages and adults, with their respective diets, were also placed in bins. Four bins were fumigated with SF and others were untreated control bins. The SF dosages in treated bins ranged from 1,196–1,467 mg-h/liter. Mortality of adults in each bag was assessed 5 d postfumigation; diet minus adults was incubated in a jar, and number of adults counted after 8 wk. No significant change occurred in number of insect-damaged kernels in SF-treated bins. In trier samples from SF-treated bins, R. dominica numbers declined from 24 prefumigation to 0 at 3- and 6-wk postfumigation; T. castaneum numbers were unchanged. In WBII traps from SF-treated bins, numbers R. dominica and T. castaneum declined from 25 and 33, respectively, prefumigation to 0 or near 0 at 3- and 6-wk postfumigation. Mortalities of resistant and susceptible adult R. dominica, and adult and large larvae of T. castaneum in SF-treated bags was 100%. For all four types of beetles, adult numbers in jars associated with SF-treated bins were 0 or near 0. Results show SF is effective against all life stages of phosphine-resistant R. dominica and T. castaneum, and can be used for phosphine resistance management.
The efficacy of different stable fly attractants was evaluated at four dairy cattle farms in Muak Lek district, Saraburi province, Thailand. Dry ice, octenol, a mixture of cow dung and urine, a combination of dry ice plus octenol, and no attractants (control) were tested with Vavoua traps. In total, 7,000 individuals of Stomoxys species were collected between July 2013 to September 2014, of which 1,058, 867, 1,274, and 3,801 were trapped on farms 1–4, respectively. Four species of Stomoxys were identified: Stomoxys bengalensis Picard, 1908, Stomoxys calcitrans (L., 1758), Stomoxys indicus Picard, 1908, and Stomoxys sitiens Rondani, 1873. S. calcitrans was the predominant species, comprising 99% of all the samples collected. The number of male and female S. calcitrans collected differed significantly by attractant type. Significantly more S. calcitrans were attracted to dry ice or a combination of dry ice plus octenol-baited traps than to unbaited or octenol-baited traps. The Vavoua traps baited with dry ice alone or a combination of dry ice plus octenol were effective attractants for S. calcitrans.
Bovine blood inoculated and incubated with bacteria was tested to determine if secondary screwworm, Cochliomyia macellaria (F.), would be attracted to the incubated substrate for oviposition. Five species of bacteria, Klebsiella oxytoca (Flugge), Proteus mirabilis Hauser, Proteus vulgaris Hauser, Providencia rettgeri Hadley, Elkins and Caldwell, and Providencia stuartii Ewing, previously isolated from animal wounds infested by primary screwworms, Cochliomyia hominivorax (Coquerel), were used. Incubated substrates were tested in a two-choice cage bioassay to study landing response and oviposition by gravid C. macellaria. Significantly more flies landed on substrates containing P. mirabilis than on substrates with other species of bacteria. Klebsiella oxytoca-treated substrates attracted the least flies. Substrates containing bacteria incubated for 72 h attracted significantly more flies than those incubated for 24-, 48-, or 96-h period. In 3-h duration oviposition tests, substrates with P. rettgeri attracted significantly more flies to oviposit than the other four species. The most eggs were recorded when substrates treated with all five species of bacteria were offered for oviposition. It is likely that multiple active chemicals present in the volatiles from substrates treated with all five species result in greater response than those in a single species. At least 72-h incubation seems to be necessary to obtain the most active volatile chemicals. Results suggest that C. macellaria uses similar chemical cues as C. hominivorax from bacteria volatiles as oviposition attractant/stimulant.
It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.
The recent availability of sex pheromone lures for the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), improves options for monitoring this key pest in conventionally managed almonds. These lures are, however, minimally effective in the presence of mating disruption. Experiments were conducted to determine if phenyl propionate (PPO), an attractant for the navel orangeworm, acts in an additive or synergistic manner when presented together with the pheromone. In the absence of mating disruption, traps baited with PPO captured significantly fewer adults than traps baited with a sex pheromone lure. There was no difference in the number of adults captured in traps with both attractants when mating disruption was not used. In the presence of mating disruption, pheromone traps were completely suppressed, yet traps with both pheromone and PPO captured significantly more adults than traps baited with only PPO. Traps with only PPO captured equal numbers of both sexes, whereas traps with both attractants had significantly more males. These findings demonstrate that PPO is likely to be useful for monitoring navel orangeworm in fields treated with mating disruption.
Rhynchophorus palmarum (L.) causes great losses to the oil palm plantations, and therefore, the spatial and temporal distribution of this insect should be studied, to manage its populations. Insect sampling was done for 2 yr in an oil palm plantation from Colombia. In total, 60 pheromone traps were used in healthy palm trees and infected ones with the Bud Rot disease. On the other hand, developmental stages of this insect were quantified on healthy and diseased palms for two consecutive years. Number of adult R. palmarum per sampling was higher in the plantation with diseased palm trees, 3.85 and 74.7 insects per trap, than in those with healthy ones, 1.91 and 9.48 insects per trap, in the first and second years, respectively. After the integration of pheromone traps, there was a significant increase in the infestation level at all stages of development of the insect. For the first time, the presence of R. palmarum attracted to diseased palms is reported. The association between R. palmarum and the Bud Rot disease is a cause of death and great loss to the oil palm plantations.
In the pathosystem of Dalbulus madis (DeLong & Wolcott) (Hemiptera: Cicadellidae), a vector of maize bushy stunt phytoplasma (MBSP), the interactions occurring during the passage, invasion, and multiplication of the phytoplasma inside the vector body have been generalized from other pathosystems, with a poor understanding of the specific interactions. With the aim to understand MBSP movement and potential specific interactions with its vector, D. maidis adults were dissected to obtain the intestine and salivary gland of both infected (acquisition access period = 4 d; latent period = 23 d) and noninfected individuals. The organs were processed for visualization with transmission electronic microscopy. Images of phytoplasma cells were observed in the alimentary canal, epithelium of the mesenteron, hemocele, and salivary gland of the vector, and were confirmed through observation of similar cells in maize roots with advanced disease symptoms. The study of the MBSP movement within its vector shows novel findings between the synergy of the MBSP phytoplasma and D. maidis.
A modular system for studying the biology of Scolytinae using 3D printed emergence traps is presented. This system consists of traps that can be used for the introduction of beetles into trees as well as for the determination of the number of offspring emerging from trees and branches, and their production of frass and sawdust. Open-source files used for printing these traps have been deposited as supplementary material and can be downloaded for trap production by students of Scolytinae with access to a 3D printer. The cost in material for the production of a single emergence trap on the printer used here is approximately $1.30, with a print time of less than 90 min.
Spotted wing drosophila, Drosophila suzukii Matsumura, is an invasive and economically damaging pest in Europe and North America. The females have a serrated ovipositor that enables them to infest almost all ripening small fruits. To understand the physiological and metabolic basis of spotted wing drosophila food preferences for healthy ripening fruits, we investigated the biological and biochemical characteristics of spotted wing drosophila and compared them with those of Drosophila melanogaster Meigen. We found that the susceptibility to oxidative stressors was significantly increased in spotted wing drosophila compared with those of D. melanogaster. In addition, we found that spotted wing drosophila had significantly reduced glutathione-S transferase (GST) activity and gene numbers. Furthermore, fructose concentrations found in spotted wing drosophila were significantly lower than those of D. melanogaster. Our data strongly suggest that the altered food preferences of spotted wing drosophila may stem from evolutionary adaptations to fresh foods accompanied by alterations in carbohydrate metabolism and GST activities.
Termites are highly effective digesters of wood lignocellulose, which is a central factor contributing to their global status as pests of wooden structures. For the same reason, termite baits that combine cellulosic matrices with slow-acting insecticides are both effective and popular as a reduced-risk approach for termite control. This study took a novel approach for assessing digestibility of termite bait matrices and matrix components to gain potentially new insights into bait attractiveness and efficacy. The rationale behind this study is that termite baits that are more digestible should have more nutritional value to termites and thus encourage maximal feeding and trophallactic transfer of active ingredients through termite colonies. Studies were done using in vitro digestion assays with termite gut protein extracts followed by colorimetric detection of released glucose and pentose monosaccharides from test substrates. The substrates tested included two commercial bait matrices (Recruit IV and Recruit II HD), two matrix components (compressed and toasted compressed cellulose), and two natural pine woods as positive controls (southern yellow and northern pine). Overall results show equal or greater monosaccharide availability for some commercial matrices than standard pine lignocelluloses, suggesting sufficient nutritional value for the proprietary matrices. Another more prominent trend was significant intercolony variation in digestibility across substrates, possibly resulting from differences in microbiota composition, long-term diet adaptation, or both. These findings thus illuminate new nutrition-based factors that can potentially impact bait feeding, trophallactic exchange, and efficacy.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere