Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the published paper, Razinger et al. 2014, funding information was left out in the original acknowledgments. The funding information should read “The research was partly funded by FP7 Project cropSustain, grant agreement FP7-REGPOT-CT2012-316205, a Sciex-NMSch scholarship to J.R. (11.090, acronym Rhizo-Shield), and a grant from the ARRS Slovenian science foundation to H.-J. Schroers (J4-5527).” The authors regret this error.
To provide a comprehensive evaluation of walnut cultivar resistance to the dusky-veined walnut aphid, Panaphis juglandis (Goeze), we collected the life table data of this aphid reared on five cultivars of walnut (‘Akça I,’ ‘Chandler,’ ‘Fernette,’ ‘Fernor,’ and ‘Pedro’) under field conditions. The raw data of the developmental time, survival rate, and fecundity was analyzed using the age-stage, two-sex life table to account for the variable developmental rate and stage differentiation among individuals. Due to the species' longer immature developmental time, shorter adult longevity, shorter reproduction period, and lower fecundity, the net reproduction rate (R0=5.9 offspring), intrinsic rate of increase (r=0.0983 d-1), and finite rate (λ=1.1034 d-1) were the lowest when aphids were reared on the Fernor cultivar, while those reared on Akça I exhibited the highest population parameters (R0=18.0 offspring, r=0.2031 d-1, and λ=1.2252 d-1). Based on the population characteristics, Fernor is a less favorable cultivar for the development and reproduction of P. juglandis. We also demonstrated the advantages of using bootstrapping for the analysis of standard errors of developmental time, longevity, fecundity, and other parameters as well. Our results indicated that demographic analysis of pest development, survival, and reproduction based on the agestage, two-sex life table offers a comprehensive assessment of pest growth potential on different crop cultivars.
As agriculture faces documented decline in bees and other insect pollinators, empirical assessments of potential economic losses are critical for contextualizing the impacts of this decline and for prioritizing research needs. For the state of Georgia, we show that the annual economic value of biotic pollinators is substantial—US$367 million, equivalent to 13 percent of the total production value of crops studied and 3 percent of the total production value of Georgia's agricultural sector. Our unique Geographic Information Systems analysis reveals an irregular pattern of vulnerability. While the Georgia counties displaying the highest economic values of pollination are clustered in southern Georgia, those with the highest dependency on pollinators in terms of their contribution to crop production value are more dispersed throughout the state.
The Asian citrus psyllid (Diaphorina citri Kuwayama) is the principal vector of ‘Candidatus Liberibacter asiaticus’ (CLas) associated with huanglongbing (HLB), the most serious citrus disease worldwide. New control measures including pesticides are urgently needed to combat HLB, especially to protect young or newly planted citrus trees from CLas-inoculation by vector psyllids. Here, we tested CLas-inoculation by D. citri adults (CLas-exposed, reared on infected plants) by feeding them for 7 d on excised healthy citrus leaves with dry residues of cyantraniliprole (Exirel), a novel insecticide, in comparison with fenpropathrin (Danitol 2.4EC), an insecticide commonly used against D. citri. Fewer adults settled (putatively feeding or probing) on leaves treated with cyantraniliprole than those treated with fenpropathrin or water controls. Also, psyllid adults died at a slower rate on leaves treated with cyantraniliprole than those treated with fenpropathrin, although the final cumulative mortality did not differ between the two treatments. In quantitative real-time polymerase chain reaction tests, 59.0–65.3% of the CLas-exposed psyllid adults were proven to be CLas-positive. Inoculation rates of CLas (using 10 adults per leaf) into untreated healthy citrus leaves (47.5–85%) were significantly higher than rates into leaves treated with cyantraniliprole or fenpropathrin (2.5–12.5%). Reduced inoculation rates to leaves treated with cyantraniliprole probably occurred as a result of reduced feeding or probing by D. citri. The excised leaf assay method, which took only a few weeks compared with up to a year or longer using whole plants, can be an effective tool for testing the effect of new pesticides or other treatments in reducing CLas inoculation or transmission by psyllid vectors.
The whitefly, Bemisia tabaci (Gennadius), is a cryptic species complex that attacks >600 different species of plants and transmits several plant viruses causing severe economic losses. Until 2010, the B. tabaci complex comprised 24 distinct putative species. Recently, at least 15 new species have been reported. The objective of this study was to identify B. tabaci species present in bean, melon, and tomato crops in Argentina by applying phylogenetic analyses and pairwise comparison of genetic distances of mitochondrial cytochrome c oxidase subunit I (mtCOI) sequences. The 39 proposed whitefly species were identified with both analyses, and the presence in Argentina of one indigenous species, New World 2 (NW2), and two introduced species, Middle East-Asia Minor one (MEAM1) and Mediterranean, was confirmed. Common bean crop presented the three whitefly species detected, with NW2, MEAM1, and Mediterranean being present all together under field conditions. Also, Mediterranean was the only species identified in tomato, whereas MEAM1 was found in melon. To the best of our knowledge, Mediterranean is a recent invasive species in open-field agriculture in the American continent and in greenhouse tomato in Argentina. Additionally, we provide the first report of MEAM1 in common bean and melon. These findings raise several questions on the future scenario of B. tabaci and the viruses it transmits in Argentina.
The potato psyllid, Bactericera cockerelli (šulc), has been detrimental to potato, tomato, and other solanaceous crop production in many countries. Management of B. cockerelli is dominated by frequent insecticide applications, but other approaches need consideration, including biological control. The sole arrhenotokous ectoparasitoid of nymphal potato psyllids is Tamarixia triozae (Burks) (Hymenoptera: Eulophidae). Here, laboratory evaluations of host stage preference, parasitoid mutual interference, and functional response of T. triozae were conducted with varying host B. cockerelli nymphal stages and densities on both tomato and bell pepper plant leaves. Significant differences in prey stage preferences were found on both host plants. In a no-choice host stage test, significantly greater parasitism of fourth- and fifth-instar B. cockerelli nymphs occurred, and no parasitism of first or second instars was found. Similar preferences were found in a host stage choice test. Effect of mutual interference on per capita female parasitism was significant when confining two or three simultaneously ovipositing female T. triozae adults on a given host density versus solitary females. The per capita search efficiency (s) of female T. triozae was significantly and negatively correlated with T. triozae density. The functional response of T. triozae to nymphal B. cockerelli was a Type III form on both host plants. In addition, host plant type did not exert a significant bottom-up effect on either parasitism or functional response of female T. triozae. The feasibility of using bell pepper as a potential banker plant for T. triozae augmentation is also discussed.
This work is the first study to investigate the efficacy of the commercial formulation of Beauveria bassiana (Broadband) to control adults of red palm weevil (Rhynchophorus ferrugineus (Olivier)). This fungus could be applied as one of the biological tactics in controlling red palm weevil. Bioassay experiments for medium lethal concentrate and medium time to cause death of 50% of red palm weevil adults were carried out. The result showed that the LC50 of B. bassiana (Broadband) was 2.19 × 107 and 2.76 × 106 spores/ml at 9 and 23 d of treatment, respectively. The LT50 was 13.95 and 4.15 d for concentration of 1 × 107 and 1 × 108 spores/ml, respectively, whereas 1 × 109 spores/ml caused 100% mortality after 24 h. Additionally, a red palm weevil pheromone trap was designed to attract the adults to be contaminated with spores of Broadband, which was applied to the sackcloth fabric that coated the internal surfaces of the bucket trap. The mating behavior was studied to determine direct and indirect infection of the spores from male to female and vice versa. The results showed a high efficacy of Broadband suspension at 1 × 109 spores/ml; 40 ml of suspension at this concentration treated to cloth in a trap caused death of contaminated adults with B. bassiana spores directly and indirectly. The 100% mortality was obtained even after 13 d of traps treatment with 40 ml of the suspension at 1 × 109 spores/ml.
The entomopathogenic fungus Metarhizium brunneum (Petch) strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia (hyphal aggregates). Microsclerotia of strain F52 produced as granules and incorporated into hydromulch (hydro-seeding straw, water, and a natural glue) provides a novel mycoinsecticide that could be sprayed onto urban, forest, or orchard trees. We tested this formulation against adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) using three substrates (moistened bark, dry bark, absorbent bench liner) sprayed with a low rate (9 microsclerotia granules/cm2) of hydromulch. Median survival times of beetles continuously exposed to sprayed moist bark or absorbent liner were 17.5 and 19.5 d, respectively. Beetles exposed to sprayed dry bark, which had a lower measured water activity, lived significantly longer. When moist bark pieces were sprayed with increased rates of microsclerotia granules in hydromulch, 50% died by 12.5 d at the highest application rate, significantly sooner than beetles exposed to lower application rates (16.5–17.5 d). To measure fecundity effects, hydromulch with or without microsclerotia was sprayed onto small logs and pairs of beetles were exposed for a 2-wk oviposition period in containers with 98 or 66% relative humidity. At 98% humidity, oviposition in the logs was highest for controls (18.3±1.4 viable offspring per female) versus 3.9±0.8 for beetles exposed to microsclerotia. At 66% humidity, fecundities of controls and beetles exposed to microsclerotia were not significantly different. This article presents the first evaluation of M. brunneum microsclerotia in hydromulch applied for control of an arboreal insect pest.
Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) is an economically important pest of palm trees in the subtropics. Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae), has been shown to be pathogenic against R. ferrugineus in laboratory and field studies. However, because they remain inside the trunks until adulthood, the slowing of feeding and increases in mortality of internally feeding R. ferrugineus larvae over time after B. bassiana treatment has not been established. To explore the potential of acoustic methods to assess treatment effects, sound impulses produced by untreated, 104-, and 106-conidia ml-1B. bassiana-treated larvae in palms were recorded for 23 d, after which the palms were dissected and the larvae examined. Analyses were performed to identify trains of impulses with characteristic patterns (bursts) produced frequently by moving and feeding larvae but only rarely (3–8% of the larval rate) by interfering background noise or tree vibrations. The rates of bursts, the counts of larval impulses per burst, and the rates of impulses in bursts decreased significantly over time in both B. bassiana treatments but not in the control. This supports a hypothesis that larvae had briefer movement and feeding bouts as they became weaker after infection, which reduced the counts of larval impulses per burst, the rates of bursts, and the rates of impulses in bursts. There is considerable potential for use of acoustic methods as tools for nondestructive assessment of effects of biological control treatments against internally feeding insect pests.
The impact of a zoophytogenous, insect-free artificial diet and a secondary prey, pupae of Chinese oak silk moth Antheraea pernyi (Guérin-Méneville) (Lepidoptera: Saturniidae), on the developmental rate, life history parameters, and fertility was examined for F6, F9, and F12 consecutive generations for domesticated Arma chinensis (Fallou) (Heteroptera: Pentatomidae). This study showed that when fed an insect-free artificial diet during both the nymphal and adult stages, developmental times were prolonged, and fecundity, egg viability, net reproductive rates (R0), and intrinsic rates of increase (rm) declined. As a result, the cost to rear A. chinensis on the artificial diet approached 2.0 times the cost of rearing A. chinensis on pupae of A. pernyi. Future diet improvements should attempt to reduce developmental time, increase fecundity, and egg viability and use less costly nutrient sources.
Tephritid fruit flies are major pests that limit fruit production around the world; they cause important damages, increasing directly and indirectly annual costs, and their management is predominately based on the use of chemical insecticides. This research investigated the insecticidal activity of the crude extract obtained of Metarhizium brunneum Petch EAMb 09/01-Su strain and its capacity to secrete secondary metabolites including destruxins (dtx). Dtx A and A2 had insecticidal activity against Ceratitis capitata (Wiedemann) when administered per os. The crude extract of seven Metarhizium and one Beauveria isolates were evaluated per os against medfly adults. The crude extracts of the isolate EAMb 09/01- Su resulted in mortality ranging between 95 and 100% at 48 h. The high-pressure liquid chromatography profile showed two active peaks (F5B and F6 subfractions) related with dtx A2 and dtx A, which caused 70 and 100% mortality on C. capitata at 48 h postfeeding, respectively. The LC50 was 104.92 ppm of dtx A, contained in the F6 subfraction, and the LT50 was 4.16 h at a concentration of 400 ppm of dtx A contained in the F6 subfraction. Moreover, the average survival time of adults exposed to this subfraction was 12.6 h with only 1 h of exposure. The insecticide metabolites of the F6 subfraction of the EAMb 09/01-Su isolate retained >90% of its insecticidal activity after exposure to 60°C for 2h and 120°C for 20min. These results highlight the potential of this strain as a source of new insecticidal compounds of natural origin for fruit fly control.
The Swede midge, Contarinia nasturtii Kieffer, is an economically significant pest of cruciferous crops in Canada and the northeastern United States. The effect of temperature on the virulence of three entomopathogenic nematode species, Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae, the entomopathogenic fungus Metarhizium brunneum, and a H. bacteriophoraM. brunneum combination treatment to C. nasturtii larvae, pupae, and cocoons was investigated. In the laboratory, all three nematode species successfully reproduced inside C. nasturtii larvae: H. bacteriophora produced the highest number of infective juveniles per larva, followed by S. carpocapsae and S. feltiae. H. bacteriophora and the H. bacteriophoraM. brunneum combination treatment generally caused the highest mortality levels to all C. nasturtii life stages at 20°C and 25°C, whereas S. feltiae caused the highest mortality to larvae and pupae at 16°C. No nematode species caused significant mortality when applied in foliar treatments to the infested host plant meristem and, in spite of high mortality, an antagonistic interaction was observed in the H. bacteriophoraM. brunneum combination treatment when compared with expected mortality. In trials conducted in broccoli fields in Elora, Ontario, M. brunneum suppressed adult emergence of C. nasturtii from infested soil in 2012 and all nematode treatments successfully suppressed adult emergence in 2013; however, no significant effects were observed in field trials conducted in Baden, Ontario.
A monoclonal antibody was prepared by the hybridoma technology. It reacted only with the protein of Liriomyza trifolii (Burgess) and not with that of Chromatomyia horticola Goureau or Liriomyza sativae Blanchard in indirect enzyme-linked immunosorbent assay. It was effective even after being diluted more than 8.192×106-fold. The detection sensitivity of the antibody was 31.3 µg/ml under controlled conditions. Positive reaction was achieved with all laboratory-reared L. trifolii samples, including larvae, pupae, and adults. An indirect enzyme-linked immunosorbent assay system was successfully established to detect L. trifolii in the field. This antibody was successfully used to determine the L. trifolii collected in different locations, from different host plants, and in different seasons. More than 50% of leafminers collected on Brassica chinensis var chinensis, Apium graveolens (Miller) Persoon, Vigna unguiculata (L.)Walpers, Phaseolus vulgaris L., Lactuca sativa L., and Chrysanthemum coronarium (L.) Cassini ex Spach were L. trifolii, indicating that those six plant species might be the preference host plants of L. trifolii. Population of L. trifolii peaked in September, October, or November in Hangzhou, Zhejiang. These results suggest a great potential of using this McAb for precisely identifying L. trifolii and monitoring the population dynamics of L. trifolii in the field.
Franklin N. Nyabuga, David Carrasco, Lynn Ranåker, Martin N. Andersson, Göran Birgersson, Mattias C. Larsson, Ola Lundin, Maj Rundlöf, Glenn P. Svensson, Olle Anderbrant, Åsa Lankinen
The clover seed weevils Apion fulvipes Geoffroy, 1785 and Apion trifolii L., 1768 (Coleoptera: Apionidae) cause major losses to seed production of white clover (Trifolium repens L.) and red clover (Trifolium pratense L.), respectively. Clover is important as animal forage and an alternative to inorganic fertilizers. Because clover is mainly pollinated by bees, the use of insecticides in management of these weevils is discouraged. To gain basic knowledge for development of alternative management strategies, we investigated weevil field abundance over two growing seasons, as well as feeding and olfactory host preferences by A. fulvipes and A. trifolii. Field trap catches in southern Sweden revealed that white clover was dominated by A. fulvipes and red clover by A. trifolii. For both weevil species, female catches were positively correlated to the number of clover buds and flowers in the field. In feeding and olfactory bioassays, females of A. fulvipes and A. trifolii showed a preference for T. repens and T. pratense, respectively. However, the feeding preference was lost when the antennae were removed, indicating a significant role of olfaction in host choice. Male weevils of both species did not show clear olfactory or feeding preferences for host plant species. The field study and laboratory bioassays demonstrate that, at least for female weevils, olfaction is important for selection of host plants.We discuss these novel results in the context of managing these important pests of clover by exploiting olfaction and behavioral attraction to host plant volatiles.
The larvae of Orthopygia glaucinalis (L.) (Lepidoptera: Pyralidae) are used to produce insect tea in Guizhou, China. We investigated the development and survival of O. glaucinalis reared on dried leaves of Platycarya strobilacea under laboratory conditions at 19, 22, 25, 28, 31, 34, and 37°C. The duration of development from egg deposition to adult emergence decreased significantly with increasing temperature from 19 to 31°C, whereas the duration of egg and overall development significantly increased at 34°C. Based on the extreme-value distribution function, the optimal temperature for survival of overall development was 24.89°C, and the larval stage was most susceptible to temperature extremes. The common linear model and the Ikemoto and Takai linear model were used to determine the relationship between temperature and the developmental rate, and estimated the low-temperature threshold (11.44 and 11.62°C, respectively) and the threshold constant (1220.70 and 1203.58 degreedays, respectively) of O. glaucinalis. Nonlinear models were used to assess in fitting the experiment data and to estimate the high temperature thresholds (34.00 to 39.08°C) and optimal temperatures (31.61 to 33.45°C). An intrinsic optimal temperature of 24.18°C was estimated for overall development using the Sharpe—Schoolfield—Ikemoto (SSI) model. Model-averaged parameter estimates and the unconditional standard error were also estimated for the temperature thresholds. Based on the biological parameters and model selection, we concluded that common linear, Lactin-1, and SSI models performed better for predicting the temperature-dependent development of O. glaucinalis. Our findings enable breeders to optimize the developmental rate of O. glaucinalis and improve the yield of insect tea.
The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day-1 (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate.
The common cutworm, Spodoptera litura (F.), is a serious crop pest with a strong migratory ability. Previous studies on the migration of S. litura were mostly carried out in its “year-round breeding region” (YBR) or “overwintering region” (OR). However, the pattern of seasonal movements in its “summer breeding region” (SBR; i.e., northern China where they cannot overwinter) remains unknown. Here, we present data from an 11-yr study of this species made by searchlight trapping on Beihuang (BH) Island in the center of the Bohai Strait, which provides direct evidence that S. litura regularly migrates across this sea. There was considerable yearly and monthly variation in the number of S. litura trapped on BH, with the vast majority trapped in the autumn. The mean time from the earliest trapping to the latest trapping within a year was 110±12 d during 2003–2013, with the shortest time span of 40 d in 2003 and the longest of 166d in 2012. S. litura moths had downwind displacement rather than randomly by heading toward their seasonally favorable direction (i.e., toward southwest in the four autumn migration events by prevailing northeasterly winds). Some females trapped in July showed a relatively higher proportion of having mated and a degree of ovarian development, suggesting that the migration of this species is not completely bound by the “oogenesis-flight syndrome.” These findings provide a good starting point of research on S. litura migration between its OR (or YBR) and SBR, which will help us develop more effective regional management strategies against this pest.
Monogalactosyldiacylglycerol (MGDG) was identified as a host recognition cue for larvae of the western corn rootworm Diabrotica virgifera virgifera LeConte. An active glycolipid fraction obtained from an extract of germinating maize roots was isolated with thin layer chromatography using a bioassay-driven approach. When analyzed with LC-MS (positive ion scanning), the assay-active spot was found to contain four different MGDG species: 18:3–18:3 (1,2-dilinolenoyl), 18:2–18:3 (1-linoleoyl, 2-linolenoyl), 18:2–18:2 (1,2-dilinoleoyl), and 18:2–16:0 (1-linoleoyl, 2-palmitoyl). A polar fraction was also needed for activity. When combined with a polar fraction containing a blend of sugars (glucose: fructose:sucrose:myoinositol), the isolated MGDG elicited a unique tight-turning behavior by neonate western corn rootworm larvae that is indicative of host recognition. In behavioral bioassays where disks treated with the active blend were exposed to successive sets of rootworm larvae, the activity of MGDG increased over four exposures, suggesting that larvae may be responding to compounds produced after enzymatic breakdown of MGDG. In subsequent tests with synthetic blends composed of theoretical MGDG-breakdown products, larval responses to four synthetic blends were not significantly different (P<0.5) than the response to isolated MGDG. GC-MS analysis showed modest increases in the amounts of the 16:0, 18:0, and 18:3 free fatty acids released from MGDG after a 30-min exposure to rootworm larvae, which is consistent with the enzymatic breakdown hypothesis.
The plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), is an important pest of fruit in North America. Males produce an aggregation pheromone (grandisoic acid) that attracts both sexes of the northern univoltine and the southern multivoltine strains. Grandisoic acid ((1R,2S)-1-methyl-2-(1-methylethenyl)-cyclobutaneacetic acid) is a chiral molecule containing one chiral center. A synthetic racemic mixture will contain two optical isomers that are mirror images of each other with equal amounts of ( )- and (-)-enantiomeric isomers. Male plum curculio only produce the ( ) enantiomer. Some enantiomers can have antagonistic effects on the attraction of weevils to pheromones. An understanding of the effect of both enantiomers on the behaviour of plum curculio is needed to develop more efficient trap baits. Behavioural bioassays were conducted in a dual-choice still-air vertical olfactometer using a quantity of 1.5 ml of both ( ) and (-) synthetic enantiomers and the racemic mixture of grandisoic acid with live female responders to determine which concentration and enantiomeric purity is the most attractive and if there is an antagonistic effect of the unnatural (-) enantiomer. Results indicated that plum curculio were attracted to low concentrations of the ( ) enantiomer at 72% enantiomeric excess, but that strains were attracted to different concentrations of the ( ) enantiomer (2×10-7 mg/ml for univoltine, 2×10-9 mg/ml for multivoltine).
Determination of sublethal and transgenerational effects of pesticides on natural enemies is necessary for successful implementation of biocontrol in integrated pest management programs. In this study, these effects of abamectin on the predatory thrips Scolothrips longicornis Priesner fed on Tetranychus urticae Koch were estimated under laboratory conditions in which adult predators were exposed to pesticide residues on bean leaves. The estimated values of LC50 for female and male predators were 0.091 and 0.067µg a.i./ml, respectively. Low-lethal concentrations (LC10, LC20 and LC30) of abamectin severely affected fecundity and longevity of treated females of S. longicornis. In addition, transgenerational effects on reproductive and life table parameters of the subsequent generation were observed. The results from this research can be used to develop guidelines for the use of abamectin to minimize the impact on S. longicornis.
A critical density of four third-instar larvae per 900 cm2 for European chafer, Rhizotrogus (Amphimallon) majalis (Razoumowsky), in winter wheat, Triticum aestivum L., was derived from smallplot greenhouse and field experiments conducted under favorable crop growing conditions at several Ontario and Michigan locations from 2001–2003. On average, plant weight was decreased by 14% and plant stand by 11% between zero and four larvae per 900 cm2. In a commercial field under moisture stress, a yield loss of 35% occurred at a density of two third-instars per 900 cm2. In short-term greenhouse experiments, density-dependent mortality was evident, whereas low larval recovery in field experiments indicates a high level of overwintering mortality, regardless of larval density. Winter wheat seed treatments of neonicotinoid insecticides, clothianidin, imidacloprid, and thiamethoxam provided protection from damage by larvae, but the level of protection was inconsistent between greenhouse and field small plots, and there was no apparent difference in protection amongst active ingredients or between application rates. There was little evidence of larval mortality owing to seed treatment, which supports the suggestion that neonicotinoid insecticides protect seedlings from loss by a nonlethal mechanism. Overall, we estimate that a low rate of neonicotinoid insecticide used at larval densities just less than the critical density will mitigate winter wheat losses by 85%.
The graminous host range and sources of sorghum [Sorghum bicolor (L.) Moench.] plant resistance, including cross-resistance from greenbug, Schizaphis graminum (Rondani), were studied for the newly emerging sugarcane aphid, Melanaphis sacchari (Zehntner), in greenhouse no-choice experiments and field evaluations. The sugarcane aphid could not survive on field corn, Zea mays (L.), Teff grass, Eragrostis tef (Zucc.), proso millet, Panicum miliaceum L., barley, Hordeum vulgare L., and rye, Secale cereale L. Only sorghum genotypes served as hosts including Johnsongrass, Sorghum halepense (L.), a highly suitable noncrop host that generates high numbers of sugarcane aphid and maintains moderate phenotypic injury. The greenbug-resistant parental line RTx2783 that is resistant to greenbug biotypes C and E was resistant to sugarcane aphid in both greenhouse and field tests, while PI 55607 greenbug resistant to biotypes B, C, and E was highly susceptible. PI 55610 that is greenbug resistant to biotypes B, C, and E maintained moderate resistance to the sugarcane aphid, while greenbug-resistant PI 264453 was highly susceptible to sugarcane aphid. Two lines and two hybrids from the Texas A&M breeding program B11070, B11070, AB11055-WF1-CS1/RTx436, and AB11055-WF1-CS1/RTx437 were highly resistant to sugarcane aphid, as were parental types SC110, SC170, and South African lines Ent62/SADC, (Macia/TAM428)-LL9, (SV1*Sima/IS23250)-LG15. Tam428, a parental line that previously showed moderate resistance in South Africa and India, also showed moderate resistance in these evaluations. Overall, 9 of 20 parental sorghum entries tested for phenotypic damage in the field resulted in good resistance to the sugarcane aphid and should be utilized in breeding programs that develop agronomically acceptable sorghums for the southern regions of the United States.
The western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), recently expanded its range from the western United States into the Great Lakes region of the United States and Canada, threatening eastern dry bean production. Our objectives were to better understand the relationship between cutworm infestation and damage in dry beans, and to determine the best method and timing of insecticide application to reduce pick. Infesting with at least one egg mass per 1.5 m, or as few as two larvae per 0.3 m, of row resulted in significantly more pod damage and pick than in uninfested plots. By 14 d after hatch, larvae were no longer on plants during the daytime; direct observations revealed that fifth instars climbed plants to feed between 2100 and 0600 hours, illustrating the impractically of using larval counts to make management decisions. There was a strong linear relationship between pod damage and percent pick, making scouting for pod damage a viable alternative to egg or larval scouting. Aldicarb soil insecticide or thiamethoxam-treated seed did not reduce cutworm damage. Instead, plots treated with these insecticides had significantly more pick than control plots, perhaps related to increased canopy growth or fewer natural enemies. The pyrethroid λ-cyhalothrin provided excellent control of cutworm when sprayed up to 18 d after infestation. Pick was similar among plots sprayed once up to 18 d after infestation or sprayed four separate times. In a field study, λ-cyhalothrin residue on field-treated foliage was 100% effective at controlling caterpillars up to 14 d after application.
Exclusion cages were used to compare the incidence and severity of feeding injury from brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), on ‘Redhaven’ peaches, ‘Golden Delicious’ apples, and ‘Smoothee Golden’ apples at harvest, following sequential periods of exposure to natural H. halys populations during the 2011 and 2012 growing seasons in Virginia. The fruit used in these experiments were in orchards or on trees that were not managed for H. halys. Treatments were sets of 50 fruit that were always caged, never caged, or exposed during one interval during the fruiting period of peaches and apples in the Mid-Atlantic region of the United States. The cages effectively prevented feeding injury from H. halys. Peaches and apples that were never caged showed the highest percentages of injured fruit at harvest. Exposure treatment had a significant effect on the percentage of fruit showing external injury at harvest in both years for apples and in 2012 for peaches, and a significant effect on the percentage of apples and peaches showing internal injury at harvest in both years. There was no consistent effect of each exposure period on peach injury, but apples exposed during the mid- to latter portion of the season tended to show most injury. Across all exposure periods, more internal than external injuries were recorded at harvest from peaches, while apples tended to have equal or very similar numbers of both kinds of injury. The implications of these results to H. halys management in eastern apple orchards are discussed.
The navel orangeworm is an important pest of almonds, pistachios, and walnuts. A commercial pheromone lure for this pest became publicly available in 2013. We compared effectiveness of this synthetic lure (NOW Biolure) between common commercial trap designs, and with unmated females in wing traps. Orange wing traps and delta traps captured similar numbers of males when each was baited with females, although there was a significantly greater density of captured males on the smaller glue area of the delta traps. In contrast, lure-baited wing traps captured about half the males captured in female-baited wing traps in single-night tests. In these single-night tests, wing traps baited with NOW Biolure captured significantly more males than delta traps baited with NOW Biolure, and bucket traps and delta traps baited with NOW Biolure captured similar numbers of males. When the sampling interval was extended to a week, the performance of lure-baited and female-baited wing traps was more similar. Delta and bucket traps baited with NOW Biolure generally performed more poorly than wing traps baited with NOW Biolure in these weekly monitoring tests. However, the bucket traps occasionally outperformed the other trap types during periods of peak abundance. Navel orangeworm traps at a density of one per 4 ha detected differences in abundance between adjacent walnut varieties, whereas such differences were not detected with one trap per 20 ha. The implications of these findings for monitoring for navel orangeworm in these different host crops are discussed.
The impact of the fungicides mancozeb, myclobutanil, and meptyldinocap on populations of Typhlodromus pyri Scheuten was evaluated under field conditions, when applied following the good agricultural practices recommended for their use. Two complementary statistical models were used to analyze the population reduction compared to the control: a linear mixed model to estimate the mean effect of the fungicide, and a generalized linear mixed model (proportional odds mixed model) to estimate the cumulative probability for those effects being equal or less than a specific IOBC class (International Organization for Biological and Integrated Control of Noxious Animal and Plants). Findings from 27 field experiments in a range of different vine-growing regions in Europe indicated that the use of mancozeb, myclobutanil, and meptyldinocap caused minimal impact on naturally occurring populations of T. pyri. Both statistical models confirmed that although adverse effects on T. pyri can occur under certain conditions after several applications of any of the three fungicides studied, the probability of the effects occurring is low and they will not persist. These methods demonstrated how data from a series of trials could be used to evaluate the variability of the effects caused by the chemical rather than relying on the worst-case findings from a single trial.
Males of the Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) display increased mating competitiveness following exposure to the odor of certain host and nonhost plants, and this phenomenon has been used in the sterile insect technique to boost the mating success of released, sterile males. Here, we aimed to establish whether males of the Mexican fruit fly (Anastrepha ludens (Loew)) gain a mating advantage when exposed to the aroma of two preferred hosts, grapefruit (Citrus paradisi Macfadyen) and bitter orange (Citrus aurantium L.). Under seminatural conditions, we observed that, in trials using wildish males (from a young laboratory colony started with wild flies) exclusively, exposure to the aroma of bitter orange had no effect on male mating success but exposure to the odor grapefruit oil increased male mating success significantly. In a separate test involving both exposed and nonexposed wildish and mass-reared, sterile males, although wildish males were clearly more competitive than sterile males, exposure to grapefruit oil had no detectable effect on either male type. Exposure to oils had no effect on copulation duration in any of the experiments. We discuss the possibility that the positive effect of grapefruit essential oils on wildish male competitiveness may have been linked to exposure of females to grapefruit as a larval food, which may have imprinted them with grapefruit odors during pupal eclosion and biased their response as adults to odors of their maternal host.
This study identified the threshold concentration of limonoids for the complete inhibition of oviposition of Ceratitis capitata (Wiedemann) in grapes ‘Itália.’ Choice and no-choice experiments with the insect were performed. The three no-choice bioassays were conducted following a completely randomized design with 18 treatments (three densities of insects [one, two, or three females] × five concentrations of limonoids and control) and 20 replicates. In a free choice bioassay, two fruits per cage (a treatment grape and a control) were provided for ovipositing. Three densities of insects (one, two, or three females) were used, with 15 replicates. Bioassays were conducted at 25 ± 2°C, 60 ± 10% relative humidity, and a photoperiod of 14:10 (L:D) h. The inhibition of oviposition of C. capitata was concentration dependent, with infestation occurring at lower concentrations of azadirachtin ( 3-tigloylazadirachtol) and complete inhibition occurring at concentrations at or exceeding 100 ppm azadirachtin ( 28.5 ppm of 3-tigloylazadirachtol), maintaining protective effects even at the most densely populated treatment (three females per fruit). When the pest had a free choice of host grapes (treatment vs. control), severe inhibition was observed at concentrations ≥50ppm azadirachtin ( 14.3 ppm of 3-tigloylazadirachtol). We conclude that a threshold concentration of 100 ppm azadirachtin ( 28.5 ppm of 3-tigloylazadirachtol) is capable of preventing grape infestation. This concentration is likely to provide a reliable level of protection, as the experimental population density of three females per fruit usually does not occur in the field and wild flies usually have more host options.
The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95–100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46–91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.
In experiments comparing conventional date paper wraps with polyester mesh bags, date bunches enclosed in polyester mesh bags had lower insect infestations than dates covered by paper wraps. Carob moth, Ectomyelois ceratoniae (Zeller), infestations of marketable fruit were significantly lower for mesh bags (0.6–3.1%) compared with paper wraps (8.5–15.5%). Other fruit pests [raisin moth, Cadra figulilella (Gregson), and beetles in the family Nitidulidae] were less common than carob moth, and infestation by these insects was consistently lower in fruit protected by mesh bags. Date bunches in mesh bag treatments had a 21–46% net increase in marketable date fruit owing to the fact that the bags prevented marketable dates from falling to the garden floor. The number of abscised kimri fruit was higher in the mesh bag treatment than the paper wrap treatment, yet there were no differences in the incidences of other fruit maladies (black nose, fruit with fungi, shriveled fruit, abscised khalal fruit, infertile fruit, and nonripe fruit). Bunch sanitation, used just prior to bagging and wrapping dates, successfully removed abscised kimri fruit from bunches, which resulted in a significantly lower number of cull dates from one garden, but this response was not present at a second garden. These studies show that mesh bags should be included in an integrated pest management program on dates.
Three Liriomyza species [Liriomyza huidobrensis (Blanchard), Liriomyza trifolii (Burgess), and Liriomyza sativae Blanchard] have been reported as the most important leafminer pests in vegetable production systems in Africa. In Kenya, farmers rely on indiscriminate synthetic insecticides use. On-farm field investigations were set up at three different locations (Sagana, Kabaru, and Naromoru) in central Kenya to determine the effect of pesticide application on the abundance of leafminers and their parasitoids under three management practices, namely: farmer practice (FP), reduced pesticide use (RP), and a control with no use of pesticides (CO). In addition, laboratory experiments were designed to test the effect of commonly used pesticides in pea production systems in central Kenya——Dimethoate, Dynamec, Thunder, Cyclone, Bestox, Folicur, Milraz, and Bulldock——on L. huidobrensis and two of its parasitoids, Diglyphus isaeaWalker and Phaedrotoma scabriventris Nixon. The mean numbers of leafminer flies in control treatment were higher than in RP and FP in both first and second seasons across all sites, but RP and FP did not differ significantly. Parasitoid numbers were very low and there was no much variation between treatments at each location in both first and second seasons. No significant differences were observed between the three management practices with regards to the yield measurements. In the laboratory, the estimated LD50 values for L. huidobrensis larvae were all more than two times higher than the recommended dosages, while the LD50 of adults were below the recommended dosages. The estimated LD50 values for the parasitoids were much lower than recommended dosages for all pesticides except Thunder. This study, therefore, demonstrates that the pesticides currently used do not control the Liriomyza leafminer larvae that constitute the most destructive stage of the pest, but are rather detrimental to their parasitoids. In addition, the current low level of parasitoids recorded under field conditions even where no pesticide was used during this study, warrants consideration of classical biological control programs.
Field-collected nymphs and adults of Bagrada hilaris (Burmeister) (Hemiptera: Penatatomidae) from three locations were evaluated for susceptibility to insecticides representing 10 classes of insecticide chemistry. Although relative susceptibilities differed between leaf-spray and leaf-dip Petri dish bioassays, consistently low LC50 values were determined for chlorpyrifos, bifenthrin, and lambda-cyhalothrin. Fenpropathrin and methomyl had intermediate values. Susceptibility to dinotefuran varied depending on the bioassay, possibly owing to leaf substrates used in the two bioassays. In soil systemic bioassays, the LC50 value of dinotefuran was significantly greater than that of two other neonicotinoids, imidacloprid and thiamethoxam, and the anthranilic diamide, cyantraniliprole. Mortality and feeding damage of B. hilaris and plant growth on insecticide-treated plants in greenhouse trials were consistent with the laboratory bioassays; the best results were seen with bifenthrin, methomyl, and chlorpyrifos. Mortality to the neonicotinoids was not evident; however, feeding damage and plant growth responses on dinotefuran-treated plants damage were similar to the noninfested control. This highlights the apparent antifeedant properties of dinotefuran that may have prevented adults from injuring broccoli plants after exposure to foliar spray residues. Data presented serve as baseline susceptibilities that can be used to monitor for resistance development in field populations of B. hilaris.
Amyelois transitella (Walker) (Lepidoptera: Pyralidae) and Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) are key Lepidoptera pests of almonds in California. Spring insecticide applications (early to mid-May) targeting either insect were not usually recommended because of the potential to disrupt natural enemies when broad-spectrum organophosphates and pyrethroids were applied. The registration of reduced risk compounds such as chlorantraniliprole, methoxyfenozide, and spinetoram, which have a higher margin of safety for natural enemies, makes spring (early to mid-May) application an acceptable control approach.We examined the efficacy of methoxyfenozide, spinetoram, and chlorantraniliprole at three spring application timings including the optimum spring timing for both A. lineatella and A. transitella in California almonds. Our study also examined the possibility of reducing larval populations of A. lineatella and A. transitella simultaneously with a single spring insecticide application. There were no significant differences in the field efficacy of insecticides targeting either A. lineatella or A. transitella, depending on application timing for the three spring timings examined in this study. In most years (2009–2011), all three timings for each compound resulted in significantly less A. transitella and A. lineatella damage when compared with an untreated control, though there was some variation in efficacy between the two species. Early to mid-May applications of the reduced-risk insecticides chlorantraniliprole and spinetoram can be used to simultaneously target A. transitella and A. lineatella with similar results across the potential timings.
Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait's effectiveness for fruit fly monitoring and suppression.
The foraging activities, including foraging range and seasonal fluctuation of the Formosan subterranean termite, Coptotermes formosanus Shiraki, were investigated in subtropical areas in China. Six mature C.formosanus colonies were selected for this study. Foraging distance and area were conducted in Anqing1, Hengyang, and Wuxi1 colonies, while the seasonal fluctuation was conducted in Wuxi2, Wuwei, and Anqing2 colonies. Mark—release—recapture method analysis showed that the Formosan termites foraged at least 11.5, 28.7, and 56.8 m away from the main nest and covered 98.1, 543.7, and 671.9 m2 of foraging area at Anqing1, Hengyang, and Wuxi1 site, respectively. The seasonal fluctuation in termite colony activity showed an “M shape” pattern according to the wood damages caused by termites at monitoring stations. Peak colony activity at Wuxi2, Wuwei, and Anqing2 occurred in July and October, June and September, July and October, respectively. This study provides critical information for the integrated management of C. formosanus, including baiting application in the subtropical regions of China, where it constitutes the most destructive pest for household structures.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a pest of major economic concern. This termite is particularly known for its tendency to establish populations in nonendemic areas via maritime vessels as well as human-aided transport of infested materials. The natural spread of this species after new introductions occurs in part by dispersal flights originating from mature colonies. Dispersal flight activity is also the primary variable for the evaluation of area-wide management programs. Few studies exist describing the dynamics and distribution of a typical dispersal flight for this species. The present study used data collected by mark—recapture of C. formosanus alates over 12 individual evenings of dispersal flights in the New Orleans French Quarter. In this study, we found that for one selected flight dispersal location, which was not affected by a high density of trap locations nearby, alates flew on average 621m from their parent colony. A new record of a 1,300-m dispersal flight was recorded. Spatial analysis showed that neither wind nor light affected the direction of flight, which may, however, be attributed to scarce light and wind measurements in the study region.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments——1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge——on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot.However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence frompure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pestmanagement strategy.
Tropical sod webworm, Herpetogramma phaeopteralis Guenée, is an important pest of warm-season turfgrass in the Gulf Coast states of the United States, the Caribbean Islands, and Central America. Current control recommendations rely on topical application of insecticides against caterpillars. The objective of this study was to generate resistance baseline data of H. phaeopteralis to six insecticide classes. Residual activity of clothianidin, chlorantraniliprole, and bifenthrin was also compared under field conditions in Central Florida. Chlorantraniliprole was the most toxic compound tested (LC50 value of 4.5 ppm), followed by acephate (8.6 ppm), spinosad (31.1 ppm), clothianidin (46.6 ppm), bifenthrin (283 ppm) and Bacillus thuringiensis kurstaki, (342 ppm). In field tests, all compounds at label rates were effective (≥94% mortality of larvae exposed to fresh residues). However, a more rapid decline in activity of clothianidin and bifenthrin was observed compared with chlorantraniliprole. Clothianidin had no statistically detectable activity after 4 wk post-application in spring and the fall, and bifenthrin had no detectable activity after 3wk in the spring and the fall. However, chlorantraniliprole maintained significant activity (≥84% mortality) compared with other treatments throughout the 5-wk study period. This study provides new information regarding the relative toxicities and persistence of current insecticides used for H. phaeopteralis and other turfgrass caterpillars.
Spinetoram is a spinosyn, which is a unique class of natural insecticide. Because of its novel mode of action, spinetoram is more potent and faster acting than other insecticides, even the older spinosyn product, spinosad. On account of being efficient on insect order Lepidoptera, spinetoram provides a new alternative for control of Plutella xylostella (L.) (Lepidoptera: Plutellidae), which are resistant to other chemicals. To determine the current situation of resistance of P. xylostella to spinetoram, the susceptibility of 16 P. xylostella populations from different regions of China or different time in addition to the population from laboratory was assessed using a leaf dip bioassay. The variation in spinetoram susceptibility among the 16 field populations was narrow, with median lethal concentrations (LC50 values) ranging from 0.131 to 1.001 mg/liter. Toxicity ratios (TRs) ranged from 1.5 to 7.6 and were 5.6 and 7.6 for populations SY-2 and FX-1, respectively, indicating some low level of tolerance in these populations. A discriminating concentration (a concentration that can detect the occurrence of resistance in a population) of 10 mg/liter, which was identified based on the pooled toxicological data, caused 100% mortality in all nine tested populations. The baseline susceptibility data reflect the natural variation of the P. xylostella populations to spinetoram rather than variation caused by previous exposure.
Transgenic plants have been widely adopted by growers to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in field corn. Because of reduced efficacy in some Nebraska fields after repeated use of Cry3Bb1-expressing hybrids, single plant bioassays were conducted in 2012 and 2013 to characterize the susceptibility of western corn rootworm populations to the rootwormactive proteins Cry3Bb1, mCry3A, and Cry34/35Ab1. Results demonstrate that there are heritable differences in susceptibility of Nebraska western corn rootworm populations to rootworm-active Bt traits. Proportional survival and corrected survival data coupled with field histories collectively support the conclusion that a level of field resistance to Cry3Bb1 has evolved in some Nebraska populations in response to selection pressure and that cross-resistance exists between Cry3Bb1 and mCry3A. There was no apparent cross-resistance between Cry34/35Ab1 and either Cry3Bb1 or mCry3A. The potential implications of these results on current and future corn rootworm management strategies are discussed.
Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia.
The Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), is a vector of several human pathogens. Ae. albopictus is also an invasive species that, over recent years, has expanded its range out of its native Asia. Ae. albopictus was suspected to be present in Central America since the 1990s, and its presence was confirmed by most Central American nations by 2010. Recently, this species has been regularly found, yet in low numbers, in limited areas of Panamá and Costa Rica (CR). Here, we report that short sequences (∼558 bp) of the mitochondrial cytochrome oxidase subunit 1 (COI) and NADH dehydrogenase subunit 5 genes of Ae. albopictus, had no haplotype diversity. Instead, there was a common haplotype for each gene in both CR and Panamá. In contrast, a long COI sequence (∼1,390 bp) revealed that haplotype diversity (±SD) was relatively high in CR (0.72 ± 0.04) when compared with Panamá (0.33 ± 0.13), below the global estimate for reported samples (0.89 ± 0.01). The long COI sequence allowed us to identify seven (five new) haplotypes in CR and two (one new) in Panamá. A haplotype network for the long COI gene sequence showed that samples from CR and Panamá belong to a single large group. The long COI gene sequences suggest that haplotypes in Panamá and CR, although similar to each other, had a significant geographic differentiation (Kst = 1.33; P < 0.001). Thus, most of our results suggest a recent range expansion in CR and Panamá.
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a major agriculture pest. It can be found worldwide, has an extensive host plant range, and has shown resistance to pesticides. Organophosphate and carbamate insecticides account for more than one-third of all insecticide sales. Insecticide resistance and the toxicity of organophosphate and carbamate insecticides to mammals have become a growing concern. Acetylcholinesterase (AChE) is the major targeted enzyme of organophosphate and carbamate insecticides. In this study, we fully cloned, sequenced and characterized the ace1 gene of T. cinnabarinus, and identified the differences between T. cinnabarinus AChE1, Tetranychusurticae Koch AChE1, and human AChE1. Resistance-associated target-site mutations were displayed by comparing the AChE amino acid sequences and their AChE three-dimensional (3D) structures of the insecticide-susceptible strains of T. cinnabarinus and T. urticae to that of a T.urticae-resistant strain. We identified variation in the active-site gorge and the sites interacting with gorge residues by comparing AChE1 3D structures of T. cinnabarinus, T. urticae, and humans, though their 3D structures were similar. Furthermore, the expression profile of T. cinnabarinus AChE, at the different developmental stages, was determined by quantitative real-time polymerase chain reaction; the transcript levels of AChE were higher in the larvae stage than in other stages. The changes in AChE expression between different developmental stages may be related to their growth habits and metabolism characteristics. This study may offer new insights into the problems of insecticide resistance and insecticide toxicity of nontarget species.
Southern chinch bug, Blissus insularis Barber, is a severe pest of St. Augustinegrass throughout the southern United States. Host plant resistance is an environmentally friendly method to manage chinch bug infestations and is increasingly important, as the southern chinch bug develops resistance to insecticides. In this study, in an effort to understand resistance mechanisms in two varieties of St. Augustinegrass (‘FX-10’ and ‘NUF-76’), we used the electrical penetration graph method to quantify stylet probing behaviors in two resistant and two susceptible St. Augustinegrass varieties. Overall, chinch bugs spent less time probing on resistant FX-10 and NUF-76 than on susceptible ‘Floratam’ and ‘Palmetto’, and individual probes were shorter in average duration but more numerous in resistant varieties than in susceptible varieties. During probing, chinch bugs spent more time in pathway-associated stylet activities (i.e., penetration through epidermal and mesophyll tissue) in the resistant varieties than in the susceptible varieties, likely indicating difficulty in finding and accessing an ingestion site. As a consequence, chinch bugs spent proportionately much less time engaged in xylem ingestion in both resistant varieties than in susceptible varieties but only in FX-10 were phloem-associated activities significantly reduced compared with those in susceptible varieties. We conclude that there is evidence for non—phloem-associated chinch-bug resistance factors in both NUF-76 and FX-10, and phloem-associated factors in FX-10.
Experiments with artificial diets demonstrated that black field cricket (Teleogryllus commodus (Walker)) and Lepidogryllus sp. were highly responsive to presence of lolines in their diet—quantities of diet consumed declined exponentially with increasing loline concentration. Amount consumed by black field cricket and Lepidogryllus sp. on diet containing 5,600 µg/g lolines was only 8 and 2% relative to those on loline-free diet, respectively. Additional experiments with Festulolium seeds demonstrated that both cricket species predated heavily on endophyte-free seed but largely avoided Epichloë uncinata-infected seed. By 12 h, black field cricket had destroyed 98.8% of endophyte-free but only 24.8% of E. uncinata-infected, loline-containing seed. By 36 h, Lepidogryllus sp. crickets had destroyed 40% of endophyte-free but had not fed on E. uncinata-infected, loline-containing seed. Glasshouse experiments demonstrated this aversion to lolines greatly reduces the damage potential of black field cricket in E. uncinata-infected Festulolium. When microswards were sown with E. uncinata-infected Festulolium, seedling numbers were reduced 25–26%, and yields 29–40%, by black field crickets relative to microswards sown without insect infestation. This contrasts with 70–78% reduction in seedling numbers and 67–80% reduction in yields in microswards sown to either endophyte-free Festulolium, endophyte-free perennial ryegrass, or Epichloë festucae var. lolii-infected Festulolium. Yields of mature E. uncinata-infected Festulolium plants were not adversely affected by black field crickets, irrespective of the presence of the endophyte-free standard Festulolium sown as a companion. In contrast, yields of endophyte-free Festulolium, endophyte-free perennial ryegrass, and E. festucae var. lolii-infected Festulolium plants were reduced by 56–61% by crickets.
G. J. Puterka, K. L. Giles, M. J. Brown, S. J. Nicholson, R. W. Hammon, F. B. Peairs, T. L. Randolph, G. J. Michaels, E. D. Bynum, T. L. Springer, J. S. Armstrong, D. W. Mornhinweg
A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphidresistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55–84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages <20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64–80%) and 2013 (69–90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars.
The fumigant activity of essential oil vapors distilled from sweet basil Ocimum basilicum L. and spearmint Mentha spicata L. (Lamiaceae) were tested against two major stored products pests Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Various oil doses (0.5, 2.5, 5, 50, 250, 500, 1,000, and 1,500 µl/liter air), for an exposure period of 24 h, were tested. The essential oils were subjected to gas chromatography—mass spectrometry analysis and revealed that the major compounds were for spearmint oil carvone (67.1%) and limonene ( 1,8 cineole; 14.3%) and for basil oil linalool (45.9%), 1,8 cineole (16.7%) and eugenol (10.3%). Apart from a few exceptions, no significant differences in insecticidal action were observed between basil and spearmint oil. Both oils were highly effective against adult moths, given that notable mortality (>80%) was recorded after exposure to low doses such as 2.5 µl/liter. Noteworthy, egg mortality was also recorded, reaching 73–79% for basil and 56–60% for spearmint. Toxicity data indicated that larvae and pupae were the most tolerant stages in all cases. Larval mortality never exceeded 21 and 18%, for basil and spearmint, respectively, irrespective of moth species. Basil and spearmint oils displayed mortalities as high as 38 and 28% in pupae. Lethal doses (LD50 and LD99) values were estimated via probit analysis. Developmental stage proved to be a significant factor, whereas the effect of oil species on insect mortality was insignificant. With the exception of adult individuals, basil and spearmint oils did not show satisfactory overall insecticidal activity against E. kuehniella and P. interpunctella.
Laboratory and field studies were conducted to determine if accumulation of a flour food source or milling debris affected residual efficacy of beta-cyfluthrin for control of Tribolium castaneum (Herbst), the red flour beetle. In the laboratory study, the high label rate of 20 mg active ingredient (AI)/m2 gave effective control for 8 wks, regardless of whether or not the concrete was sealed prior to application or the presence of flour contamination. However, with the low label rate of 10 mg AI/m2, the flour apparently absorbed the insecticide residues from the treated surface, and sealing the concrete did not have a beneficial effect on efficacy. Two field studies with the low label rate were conducted during autumn of 2012 and 2013 and summer of 2013, using only unsealed concrete. Accumulated milling debris caused a reduction in efficacy in the autumn studies, as shown by increased time to 100% knockdown, decreased mortality, and decreased residual efficacy. There was no such corresponding decrease in residual efficacy in the summer study. Overall, results of both studies show that accumulated food and milling debris can absorb residue of beta-cyfluthrin from a treated surface and have a negative impact on residual efficacy, particularly with the low label rate of 10 mg AI/m2.
House flies, Musca domestica L., are pests of poultry facilities and have the ability to develop resistance against different insecticides. This study was conducted to assess the resistance status of house flies to pyrethroid, organophosphate, and novel chemistry insecticides from poultry facilities in Punjab, Pakistan. Five adult house fly populations were studied for their resistance status to selected conventional and novel chemistry insecticides. For four pyrethroids, the range of resistance ratios was 14–55-fold for Cypermethrin, 11–45-fold for bifenthrin, 0.84–4.06-fold for deltamethrin, and 4.42–24-fold for lambda-cyhalothrin when compared with a susceptible population. Very low levels of resistance were found to deltamethrin compared with the other pyrethroids. For the three organophosphate insecticides, the range of resistance ratios was 1.70–16-fold for profenofos, 7.50–60-fold for chlorpyrifos, and 4.37–53-fold for triazophos. Very low levels of resistance were found to profenofos compared with the other insecticides. For five novel chemistry insecticides, the range of resistance ratios was 1.20–16.00-fold for fipronil, 3.73–7.16-fold for spinosad, 3.06–23-fold for indoxacarb, 0.96–5.88-fold for abamectin, and 0.56–3.07-fold for emamectin benzoate. Rotation of insecticides with different modes of action showing no or very low resistance may prevent insecticide resistance in house flies. Regular insecticide resistance monitoring and integrated management plans on poultry farms are required to prevent resistance development, field control failures, and environmental pollution.
Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) is a forest pest that does not occur in Australia. In February 2010, the container ship Tatiana Schulte, en route from New Zealand, was refused permission to enter Australia following the discovery of numerous A. ferus aboard. The place where the infestation occurred was unknown, representing an uncontrolled biosecurity-risk pathway. Hydrogen isotope analysis of the beetles' wings showed that the infestation most likely originated from Auckland, New Zealand.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere