BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A 2-yr field experiment was conducted to determine the effects on Diabrotica spp. (Coleoptera: Chrysomelidae) of an insecticidal seed treatment (Poncho 1250, (AI) /clothianidin) and a granular insecticide (Aztec 2.1G, (AI)/tebupirimphos and cyfluthrin) alone and in combination with maize producing the insectidical toxin Cry3Bb1 derived from the bacterium Bacillus thuringiensis (Bt). Yields for Bt maize plots were significantly greater than for non-Bt maize; however, insecticides did not significantly affect yield. Insecticides significantly decreased root injury in non-Bt maize plots, but there were no significant differences in root injury between Bt maize with or without either insecticide. Maize producing the Bt toxin Cry3Bb1 and the soil-applied insecticide Aztec significantly decreased survival of western corn rootworm (Diabrotica virgifera virgifera LeConte), while only Bt maize significantly decreased survival of the northern corn rootworm (Diabrotica barberi Smith & Lawrence). For both species, Bt maize and each of the insecticides delayed emergence. In the absence of density-dependent mortality, Bt maize imposed 71 and 80% reduction in survival on the western corn rootworm and the northern corn rootworm, respectively. The data from this study do not support combining insecticide with Bt maize because the addition of insecticide did not increase yield or reduce root injury for Bt maize, and the level of rootworm mortality achieved with conventional insecticide was likely too low to delay the evolution of Bt resistance. In addition, delays in emergence from Bt maize combined with insecticides could promote assortative mating among Bt-selected individuals, which may hasten resistance evolution.
Commercial producers of honey bee queens (Apis mellifera L.) have reported unexplained loss of immature queens during the larval or pupal stage. Many affected queen-rearing operations are situated among the almond orchards of California and report these losses in weeks after almond trees bloom. Almond flowers are a rich foraging resource for bees, but are often treated with fungicides, insecticides, and spray adjuvants during bloom. Anecdotal reports by queen producers associate problems in queen development with application of the fungicide Pristine (boscalid and pyraclostrobin) and spray adjuvants that are tank-mixed with it. To test the effect of these compounds on queen development, a new bioassay was developed in which queens are reared in closed swarm boxes for 4 d, until capping, with nurse bees fed exclusively on artificially contaminated pollen. Pollen was treated with four concentrations of formulated Pristine (0.4, 4,40, and 400 ppm), a spray adjuvant (Break-Thru, 200 ppm), the combination of Pristine and spray adjuvant (400:200 ppm), the insect growth regulator insecticide diflubenzuron (100 ppm) as a positive control, or water as negative control. Chemical analysis revealed that low concentrations of pyraclostrobin (50 ppb), but no boscalid, were detectable in royal jelly secreted by nurse bees feeding on treated pollen. No significant difference in queen development or survival was observed between any of the experimental treatments and the negative control. Only diflubenzuron, the positive control, caused a substantial reduction in survival of immature queens.
The content of 10-hydroxy-trans-2-decenoic acid (10-HDA), a marker compound in royal jelly (RJ), is the most important criterion in grading RJ for commercial trade and varies with its origin. To identify the effect of geographical origin on 10-HDA content in RJ, 138 samples were collected from 19 provinces of China (divided into three groups) produced by either Apis mellifera ligustica Spinola, 1806 or a hybrid of A. m. ligustica and Apis mellifera carnica Pollman, 1879 and analyzed for moisture, sugar, crude protein, ash, acid, and 10-HDA concentration. The results show that RJ from western China has a significantly higher 10-HDA level (2.01 ± 0.05%) than those from northeastern (1.87 ± 0.05%) and eastern (1.75 ± 0.03%) China. RJ secreted by hybrid bees contained more 10-HDA (1.89 ± 0.03%) than that secreted by A. m. ligustica (1.78 ± 0.03%). The 10-HDA content of RJ produced during flowering of rape (Brassica campestris L.), lime (Tilia amurensis Ruprecht), and vitex (Vitex negundo L. variety heterophylla (Franch.) Rehder) was 1.92,1.80, and 1.68%, respectively. The results would be helpful during the process of price determination of RJ by providing some basis of geographical, bee strain, and botanical information for commercial trade.
The potato psyllid, Bactericera cockerelli (Šule) (Hemiptera: Triozidae) is a serious pest of potato and other solanaceous crops. B. cockerelli has been associated with the bacterium “Candidatus Liberibacter solanacearum” (Lso), the causal agent of zebra chip, a new and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. The biology of liberibacter transmission to potato and other host plants by the potato psyllid is largely unknown. The current study determined Lso acquisition by adult psyllids following different acquisition access periods (AAP) on potato and tomato, quantified Lso titer over time in postacquisition psyllids, determined Lso-acquisition rate in psyllids at each AAP on each source of inoculum, and determined influence of host plant Lso titer on Lso acquisition rates and postacquisition titer in psyllids over time. Results showed that Lso detection rates and titer increased over time in psyllids following AAPs of 8,24, and 72 h on tomato and potato and Lso titer was highest when psyllids acquired Lso from tomato versus potato. Lso titer ranged from 200- to 400-fold higher in tomato leaves, petioles, and stems than those of potato. The increase of Lso titer in the insects reached a plateau after an average of 15 d following 24 and 72 h AAP on potato or tomato. At this 15-d plateau, Lso titer in postacquisition psyllids was comparable with that of infective psyllids from the Lso-infected laboratory colony. Lso-acquisition rate in psyllids fed on potato and tomato increased up to 5 and 20, 15 and 35, 35 and 75, and 80 and 100%, respectively, when the insects were allowed access to plants for 4, 8, 24, and 72 h, respectively.
The aggregation pheromone of Riptortus pedestris (F.) (Hemiptera: Alydidae) is known to attract its egg parasitoids Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) and Gryon japonicum (Ashmead) (Hymenoptera: Scelionidae). Distribution and composition of these egg parasitoids were compared in a soybean field in the presence and absence of aggregation pheromone-baited traps for two consecutive years. Three traps were installed on the edge of a soybean field, first without and then with aggregation pheromone in a before-after design, and changes in parasitism were assessed on nonviable host eggs released at distances of 9,18, 27, and 36 m from the trap. A significant interactive effect of pheromone installation and distance was found in egg parasitism by both parasitoids. Parasitism on eggs recovered from 9 m away was up to 2.2 and 3.2 times higher in presence of pheromone than without pheromone for O. nezarae and G. japonicum, respectively. Parasitism by O. nezarae was always higher than that by G. japonicum, but their relative abundance, clutch size, and sex ratio were not affected by pheromone installation, irrespective of distance from the trap. In conclusion, aggregation pheromone increases abundance of parasitoids up to 18 m from trap installation points and does not affect the relative abundance of parasitoid species.
Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) is a solitary egg parasitoid of Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). The parasitoid was first described in 2009 and its biology and rearing are poorly understood. A key obstacle to the use of C. noackae as a biological control agent has been the ability to consistently rear it under quarantine conditions. This study reports on a series of experiments conducted in quarantine to rear C. noackae and to examine the effects of diet on longevity, per capita reproduction, and progeny sex ratio, as well as to determine development time, and preference and suitability of host eggs of different ages. When supplemented with honey solution, the longevity of C. noackae females increased significantly by 2.4 d and that of males by 1.7 d, relative to the unfed adults. Mean per capita reproduction for the honey-fed wasps was 7.7 offspring per female, with progeny sex ratio slightly skewed toward males. Mean percentage parasitism was 32.2%. C. noackae was capable of parasitizing and completing development from oviposition to adult eclosion within 15.7 d in host eggs between 0 and 5 d old. The ability of C. noackae to parasitize a wide range of host egg ages increases the period of vulnerability of T. peregrinus to attack, increasing its potential efficacy as a biological control agent. The methods and results reported here represent a crucial step in the ongoing efforts to develop this potential biological control system.
Citrus thrips, Scirtothrips citri (Moulton), is a plant-feeding pest most widely recognized for causing damage to citrus and mango fruits. This insect has broadened its host range to become a significant pest of commercial blueberries grown in the San Joaquin Valley of California. We evaluated Beauveria bassiana (Balsamo) for control of citrus thrips in blueberries grown under two watering regimes (drip irrigation with and without overhead sprinklers) and using two fungal formulations (commercially available spores in suspension vs. colonized seed) over two sampling periods, that is, for two 3-d periods after treatment. We found significant differences in thrips densities as a function of water regime treatment and fungal formulation. Thrips levels were reduced significantly with both fungal treatments at 3 d after treatment, but at 6 d, only results with colonized seed differed from the control treatment. These data suggest entomopathogenic fungi might be useful for control of citrus thrips on blueberries in particular situations (in organic production or as a resistance management tool) but that traditional pesticides will likely remain the preferred management option.
Galendromus occidentalis (Nesbitt) is one of several phytoseiid species that are available for purchase to supplement endemic predator populations that are not providing sufficient control of spider mites. We performed a series of releases of commercially reared G. occidentalis in commercial apple (Malus domestica Borkhausen) orchards in Washington from 2010 to 2012. Releases of up to 50,000 mites per acre did not lead to an increase in populations of predatory mites or to a decrease in populations of pest mites. Assessments of mite numbers in shipments and quality (survival and fecundity) of those mites indicated that the commercial insectary was correctly estimating the number of predatory mites in their shipments, and that predator quality was not different than a laboratory colony. Finally, a predator-prey model that used the intrinsic rates of increase of tetranychid prey and the prey consumption rate of the predator indicated that the density of G. occidentalis required to control the prey at the action threshold was not economically feasible. We conclude that G. occidentalis cannot be used to bring about short-term control via inundative releases in crops such as apple with large canopy volumes.
Quickly, accurately, and easily assessing the efficacy of treatments to control sessile arthropods (e.g., scale insects) and stationary immature life stages (e.g., eggs and pupae) is problematic because it is difficult to tell whether treated organisms are alive or dead. Current approaches usually involve either maintaining organisms in the laboratory to observe them for development, gauging their response to physical stimulation, or assessing morphological characters such as turgidity and color. These can be slow, technically difficult, or subjective, and the validity of methods other than laboratory rearing has seldom been tested. Here, we describe development and validation of a quick easily used biochemical colorimetric assay for measuring the viability of arthropods that is sufficiently sensitive to test even very small organisms such as white fly eggs. The assay was adapted from a technique for staining the enzyme hexokinase to signal the presence of adenosine triphosphate in viable specimens by reducing a tetrazolium salt to formazan. Basic laboratory facilities and skills are required for production of the stain, but no specialist equipment, expertise, or facilities are needed for its use.
Modified atmosphere packaging (MAP) produces a low-oxygen (O2) environment that can increase produce shelf life by decreasing product respiration and growth of pathogens. However, low O2 is known to increase insect tolerance to irradiation, and the use of MAP with products treated by irradiation before export to control quarantine pests may inadvertently compromise treatment efficacy. Melon fly, Bactrocera cucurbitae Coquillet (Diptera: Tephritidae), is an important economic and quarantine pest of tropical fruits and vegetables, and one of the most radiation-tolerant tephritid fruit flies known. The effect of low O2 generated by MAP on the radiation tolerance of B. cucurbitae was examined. Third-instar larval B. cucurbitae were inoculated into ripe papayas and treated by 1) MAP irradiation, 2) irradiation alone, 3) MAP alone, or (4) no MAP and no irradiation, and held for adult emergence. Three types of commercially available MAP products were tested that produced O2 concentrations between 1 and 15%, and a sublethal radiation dose (50 Gy) was used to allow comparisons between treatments. Ziploc storage bags (1–4% O2) increased survivorship to adult from 14 to 25%, whereas Xtend PP61 bags (3–8% O2) and Xtend PP53 bags (11–15% O2) did not enhance survivorship to the adult stage in B. cucurbitae irradiated at 50 Gy. Radiation doses approved by the United States Department of Agriculture and the International Plant Protection Commission for B. cucurbitae and Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) are 150 and 100 Gy, respectively. In large-scale tests, 9,000 B. cucurbitae and 3,800 C. capitata larvae infesting papayas in Ziploc bags were irradiated at 150 and 100 Gy, respectively, with no survivors to the adult stage. MAP can increase insect survivorship during irradiation treatment at certain doses and O2 concentrations, but should not compromise the efficacy of the 150-Gy generic radiation treatment for tephritid fruit flies or the 100-Gy radiation treatment for C. capitata.
Importation of live nursery plants, like Dracaena marginata Lamoureux (Ruscaceae), can provide a significant pathway for the entry of foliar pests from overseas into the United States. We studied the abundance of foliar pests of quarantine importance found on Costa Rican-grown D. marginata. These include five genera of leafhoppers (Heteroptera: Cicadellidae, Oncometopia, Caldweliola, Diestostema, Gypona, and Empoasca), Florida red scale (Heteroptera: Disapididae, Chrysomphalus aoinidum (L.) ), katydids (Orthoptera: Tettigoniidae), and a snail (Succinea costarricana von Martens (Gastropoda, Stylommatophora, Succineidae) ). In our first study, we examined the rationale behind size restrictions on Dracaena cuttings imported into the United States from Costa Rica. When comparing plant size, no differences were found in the abundance of quarantined pests on small (15–46 cm), medium (46–81 cm), and large (81–152 cm) propagules. In a second study, we estimated monthly abundances of pests in production plots for 1 yr to determine their relationship to rates of interception at U.S. ports. In any given month, <6% of the marketable shoots standing in the field were infested with at least one quarantine pest. There was no relationship between the average monthly frequencies of pest detection in the field and in U.S. inspection ports. Pest detections increased during the 1 mo when average monthly shipments were abnormally high. Our data suggest that off-shore postprocessing efforts to remove pest-infested material from the market stream need to be adjusted to accommodate sharp increases in the volume of shipped plants.
Cold storage is used to preserve fruit quality after harvest during transportation in marketing channels. Low temperature can be a stressor for insects that reduces survivorship, and cold storage may contribute to the efficacy of postharvest quarantine treatments such as irradiation against quarantine insect pests. The combined effect of irradiation and cold storage was examined in a radiation-tolerant fruit fly, Bactrocera cucurbitae Coquillet (melon fly), and a radiation-intolerant fruit fly, Ceratitiscapitata (Wiedemann) (Mediterranean fruit fly) (Diptera: Tephritidae). Third instars on diet or in papaya were treated with a sublethal radiation dose of 30 Gy and stored at 4 or 11°C for 3–13 d and held for adult emergence. For both fruit fly species, survival of third instars to the adult stage generally decreased with increasing cold storage duration at 4 or 11°C in diet or papaya. Survivorship differences were highly significant for the effects of substrate (diet > papaya), temperature (11 > 4°C), and irradiation (0 > 30 Gy). Few Mediterranean fruitflies survived in any cold storage treatment after receiving a radiation dose of 30 Gy. No melon fly larvae survived to the adult stage after irradiation and 11d cold storage at 4 or 11°C in papayas. Cold storage enhances the efficacy and widens the margin of security in postharvest irradiation treatments. Potentially irradiation and cold storage can be used in combination to reduce the irradiation exposure requirements of quarantine treatments.
The orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), is a chronic wheat pest worldwide. Adult S. mosellana engage in short-distance flight, but also exploit weather patterns for long-distance dispersal. However, little is known about the flight performance of S. mosellana, and the effects of the biotic and abiotic factors that influence its flight activity. In this study, we explored the active flight potential of S. mosellana under various environmental factors using a 26-channel computer-monitored flight mill system. The most suitable temperature for flight and flight distance was 16-24°C; flight duration peaked at 16°C while speed peaked at 28°C. Flight performance gradually declined between 10 and 400 lux light intensity. More than 50% individuals of 1-d-old females flew >500 m, while only 24% of males flew >500 m. One-day-old S. mosellana had stronger flight ability than that of 2-d-old individuals. This research showed that S. mosellana possessed strong enough flight ability that they can fly to a high altitude and then disperse via moving air currents. These results can aid in forecasting S. mosellana outbreak.
Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to <13 mm, and pollination is <50% complete, and that recommendation appears to be adequate.
Inflorescences (heads or capitula) of the putative self-incompatible species, purple coneflower (Echinacea angustifolia (DC) Cronq. (Asteraceae) ), were visited by insects representing the Coleoptera, Diptera, Hymenoptera, and Lepidoptera, in accordance with a generalist pollination syndrome. Measurement of the effectiveness of insect species as pollinators was accomplished by permitting solitary visits to receptive, central disc florets of virgin (previously bagged) heads. Four parameters were quantified: total stigmatic pollen load and proportion of pollen grains germinated, numbers of pollen tubes at style bases, and percentages of total receptive florets that had retracted (shrivelled) styles. Quantifying total and germinated pollen grains proved ineffective, partly owing to the tendency of self-pollen to initiate pollen tubes. The most effective pollinators were Apidae, especially bumble bees (Bombus spp.) and the European honeybee (Apismellifera L.) (mean: 39–61% of styles retracted). Other noteworthy pollinators were cloudless sulfur butterflies (Phoebis sennae L.—Pieridae; mean 47% of style bases with pollen tubes), golden blister beetles (Epicauta ferruginea Say-Meloidae; 44%), and grasshopper bee flies (Systoechus vulgaris Loew—Bombyliidae; 22%). Sunflower leafcutter bees (Megachile pugnata Say) were less effective (4% of styles retracted). Promisingly, analysis of the proportion of retracted styles provided similar results to the established technique of pollen-tube quantification, but had the significant advantages of being completed more rapidly, without a microscope, and in the field. The quantitative technique of retracted-style analysis appears well suited for prompt measurement of inflorescence-visiting insects as pollinators of many asteraceans.
The peanut burrower bug, Pangaeus bilineatus (Say), is an important pest of peanut (Arachis hypogaea L.) in the southern United States. Current control methods for this pest, which are based on the use of chemical insecticides, have not been successful. Our objective was to determine if entomopathogens applied alone or in combination with a standard chemical insecticide would provide superior levels of P. bilineatus mortality compared with the standard chemical applied alone. Specifically, we investigated the efficacy of an entomopathogenic nematode, Heterorhabditis bacteriophora Poinar (Oswego strain), and a fungus, Beauveria bassiana (Balsamo) Vuillemin (GHA strain), applied alone or in combination with chlorpyrifos. When applied as single treatments, the two entomopathogens were not pathogenic, that is, they did not cause mortality in P. bilineatus adults that was different from the nontreated control. However, 3 and 7 d posttreatment, the combination of the H. bacteriophora and chlorpyrifos caused higher mortality than the nematode, fungus, or insecticide alone, or the combination of chlorpyrifos and B. bassiana. The nature of the interaction between H. bacteriophora and chlorpyrifos was synergistic, which is of particular interest, given that this is the first time a synergy is being reported between a nematode that was not pathogenic when applied alone and a chemical insecticide. B. bassiana and its combination with the chlorpyrifos did not significantly increase insect mortality compared with chlorpyrifos alone or the control. Based on the observation of synergy, the combination of H. bacteriophora and chlorpyrifos should be investigated further for potential adoption in the management of P. bilineatus.
Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Gossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10–11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8–9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (<1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response—insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.
The European corn borer, Ostrinia nubilalis (Hübner), is a damaging pest of numerous crops including corn, potato, and cotton. An understanding of the interaction between O. nubilalis and its spatial environment may aid in developing pest management strategy. Over a 2-yr period, ≈8,000 pheromone trap catches of O. nubilalis were recorded on pivot-irrigated corn in northeastern Colorado. The highest weekly moth capture per pivot-irrigated field occurred on the week of 15 July 1997 at 1,803 moths captured. The lowest peak moth capture per pivot-irrigated field was recorded on the week of 4 June 1998 at 220 moths captured. Average trap catch per field ranged from ≈1.6 moths captured per trap per week in 1997 to ≈0.3 moths captured per trap per week in 1998. Using pheromone trap moth capture data, we developed a quantified understanding of the spatial distribution of adult male moths. Our findings suggest strong correlations between moth density and adjacent corn crops, prevailing wind direction, and an edge effect. In addition, directional component effects suggest that more moths were attracted to the southwestern portion of the crop, which has the greatest insolation potential. In addition to the tested predictor variables, we found a strong spatial autocorrelation signal indicating positive aggregations of these moths and that males from both inside and outside of the field are being attracted to within-field pheromone traps, which has implications for refuge strategy management.
Significant mortality of redbay trees (Persea borbonia (L.) Spreng.) in the southeastern United States has been caused by Raffaelea lauricola, T.C. Harr., Fraedrich, & Aghayeva (Harrington et al. 2008), a fungal symbiont of the exotic redbay ambrosia beetle, Xyleborus glabratus, Eichhoff (Fraedrich et al. 2008). This pathogen causes laurel wilt, which is an irreversible disease that can kill mature trees within a few weeks in summer. R. lauricola has been shown to be lethal to most native species of Lauraceae and cultivated avocado (Persea americana Mill.) in the southeastern United States. In this study, we examined the survival of X. glabratus and R. lauricola in wood chips made from infested trees by using a standard tree chipper over a 10-wk period. After 2 wk, 14 X. glabratus were recovered from wood chips, whereas 339 X. glabratus emerged from nonchipped bolts. R. lauricola was not found 2 d postchipping from wood chips, indicating that the pathogen is not likely to survive for long inside wood chips. In contrast, R. lauricola persisted in dead, standing redbay trees for 14 mo. With large volumes of wood, the potential for infested logs to be moved between states or across U.S. borders is significant. Results demonstrated that chipping wood from laurel wilt-killed trees can significantly reduce the number of X. glabratus and limit the persistence of R. lauricola, which is important for sanitation strategies aimed at limiting the spread of this disease.
The emerald ash borer, Agrilus planipennis Fairmaire, an invasive beetle from Asia causing large scale ash (Fraxinus) mortality in North America, has been extremely difficult to rear in the laboratory because of its long life cycle and cryptic nature of immature stages. This lack of effective laboratory-rearing methods has not only hindered research into its biology and ecology, but also mass production of natural enemies for biological control of this invasive pest. Using sticks from the alternate host plant, Fraxinus uhdei (Wenzig) Lingelsh, we characterized the stage-specific development time and growth rate of both emerald ash borer eggs and larvae at different constant temperatures (12–35°C) for the purpose of developing effective laboratory-rearing methods. Results from our study showed that the median time for egg hatching decreased from 20 d at 20°C to 7 d at 35°C, while no emerald ash borer eggs hatched at 12°C. The developmental time for 50% of emerald ash borer larvae advancing to third, fourth, and J-larval stages at 20°C were 8.3, 9.1, and 12.3 wk, respectively, approximately two times longer than at 30°C for the corresponding instars or stages. In contrast to 30°C, however, the development times of emerald ash borer larvae advancing to later instars (from oviposition) were significantly increased at 35°C, indicating adverse effects of this high temperature. The optimal range of ambient temperature to rear emerald ash borer larvae should be between 25–30°C; however, faster rate of egg and larval development should be expected as temperature increases within this range.
Sticky red spheres can be used to capture western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), but red spheres have not been definitively shown to be more attractive than yellow traps. The objective of this study was to compare fly captures on ammonia-baited red spheres and yellow spheres and panels so that sensitive detection traps for fly management can be identified. Nontarget insects could interfere with fly captures, so weights of nontarget insects on traps were also determined. Yellow spheres and panels generally caught more flies than red spheres. More males than females were caught on nearly all red and yellow traps. Saffron Thread, Marigold, Sunny Summer, and Yam Yellow spheres and panels were bright yellow and generally caught more flies, especially females, than Cherry Cobbler Red or Tartar Red spheres. Twenty Carat Yellow and Glorious Gold spheres and panels were less bright and caught fewer flies than bright yellow traps and similar numbers of flies as Tartar Red spheres, respectively. Dry weights of nontarget insects on at least one yellow trap type were greater than on red spheres in only 4 of 10 tests. Results show that bright yellow spheres and panels capture more R. indifferens than red spheres and do not consistently capture greater amounts of nontarget insects than red spheres, suggesting that they should be used instead of red spheres for detecting this fly.
To understand the influence of different apple varieties on the development and reproduction of the European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae), age-stage two-sex life tables of P. ulmi on ‘Fuji,’ ‘Starkrimson Delicious,’ ‘Golden Delicious,’ and ‘Granny Smith’ varieties were constructed under laboratory conditions at 23 ± 1°C, 75 ± 5% relative humidity, and a photoperiod of 16:8 (L:D) h. Results showed that total development time of immature females was shorter on Fuji than on the other varieties, and this was because of its shorter egg duration. Immature survival of P. ulmi was 74.51–78.00% among four apple varieties, and no significant differences were found. The total fecundity per female was significantly higher on Golden Delicious (34.12 eggs per female) than that on Fuji (27.15 eggs per female), Starkrimson Delicious (25.15 eggs per female), and Granny Smith (20.62 eggs per female). Based on the intrinsic rate of population increase, Fuji and Golden Delicious were more suitable than Starkrimson Delicious and Granny Smith.
Laboratory and field studies were conducted to measure the effects of spirotetramat on life stages of California red scale, Aonidiella aurantii (Maskell), and a primary parasitoid, Aphytis melinus DeBach. Organophosphate-resistant and -susceptible populations responded similarly to spirotetramat, suggesting there is no cross-resistance between these insecticide classes. First and second instar male and female A. aurantii were 10- and 32-fold more susceptible to spirotetramat (LC50 = 0.1–0.2 ppm) compared with early third (LC50 = 1.5 ppm) and late third instar females (LC50 = 5.3 ppm). The LC99 value indicated that late stage third instar females would not be fully controlled by a field rate of spirotetramat; however, spirotetramat would reduce their fecundity by 89%. Field applications of spirotetramat in two water volumes and using two adjuvants (oil and a nonionic spray adjuvant) showed similar reduction in A. aurantii numbers, even though the higher water volume demonstrated more complete coverage. These data suggest that this foliarly applied systemic insecticide can be applied in as little as 2,340 liters/ha of water volume, minimizing application costs, and that the two adjuvants acted similarly. The endoparasitoid, A. melinus, was unaffected by the field rate of spirotetramat when it was applied to the host when the parasitoid was in the egg or larval stage. Adult A. melinus showed 2 wk of moderate reductions in survival when exposed to leaves with field-weathered residues. Spirotetramat is an integrated pest management compatible insecticide, effective in reducing A. aurantii stages and allowing survival of its primary parasitoid A. melinus.
Climbing cutworms in the genus Abagrotis are economically important pests of grapes in the Okanagan Valley of British Columbia (BC). Grapes are recently introduced into many areas of the region, and the association between crop and pest is new and still evolving. This has led to limited information being available on pest management strategies, including the evaluation of chemical controls compatible with local production practices. Few insecticides are currently registered in Canada for cutworm control on grapes, and our study was initiated to provide information on the efficacy of potential control materials. We were also interested in the relative susceptibilities of the three most common cutworm species attacking grape buds in BC—Abagrotis orbis (Grote), Abagrotis reedi Buckett, and Abagrotis nefascia (Smith). Dose-response bioassays with nine insecticides were conducted on neonate larvae using Bok Choy leaf disks, and on fourth-instar larvae using diet incorporation. There were considerable differences in the toxicity of insecticides within species for neonates and fourth instars. For some materials, the relative toxicity to neonates and fourth instars were not correlated. Response to insecticides among the three species showed variation as well, and correct identification of the species complex present in individual locations is important in choosing the best available control material.
The relationship between the population density of overwintering adults of the brown marmorated stink bug and the temperatures of each month during the preceding November to April was investigated in Akita Prefecture, northern Japan, from 1999 to 2012. The number of adults entering traps for overwintering at the monitored hibernation site differed considerably among years. There was a significant negative correlation between the increase ratio (the ratio of the number collected in the current year to the number collected in the previous year) and the mean daily maximum temperature of the preceding March and April. These results suggest that the proportion of surviving adult brown marmorated stink bug may be higher when temperatures in early spring (March and April) are lower, as the postoverwintering adults may need to survive without food for a shorter period of time.
The behavior of codling moth, Cydia pomonella (L.), responding to three attract-and-kill devices was compared in flight tunnel experiments measuring attraction and duration of target contact. Placing a 7.6 by 12.6 cm card immediately upwind of a rubber septum releasing pheromone, dramatically increased the duration on the target to >60 s. In this setting, nearly all the males flew upwind, landed on the card first, and spent the majority of time searching the card. In contrast, male codling moths spent <15 s at the source if given the lure only. In a forced contact bioassay, knockdown rate or mortality of male codling moths increased in direct proportion to duration of contact on a λ-cyhalothrin-loaded filter paper. When this insecticide-treated paper was placed immediately upwind of the lure in the flight tunnel, >90% of males contacting the paper were knocked down 2 h after voluntary exposure. These findings suggest that past attempts to combine insecticide directly with sex pheromones into a small paste, gel, or other forms of dollops are ill-advised because moths are likely over-exposed to pheromone and vacate the target before obtaining a lethal dose of insecticide. It is better to minimize direct contact with the concentrated pheromone while enticing males to extensively search insecticide-treated surface nearby the lure.
Field tests in 2010–2011 were performed in New York, Minnesota, Maryland, Ohio, and Georgia to compare Bt sweet corn lines expressing Cry1A.105 Cry2Ab2 and Cry1Ab with their non-Bt isolines, with and without the use of foliar insecticides. The primary insect pest in all locations during the trial years was Heliocoverpa zea (Boddie), which is becoming the most serious insect pest of sweet corn in the United States. At harvest, the ears were measured for marketability according to fresh market and processing standards. For fresh market and processing, least squares regression showed significant effects of protein expression, state, and insecticide frequency. There was a significant effect of year for fresh market but not for processing. The model also showed significant effects of H. zea per ear by protein expression. Sweet corn containing two genes (Cry1A.105 Cry2Ab2) and a single gene (Cry1Ab) provided high marketability, and both Bt varieties significantly outperformed the traditional non-Bt isolines in nearly all cases regardless of insecticide application frequency. For pest suppression of H. zea, plants expressing Bt proteins consistently performed better than non-Bt isoline plants, even those sprayed at conventional insecticide frequencies. Where comparisons in the same state were made between Cry1A.105 Cry2Ab2 and Cry1Ab plants for fresh market, the product expressing Cry1A.105 Cry2Ab2 provided better protection and resulted in less variability in control. Overall, these results indicate Cry1A.105 Cry2Ab2 and Cry1Ab plants are suitable for fresh market and processing corn production across a diversity of growing regions and years. Our results demonstrate that Bt sweet corn has the potential to significantly reduce the use of conventional insecticides against lepidopteran pests and, in turn, reduce occupational and environmental risks that arise from intensive insecticide use.
A small-plot field trial was conducted to examine the area of influence of fipronil at incremental distances away from treated plots on the Harrison Experimental Forest near Saucier, MS. Small treated (water and fipronil) plots were surrounded by untreated wooden boards in an eightpoint radial pattern, and examined for evidence of termite feeding every 60 d for 1 yr after treatment. Circular areas of 0, 0.28, 1.13, 2.55, 4.52, 7.07, and 10.18 m2 around the treated plots were installed to evaluate feeding damage by termites on the boards. The relationship between feeding damage to boards and area for each time interval was examined by using an exponential increase model. For both treatments and controls in nearly all periods examined, feeding was suppressed in the boards nearest to the treated plots, but increased exponentially as the area increased. Beginning 4 mo after treatment, treatment plots had lower proportions of boards with termite feeding evidence than control plots. Reduction in feeding was the only influence of fipronil observed beyond the treated plots.
Extensive usage and heavy reliance on insecticides have led to the development of insecticide resistance in the German cockroach, Blattella germanica (L.). Six field-collected strains of B. germanica from Singapore were used to investigate resistance to fipronil and dieldrin. The three strains (Boat Quay, Cavenagh Road, and Ghimmoh Road) with greatest resistance to fipronil were subjected to selection with fipronil bait up to the F5 generation. Synergism assay and molecular detection of a target site mutation were used to elucidate the mechanism of fipronil resistance in these strains. With the exception of the Cavenagh Road strain, all parental strains were susceptible to dieldrin. This strain exhibited resistance to dieldrin and fipronil with resistance ratios of 4.1 and 3.0, respectively. Piperonyl butoxide and S,S,S-tributylphosphorotrithioate were antagonistic toward fipronil toxicity in all strains. Bait selection significantly increased fipronil and dieldrin resistance in the three chosen strains, either in topical bioassay or bait evaluations. There was a significant positive relationship [y = (6,852.69 ± 1,988.37)x – (708.93 ± 1,226.28), where x = fipronil toxicity and y = dieldrin toxicity] between dieldrin and fipronil resistance levels, indicating significant cross-resistance between the insecticides. High frequencies of individuals possessing the Rdl gene mutation were found in the F5 generation of the three strains selected with fipronil bait. The synergism assays indicated that monooxygenase and esterase were not involved in fipronil resistance in the strains studied herein. The A302S Rdl mutation was the major mechanism contributing to fipronil and dieldrin resistance in these strains.
The oriental armyworm Mythimna separata Walker is a serious threat to the production of cereals. Its control has largely relied on synthetic insecticides, which led to the decrease in their effectiveness. In China, cantharidin, a natural compound of insect origin with a mode of action different from a conventional insecticide, is being developed as a bio-insecticide for the control of lepidopteran pests. Its toxicological effects have already been studied in M. separata. However, its sublethal effects on physiological and population parameters have not yet been studied. The leaf dip bioassay results showed that cantharidin-AC (cantharidin acetone solution) had a high level of toxicity against M. separata and the 96 h LC50 value was 223 µg/ml. The sublethal effects of cantharidin exposure for 72 h at LC10 (77 −g/ml) on physiological and population parameters of M. sepatata were also investigated, and data were subjected to an age-stage two-sex life-table. The sublethal effects of cantharidin indicated reduction in survival rates of larval, pupal, and adult stages. In addition, both male and female moths were observed with crippled wings in the cantharidin-treated cohort. The mean values of the finite rate of increase (λ), the intrinsic rate of increase (r), and the net reproductive rate (R0) were significantly lower in the treatment than in the control. The fecundity was also strongly affected by a sublethal cantharidin concentration. A sublethal concentration of cantharidin may reduce the population growth of M. separata by decreasing its survival and reproduction and by increasing its generation time.
The litchi erineum mite, Aceria litchii (Keifer), is the major pest of litchi, Litchi chinensis Sonnerat (Sapindaceae). This study evaluated the effect of 11 pesticides on the survival of A. litchii as well as on the survival and reproduction of Phytoseius intermedius Evans & McFarlane, the predator most found in association with it in Brazil. The containment of A. litchii in small petri dishes whose bottoms were covered with a solidified paste made of a mixture of gypsum and activated charcoal (9:1 in volume), kept humid, was shown to be adequate for this type of study. For the evaluation of the effect of pesticides on A. litchii, mites leaving the erinia from the pieces of litchi leaves (removed from the plants ≈24 h earlier) were sprayed under a Potter tower and immediately transferred to the 2.5-cm-diameter petri dishes. After 2, 12, 24, and 48 h of the application, the dishes were examined to evaluate the mite survival. The four pesticides causing the highest levels A. litchii mortality, as well as azadirachtin, were tested for the effect on P. intermedius. For this test, experimental units consisted of discs of uninfested litchi leaves also sprayed under a Potter tower before introducing the predators. Survival and oviposition of the predator were evaluated every 24 h for 5 consecutive days; viability of the eggs laid was also evaluated. Highest mortality of A. litchii occurred with the application of fenpyroximate, sulfur, abamectin, and hexythiazox. Azadirachtin was considered moderately harmful to the predator P. intermedius, whereas other pesticides were classified as harmful. Despite the low efficiency of azadirachtin in the control of the pest, its relative selectivity to P. intermedius would encourage the evaluation on field condition, especially for use in organic production systems.
Chlorantraniliprole, a new anthranilic diamide insecticide, has been commercialized in China since 2008 for controlling of several lepidopterans, including rice stem borer, Chilo suppressalis Walker. Chemical control of this pest has become difficult because of its resistance development to many conventional insecticides. To facilitate chlorantraniliprole-resistance monitoring, seedling dip bioassays were conducted in 2011 and 2012 to assess the susceptibility of 30 populations of C. suppressalis from seven provinces in China. The assays established a larval susceptibility baseline with LC50 at 1.393 mg a.i/liter. The toxicity (LC50) of chlorantraniliprole against second-instar larvae of field populations ranged from 0.568 (SL12) to 13.547 (RA12) mg a.i/liter. Substantial variations of the susceptibility to chlorantraniliprole were detected among different geographic populations, but no significant difference was observed between years for most populations except for populations from Dong'an, Cangnan, and Lujiang. Resistance ratios to the chemical ranged from 1.0 to 9.7, indicating that most colonies remained susceptible or showed certain decrease in susceptibility. Approximately, 13.3% of the populations exhibited low levels of resistance to chlorantraniliprole. These data are useful in future monitoring program for detecting any changes in susceptibility as a result of use of the insecticide.
Jennifer L. Petzold-Maxwell, Analiza P. Alves, Ronald E. Estes, Michael E. Gray, Lance J. Meinke, Elson J. Shields, Stephen D. Thompson, Nicholas A. Tinsley, Aaron J. Gassmann
The refuge strategy can delay resistance of insect pests to transgenic maize producing toxins from Bacillus thuringiensis (Bt). This is important for the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), because of its history of adaptation to several management practices. A 2-yr study across four locations was conducted to measure the effects of integrated refuge (i.e., blended refuge) on western corn rootworm survival to adulthood, fitness characteristics, and susceptibility to Bt maize in the subsequent generation. The treatments tested in this study were as follows: a pure stand of Bt maize (event DAS-59122-7, which produces Bt toxins Cry34Ab1/Cry35Ab1), a pure stand of refuge (non-Bt maize), and two variations on an integrated refuge consisting of 94.4% Bt maize and 5.6% non-Bt maize. Within the two integrated refuge treatments, refuge seeds received a neonicotinoid insecticidal seed treatment of either 1.25 mg clothianidin per kernel or 0.25 mg thiamethoxam per kernel. Insects in the pure stand refuge treatment had greater survival to adulthood and earlier emergence than in all other treatments. Although fecundity, longevity, and head capsule width were reduced in treatments containing Bt maize for some site by year combinations, Bt maize did not have a significant effect on these factors when testing data across all sites and years. We found no differences in susceptibility of larval progeny to Bt maize in bioassays using progeny of adults collected from the four treatments.
Highly phosphine-resistant populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) have recently been found in Oklahoma grain storage facilities. These findings necessitate development of a phosphine resistance management strategy to ensure continued effective use of phosphine. Therefore, we investigated the efficacies of two grain insecticides, namely, spinosad applied at label rate of 1 ppm and a mixture of chlorpyrifos-methyl and deltamethrin applied at label rates of 3 and 0.5 ppm, respectively, against highly phosphine-resistant R. dominica and T. castaneum. Adult mortality and progeny production suppression of spinosad- or chlorpyrifos-methyl deltamethrin mixture-treated wheat that had been stored for 2, 84, 168, 252, and 336 d posttreatment were assessed. We found that both spinosad and chlorpyrifos-methyl deltamethrin were effective against phosphine-resistant R. dominica and caused 83–100% mortality and also caused total progeny production suppression for all storage periods. Spinosad was not effective against phosphine-resistant T. castaneum; the highest mortality observed was only 3% for all the storage periods. Chlorpyrifos-methyl deltamethrin was effective against phosphine-resistant T. castaneum only in treated wheat stored for 2 and 84 d, where it caused 93–99% mortality. However, chlorpyrifos-methyl deltamethrin was effective and achieved total suppression of progeny production in T. castaneum for all the storage periods. Spinosad was not as effective as chlorpyrifos-methyl deltamethrin mixture at suppressing progeny production of phosphine-resistant T. castaneum. These two insecticides can be used in a phosphine resistance management strategy for R. dominica and T. castaneum in the United States.
Invasive species cause severe environmental and economic problems. The invasive success of social insects often appears to be related to their ability to adjust their social organization to new environments. To gain a better understanding of the biology of invasive termites, this study investigated the social organization of the subterranean termite, Reticulitermes urbis, analyzing the breeding structure and the number of reproductives within colonies from three introduced populations. By using eight microsatellite loci to determine the genetic structure, it was found that all the colonies from the three populations were headed by both primary reproductives (kings and queens) and secondary reproductives (neotenics) to form extended-family colonies. R. urbis appears to be the only Reticulitermes species with a social organization based solely on extended-families in both native and introduced populations, suggesting that there is no change in their social organization on introduction. F-statistics indicated that there were few neotenics within the colonies from urban areas, which did not agree with results from previous studies and field observations. This suggests that although several neotenics may be produced, only few become active reproductives. The results also imply that the invasive success of R. urbis may be based on different reproductive strategies in urban and semiurbanized areas. The factors influencing an individual to differentiate into a neotenic in Reticulitermes species are discussed.
The cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae) is an economically important insect pest of cotton in the United States. However, reports of cotton fleahopper infestation and its management in cotton fields are restricted primarily to Texas, Oklahoma, and Arkansas. The objective of this study was to understand the genetic diversity of cotton fleahopper populations infesting cotton in the cotton-growing areas of the United States. Amplified fragment length polymorphism markers were used to detect genetic diversity and to characterize geographic genotypes across the distribution of the cotton fleahopper in the United States. We used 172 individuals and 559 amplified fragment length polymorphism loci in this study and found significant, but low, level of genetic differentiation among geographic populations (FST = 0.02; P < 0.0001). Molecular fingerprints of cotton fleahopper populations were partitioned into three broad regional genetic populations with a western, central, and eastern distribution. The western (Arizona) and eastern (Florida, Georgia, South Carolina, and North Carolina) populations are genetically distinct, whereas the central (Texas, Oklahoma, Arkansas, Mississippi, Louisiana, and Alabama) population represents an admixed population, which include both western and eastern populations. These results suggest considerable gene flow among the populations within regions but restricted gene flow among populations from eastern and western region.
Soybean aphids have become a serious pest of soybean, Glycine max L. (Merrill), since they were first detected in North America in 2000. Three soybean aphid biotypes have been documented in the United States in the last 10 yr, but few studies have been done on their feeding behavior in the United States The Electrical Penetration Graph is a convenient and successful tool to study the feeding behavior of piercing and sucking insects. This is the first attempt to study the feeding behavior differences between biotype 1 and biotype 2 on soybean genotypes using the Electrical Penetration Graph technique, and includes both resistant and susceptible soybean genotypes from Kansas and Michigan. The experiments were run for 9 h each for each genotype with a total of eight channels at a time. Results indicated that aphids feeding on susceptible genotypes had a significantly greater duration of sieve element phase than when feeding on resistant genotypes. Furthermore, the time taken to reach the first sieve element phase in resistant genotypes was significantly greater than in susceptible genotypes. Most of the aphids reached sieve element phase (>90%) in susceptible genotypes, but only a few (<30%) reached sieve element phase in resistant genotypes during the 9-h recording period; however, we found no differences in any other probing phases between resistant and susceptible genotypes except the number of potential drops in biotype 2. Thus, the resistance was largely associated with phloem tissues. Therefore, some biochemical, physical, or morphological factors could affect stylet penetration of aphids.
Insect activity has long been associated with Fusarium infection. The objectives of the current study were 1) to estimate the impact of Mediterranean corn borer, Sesamia nonagrioides Lefèbvre, damage on fumonisin contamination in the maize kernel by comparing fumonisin contamination under infestation and protected conditions, and 2) to measure the potential use of genotypes resistant to this borer as controlling factors of fumonisin contamination. Genotypes with increased kernel damage by borers tended to increase fumonisin accumulation under infestation conditions. In particular environments, other factors influenced fumonisin contamination more than damage by borers. When ear damage by borers is significant, maize resistance to ear damage could contribute to the reduction of fumonisin contamination in the kernels. Genotype such as EP42 × EP77 that combines low ear damage by borers and low fumonisin level across environments is a good choice to control fumonisin contamination. The use of an applicable methodology to identify Mediterranean corn borer-resistant genotypes to ear attack under artificial infestations might be a promising approach.
Novel thermal death models were developed with certain assumptions, and these models were validated by using actual heat treatment data collected under laboratory conditions at constant temperatures over time and in commercial food-processing facilities where temperatures were dynamically changing over time. The predicted mortalities of both young larvae and adults of the red flour beetle, Tribolium castaneum (Herbst), were within 92–99% of actual measured insect mortalities. There was good concordance between predicted and observed mortalities of young larvae and adults of T. castaneum exposed to constant temperatures in laboratory growth chambers and at variable temperatures during structural heat treatments of commercial food-processing facilities. The models developed in this study can be used to determine effectiveness of structural heat treatments in killing young larvae and adults of T. castaneum and for characterizing insect thermotolerance.
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28°C and 55% relative humidity than at 25, 30, 32, and 35°C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere