BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
During orchard pollination studies in California, we observed dramatic changes in nesting and foraging behavior of Osmia lignaria Say (Hymenoptera: Megachilidae) after sprays with tank mixtures containing fungicides. A characteristic pattern of postspray events observed includes erratic behavior and interrupted foraging and nesting activity for several days. In an effort to determine whether fungicidal sprays were disruptive to bee foraging and thus to pollination, we exposed O. lignaria females nesting in field cages planted with lacy scorpionweed, Phacelia tanacetifolia Benth (Hydrophyllaceae), to selected spray mixtures normally encountered in California orchard production systems: iprodione (Rovral), propiconazole (Orbit), benomyl (Benlate), and captan (Captan 50 WP); the surfactant Dyne-Amic, alone and mixed with Rovral; and the tank mixture IDB (Rovral Dyne-Amic the foliar fertilizer Bayfolan Plus). An additional cage sprayed with an equal volume of water acted as control, and a cage sprayed with the insecticide dimethoate as a toxic standard. For each female O. lignaria, we recorded time spent inside the nest depositing pollen-nectar loads, foraging time, cell production rate, and survival. All females in the dimethoate treatment died postspray 1 d. Before death, some of these females behaved similarly to our previous orchard observations. A high proportion of females in the IDB cage were inactive for a few hours before resuming normal foraging and nesting activity. No lethal or behavioral effects were found for any of the other compounds or mixtures tested. Our results indicate that the fungicide applications that we tested are compatible with the use of O. lignaria as an orchard pollinator.
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004–2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5–10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.
Chalkbrood, a fungal disease in bees, is caused by several species of Ascosphaera. A. aggregata is a major mortality factor in populations of the alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae) used in commercial alfalfa seed production. Four formulated fungicides, Benlate 50 WP, Captan, Orbit, and Rovral 50 WP were tested in the laboratory for efficacy against hyphal growth of A. aggregata cultures. The same fungicides, with the addition of Rovral 4 F, were tested for their effects on incidence of chalkbrood disease, and toxicity to M. rotundata larvae. Benlate, Rovral 50 WP, and Rovral 4 F reduced incidence of chalkbrood with minimal mortality on larval bees. Benlate and Rovral 50 WP also reduced hyphal growth. Orbit was effective in reducing hyphal growth, but it did not reduce incidence of chalkbrood and was toxic to bee larvae. Captan was not effective in reducing hyphal growth or chalkbrood incidence, and it was toxic to bee larvae. Fungicides that reduce incidence of chalkbrood and larval mortality in this laboratory study are candidates for further study for chalkbrood control.
To replace deceased colonies or to increase the colony numbers, beekeepers often purchase honey bees, Apis mellifera L., in a package, which is composed of 909–1,364 g (2–3 lb) of worker bees and a mated queen. Packages are typically produced in warm regions of the United States in spring and shipped throughout the United States to replace colonies that perished during winter. Although the package bee industry is effective in replacing colonies lost in winter, packages also can be an effective means of dispersing diseases, parasites, and undesirable stock to beekeepers throughout the United States. To evaluate the quality of packages, we examined 48 packages representing six lines of bees purchased in the spring 2006. We estimated levels of the parasitic mite Varroa destructor Anderson & Trueman and the percentage of drone (male) honey bees received in packages. We surveyed for presence of the tracheal honey bee mite, Acarapis woodi (Rennie), and a microsporidian parasite, Nosema spp., in the shipped bees. We found significant differences in both the mean Varroa mite per bee ratios (0.004–0.054) and the average percentage of drones (0.04–5.1%) in packages from different producers. We found significant differences in the number of Nosema-infected packages (0.0–75.0%) among the six lines. No packages contained detectable levels of A. woodi. Considering the observed variability among honey bee packages, beekeepers should be aware of the potential for pest and disease infestations and high drone levels in packages.
Cavity-nesting alfalfa leafcutting bees, Megachile rotundata (F.) (Hymenoptera: Megachilidae), are excellent pollinators of alfalfa, Medicago savita L., for seed production. In commercial settings, artificial cavities are placed in field domiciles for nesting and, thereby, bee populations are sustained for future use. For this study, cells from leafcutting bee nests were collected in late summer from commercial seed fields. Over 3 yr (2003–2005), 39 samples in total of ≈1,000 cells each were taken from several northwestern U.S. states and from Manitoba, Canada. X-radiography of 500 cells from each sample was used to identify “pollen balls” (i.e., cells in which the pollen–nectar provision remained, but the egg or larva, if present, was not detectable on an x-radiograph). Most U.S. samples seemed to have higher proportions of pollen ball cells than Manitoba samples. Pollen ball cells were dissected to determine the moisture condition of the mass provision and true contents of each cell. Most pollen ball cells from Manitoba samples contained fungus, the frequency of which was positively correlated with cool, wet weather. In the United States, most pollen ball cells had moist provisions, and many of them lacked young brood. Correlation analysis revealed that pollen ball cells occurred in greater proportions in fields with more hot days (above 38°C). Broodless pollen ball cells occurred in greater proportions under cool conditions, but dead small larvae (second–third instars) seemed to occur in greater proportions under hot conditions. Pollen ball cells with unhatched eggs and first instars (in the chorion) occurred in lesser proportions under hot conditions.
Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) is used as a classical biological control agent against Chilo partellus (Swinhoe) (Lepidoptera: Crambidae), a serious exotic pest of cereal crops in eastern and southern Africa. This parasitoid has been introduced into several African countries for the control of C. partellus in maize, Zea mays L., and sorghum, Sorghum bicolor (L.), but it has never been released in Ethiopia. It is hypothesized that it spread into Ethiopia from populations released in Kenya and Somalia to become the predominant parasitoid of C. partellus in maize and sorghum fields of the country. In recent surveys conducted in Ethiopia, C. flavipes was recovered from C. partellus in sugarcane, Saccharum L. spp. hybrids, at a site >2,000 km from the nearest known release sites in Kenya and Somalia. These findings question published hypotheses that estimate the dispersal rate of C. flavipes to be 60 km per year in Africa, and they suggest that since its release in Africa this parasitoid has developed strains adapted to searching particular host plants infested by particular stem borers. The anomalies between our results and previous reports evoked the hypothesis that C. flavipes in Ethiopian sugarcane might be a different strain. To test this hypothesis, we compared partial COI gene sequences of C. flavipes collected from sugarcane in Ethiopia and those of specimens from other African countries to determine the origin of the Ethiopian population. In addition, COI sequences were obtained for C. flavipes from other continents. The C. flavipes population established in Ethiopian sugarcane is most closely related to the populations released against C. partellus in maize in other parts of Africa, which were derived from the original population imported from Pakistan. The dispersal rate of the parasitoid was estimated to be >200 km per year.
A 10-wk study of the avocado seed-feeding moth Stenoma catenifer Walsingham (Lepidoptera: Elachistidae), was conducted in a commercial ‘Hass’ avocado (Persea americana Miller [Lauraceae]) orchard in Guatemala. Up to 45% of fruit in the orchard were damaged by larval S. catenifer. Larval-to-adult survivorship for 1,881 S. catenifer larvae in Hass fruit was 37%, and adult sex ratio was 51% female. Four species of larval parasitoid were reared from field-collected S. catenifer larvae. The most common parasitoid reared was a gregarious Apanteles sp., which parasitized 53% of larvae and produced on average eight to nine cocoons per host. Apanteles sp. sex ratio was 47% female and 87% of parasitoids emerged successfully from cocoons. Apanteles sp. longevity was ≈1.5 d in the absence of food, and when provisioned with honey, parasitoids survived for 5–7 d. The mean number of cocoons produced by Apanteles sp. per host, and larval parasitism rates were not significantly affected by the number of S. catenifer larvae inhabiting seeds. Oviposition studies conducted with S. catenifer in the laboratory indicated that this moth lays significantly more eggs on the branch to which the fruit pedicel is attached than on avocado fruit. When given a choice between Hass and non-Hass avocados, S. catenifer lays up to 2.69 times more eggs on Hass.
Liquid baits were evaluated for control of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), and associated mealybug and soft scale pests in California vineyards. In 2003, liquid baits with small doses of imidacloprid, boric acid, or thiamethoxam dissolved in 25% sucrose water resulted in lower ant and mealybug densities and fruit damage, compared with an untreated control. Similar treatments in a soft scale-infested vineyard showed only a reduction of ant density and fruit infestation in only the boric acid and thiamethoxam treatments. In 2004, commercial and noncommercial formulations of liquid baits reduced ant densities in three separate trials, but they had inconsistent effects on mealybug densities and fruit infestation; granular protein bait had no effect. Using large plots and commercial application methodologies, liquid bait deployed in June resulted in lower ant density and fruit infestation, but it had no effect on mealybug density. Across all trials, liquid bait treatments resulted in lower ant density (12 of 14 trials) and fruit damage (11 of 14 sites), presenting the first report of liquid baits applied using commercial methodologies that resulted in a reduction of ants and their associated hemipteran crop damage. For commercialization of liquid baits, we showed that any of the tested insecticides can suppress Argentine ants when properly delivered in the crop system. For imidacloprid, bait dispensers must be protected from sunlight to reduce photodegradation. Results suggest that incomplete ant suppression can suppress mealybug densities. However, after ant populations are suppressed, there may be a longer period before hemipteran populations are effectively suppressed. Therefore, liquid baits should be considered part of a multiseason program rather than a direct, in-season control of hemipteran pest populations.
The effects of irradiation on egg, larval, and pupal development, and adult reproduction in Mexican leafroller, Amorbia emigratella Busck (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae, and late pupae were irradiated at target doses of 60, 90, 120, or 150 Gy, or they were left untreated as controls in replicated factorial experiments. Survival to the adult stage was recorded. Tolerance to radiation increased with increasing age and developmental stage. A radiation dose of 90 Gy applied to neonates and early instars prevented adult emergence. A dose of 150 Gy was not sufficient to prevent adult emergence in late instars or pupae. The effect of irradiation on sterility was examined in late pupae and adult moths. For progeny produced by insects treated as late pupae, a total of three out of 3,130 eggs hatched at 90 Gy, 0 out of 2,900 eggs hatched at 120 Gy, and 0 out of 1,700 eggs hatched at 150 Gy. From regression analysis, the dose predicted to prevent egg hatch from the progeny of irradiated late pupae was 120 Gy, with a 95% confidence interval of 101–149 Gy. The late pupa is the most radiotolerant stage likely to occur with exported commodities; therefore, a minimum absorbed radiation dose of 149 Gy (nominally 150 Gy) has potential as a quarantine treatment. Reciprocal crosses between irradiated and unirradiated moths demonstrated that males were more radiotolerant than females. Irradiation of female moths at a target dose of 90 Gy before pairing and mating with irradiated or unirradiated males resulted in no viable eggs, whereas irradiated males paired with unirradiated females produced viable eggs at 90 and 150 Gy.
Irradiation postharvest phytosanitary treatments are used increasingly and show further promise because of advantages compared with other treatments. Its chief disadvantage is that, unlike all other commercially used treatments, it does not provide acute mortality, although it prevents insects from completing development or reproducing. The objective of this research was to determine to what extent irradiated egg and early instars of tephritids would develop to later instars that could be found by phytosanitary inspectors or consumers. Mexican fruit fly, Anastrepha ludens (Loew), eggs and first instars in grapefruit, Citrus paradisi Macfayden, were irradiated with 70–250 Gy and held at ≈27°C until third instars completed development. The accepted minimum absorbed phytosanitary dose for this pest is 70 Gy, although higher doses may be applied under commercial conditions. The more developed a fruit fly before it was irradiated, the greater the proportion that survived to the third instar. Also, dose was inversely related to developmental success, e.g., a mean of ≈65 and 35%, respectively, of late first instars reached the third instar when irradiated with 70 and 250 Gy. Of those, 65.1 and 23.4%, respectively, pupariated, although no adults emerged. Irradiation may result in a greater frequency of live (albeit incapable of resulting in an infestation) larvae being found than would be expected compared with other treatments that provide acute mortality. The regulatory community should be aware of this and the fact that it does not increase the risk of irradiation phytosanitary treatments resulting in an infestation of quarantine pests.
The flowers of Canada thistle, Cirsium arvense (L.), attract a wide range of insects, including pollinators and herbivorous species. This attraction is primarily mediated by floral odor, which offers potential for developing generic insect attractants based on odor. In this study, we have analyzed the chemical composition of the volatiles produced by Canada thistle flowers. Nineteen floral compounds were identified in the headspace, including phenylacetaldehyde (55%), methyl salicylate (14%), dimethyl salicylate (8%), pyranoid linalool oxide (4.5%), and benzaldehyde (3.5%). Other minor compounds include benzyl alcohol, methylbenzoate, linalool, phenylethyl alcohol, furanoid linalool oxide, p-anisaldehyde, 2,6-dimethyl-1,3,5,7-octatetraene, benzylacetate, benzyl tiglate, (E,E)-α-farnesene, benzyl benzoate, isopropyl myristate, and 2-phenylethyl ester benzoic acid. The relative attractiveness of various doses of the main floral volatile compound phenylacetaldehyde (i.e., 10, 100, 200, and 400 mg) was tested for insect attraction. Both the total catch and the biodiversity of insect species trapped increased as the loading of phenylacetaldehyde increased. Volatiles were chosen from the odors from the flowers of Canada thistle and formulated and tested in the field. An 11-component blend was the most attractive of several floral blends tested. These findings indicate that chemical components of flower odors of Canada thistle can serve as a generic insect attractant for monitoring of invasive pest species.
Potato virus Y is transmitted to potato in a nonpersistent manner by many aphid species, some of which do not colonize this crop. The behavior of bird cherry-oat aphid, Rhopalosiphum padi (L.) on potato, Solanum tuberosum L., a plant species that is not colonized by this aphid, was described and compared with that of the potato-colonizing green peach aphid, Myzus persicae (Sulzer). A higher proportion of winged morph of R. padi than M. persicae left the plant, but aphids that stayed in contact with the plant took the same mean time to initiate the first probe and it lasted the same mean time compared with M. persicae. Electronic penetration graph technique was used to study the probing behavior of the aphids during Potato virus Y (family Potyviridae, genus Potyvirus, PVY) transmission tests. Transmission rate decreased from 29 to 8% when the acquisition time increased from 5 min of continuous probing to 1 h with M. persicae, but it remained low (2 and 1%) with R. padi. Most of the difference in transmission rate between acquisition time with M. persicae and between aphid species was related to the change in the time and behavior taking place between the last cell puncture of the acquisition phase to the first cell puncture of the inoculation phase. Results presented here clearly demonstrated the importance of host plant selection and probing behavior in the transmission of nonpersistent plant viruses. They also stress the need to consider the behavior of the aphid in the design of laboratory tests of virus vector efficacy.
Responses of late third instars of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to high temperatures (43, 46, and 48°C) were investigated. The different heat exposures not only affected the timing of death but also induced different quantities of malformed puparia and changed the average eclosion time. A majority of larvae died immediately (as larvae) after 30 min at 46°C and ≥15 min at 48°C, whereas most individuals died as pupae after 10–25 min of 46°C, 5–10 min of 48°C, and 40–60 min of 43°C treatments. Lethal times estimated by immediate mortality were longer than those estimated by delayed mortality at the same high temperature. Surviving larvae formed four types of puparial morphology (normal, bottlenose, larviform, and peanut form). The percentage of normal puparia showed a negative correlation with exposure time at all test temperatures. The number of bottlenose was more than the larviform and the peanut at 46°C for ≤20 min and at 48°C for ≤10 min, respectively, whereas the number of larviform was more than the bottlenose and the peanut at 46°C and 48°C for longer exposure times. The average eclosion time increased at first, then decreased as the exposure time prolonged, and the longest average eclosion time occurred in the 40-min exposure at 43°C, 15-min exposure at 46°C, and 10-min exposure at 48°C.
Rodney N. Nagoshi, Robert L. Meagher, Kathy Flanders, Jeffrey Gore, Ryan Jackson, Juan Lopez, John S. Armstrong, G. David Buntin, Chris Sansone, B. Rogers Leonard
Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), infestations in most of North America north of Mexico arise from annual migrations of populations that overwinter in southern Texas and Florida. A comparison of the cytochrome oxidase I haplotype profiles within the fall armyworm corn-strain, the subgroup that preferentially infests corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), identified significant differences in the proportions of certain haplotypes between the Texas and Florida populations. These proportional differences were preserved as the populations migrated, providing a molecular metric by which the source of a migrant population could be identified. The migratory pattern derived from this method for several southeastern states was shown to be consistent with predictions based on analysis of historical agricultural and fall armyworm infestation data. These results demonstrate the utility of haplotype proportions to monitor fall armyworm migration, and they also introduce a potential method to predict the severity of cotton crop infestations in the short term.
The olive fruit fly, Bactrocera oleae (Gmelin) (Diptera: Tephritidae), is an invasive pest of olives (Olea spp.) in the United States. The objectives of this study were to determine whether B. oleae exhibits ovipositional preference under California field conditions similar to that demonstrated in European populations and whether the resulting larvae fare better in preferred varieties. Female B. oleae exhibited strong ovipositional preference for certain varieties of the domesticated olive, Olea europaea L, and the resulting larvae performed better by some measures in preferred varieties than in lesser preferred varieties. Ovipositional preference was observed in the field from 2003 to 2005, and laboratory assays were conducted to evaluate larval performance in 2005 and 2006. Among the olive varieties tested, Sevillano, Manzanillo, and Mission olives were the most heavily infested during three consecutive years. The larval performance measurements used were pupal yield, pupal weight, larval developmental time, and pupal emergence time. Ovipositional preference and pupal yield do not seem associated. There were significant differences in pupal emergence time, but these also measures did not reflect ovipositional preference. Two measures on performance did seem related to ovipositional preference; there were significant effects of variety on pupal weight and larval developmental time. Pupae developing in Manzanillo and Sevillano olives were heavier than those developing in less preferred varieties, and larval developmental time was significantly shorter in Sevillano olives relative to the other varieties. Oviposition preference and enhanced larval performance has implications for the pest status of this invasive insect in California.
Specialized Pheromone and Lure Application Technology (SPLAT) methyl eugenol (ME) and cue-lure (C-L) “attract-and-kill” sprayable formulations containing spinosad were compared with other formulations under Hawaiian weather conditions against oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), respectively. Field tests were conducted with three different dispensers (Min-U-Gel, Acti-Gel, and SPLAT) and two different insecticides (naled and spinosad). SPLAT ME with spinosad was equal in performance to the standard Min-U-Gel ME with naled formulation up to 12 wk. SPLAT C-L with spinosad was equal in performance to the standard Min-U-Gel C-L with naled formulation during weeks 7 to12, but not during weeks 1–6. In subsequent comparative trials, SPLAT ME spinosad compared favorably with the current standard of Min-U-Gel ME naled for up to 6 wk, and it was superior from weeks 7 to 12 in two separate tests conducted in a papaya (Carica papaya L.) orchard and a guava (Psidium guajava L.) orchard, respectively. In outdoor paired weathering tests (fresh versus weathered), C-L dispensers (SPLAT spinosad, SPLAT naled, and Min-U-Gel naled) were effective up to 70 d. Weathered ME dispensers with SPLAT spinosad compared favorably with SPLAT naled and Min-U-Gel naled, and they were equal to fresh dispensers for 21–28 d, depending on location. Our current studies indicate that SPLAT ME and SPLAT C-L sprayable attract-and-kill dispensers containing spinosad are a promising substitute for current liquid organophosphate insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.
The sex pheromone of the monophagous Acrobasis nuxvorella Neunzig (Lepidoptera: Pyralidae) was reported as (9E,11Z)-hexadecadienal (9E,11Z-16:Ald) (Biorg. Med. Chem. 4: 331–339, 1996), and it has since been an effective integrated pest management (IPM) tool for monitoring this pest in the United States, but not in Mexico. Field and laboratory studies were conducted to confirm that the species in Mexico was indeed A. nuxvorella and to investigate the pheromone chemistry of the Mexican populations of this species. Initial field trials testing compounds structurally related to the known pheromone component, and blends thereof, indicated that a 100 μg:100 μg blend of (9E,11Z)-hexadecadien-1-yl acetate (9E,11Z-16:Ac):9E,11Z-16:Ald in rubber septa was effective in attracting male moths in Mexico. Coupled gas chromatography-electroantennogram analyses confirmed the presence of these compounds in extracts of pheromone glands of females, and antennae of male moths also responded to the alcohol analog (9E,11Z)-hexadecadien-1-ol (9E,11Z-16:OH). Subsequent field trials of various blends of these three compounds in Mexico showed that 1) both the acetate and aldehyde components were required for optimal attraction of male moths of the Mexican populations, and 2) addition of the alcohol suppressed attraction of males in a dose-dependent manner. Tests with the 1:1 9E,11Z-16:Ac:9E,11Z-16:Ald blend at various sites in the United States showed that this blend attracted some moths, but that moths attracted to 9E,11Z-16:Ald alone were predominant in the population. Furthermore, in preliminary studies the latter seemed not to respond to the blend. These findings indicate that there are two pheromone types of the pecan nut casebearer, and they have major implications for the direct use of these pheromones in pecan IPM.
Inorganic insecticides are commonly used in urban pest management because of their low mammalian toxicity. We tested the effects of sodium tetraborate (ST) on life parameters of greater wax moth, Galleria mellonella (L.) (Lepidoptera: Pyralidae), to determine its sublethal toxicity on the insect. Survival, development, adult longevity, and fecundity of the wax moth were investigated by rearing larvae on artificial diets containing ST at concentrations of 0.005, 0.1, 0.2, or 0.3%. Larvae reared on medium at the highest concentration of ST (0.3%) had significantly decreased survival to the seventh instar and prolonged time required to reach the seventh instar. This concentration reduced pupa and adult yields to 12.5%, and it also prolonged development by 5 d. ST did not significantly influence adult longevity. Dietary ST led to significant decreases in fecundity and egg viability. Oviposition of survivors at the highest ST concentration (0.3%) was completely inhibited. Lysozyme content was decreased in larval hemolymph and fat body at high dietary ST concentrations. Fat body lysozyme content was significantly increased two-fold for larvae reared on diet at the lowest concentration of ST (0.005%). However, the highest concentration (0.3%) dramatically decreased fat body lysozyme content from 0.12 ± 0.013 to 0.006 ± 0.003 mg/ml in seventh instars. We infer that sublethal levels of dietary ST substantially influence life history parameters and immunocompetence in G. mellonella.
We examined lethal and sublethal effects of imidacloprid on Osmia lignaria (Cresson) and clothianidin on Megachile rotundata (F.) (Hymenoptera: Megachilidae). We also made progress toward developing reliable methodology for testing pesticides on wild bees for use in pesticide registration by using field and laboratory experiments. Bee larvae were exposed to control, low (3 or 6 ppb), intermediate (30 ppb), or high (300 ppb) doses of either imidacloprid or clothianidin in pollen. Field experiments on both bee species involved injecting the pollen provisions with the corresponding pesticide. Only O. lignaria was used for the laboratory experiments, which entailed both injecting the bee’s own pollen provisions and replacing the pollen provision with a preblended pollen mixture containing imidacloprid. Larval development, emergence, weight, and mortality were monitored and analyzed. There were no lethal effects found for either imidacloprid or clothianidin on O. lignaria and M. rotundata. Minor sublethal effects were detected on larval development for O. lignaria, with greater developmental time at the intermediate (30 ppb) and high doses (300 ppb) of imidacloprid. No similar sublethal effects were found with clothianidin on M. rotundata. We were successful in creating methodology for pesticide testing on O. lignaria and M. rotundata; however, these methods can be improved upon to create a more robust test. We also identified several parameters and developmental stages for observing sublethal effects. The detection of sublethal effects demonstrates the importance of testing new pesticides on wild pollinators before registration.
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg−1 soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap−1 day−1 from corn plots on 8 July compared with a peak of 0.5 beetle trap−1 day−1 on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.
In Iowa, the management of insect pests in soybean, Glycine max (L.) Merr., has been complicated by the arrival of the invasive species soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and occasional outbreaks of bean leaf beetle, Cerotoma trifurcata (Förster) (Coleoptera: Chrysomelidae), populations leading to economic losses. Several insecticide programs designed to reduce abundance of the overwintered and first generation C. trifurcata and the incidence of bean pod mottle virus were evaluated over 3 yr (2004–2006) for their impacts on A. glycines populations, at three locations in Iowa (Floyd, Lucas, and Story counties). There was no significant overlap of either overwintered (early May) or the first (early July) generations of C. trifurcata with A. glycines, because aphids were first detected in June and they did not reach economically damaging levels until August, if at all. During this study, insecticides targeting the overwintered population or the first generation of C. trifurcata provided a limited impact on A. glycines populations compared with untreated controls, and they did not prevent economic populations from occurring. Furthermore, the highest populations of A. glycines were frequently observed when a low rate of lambda-cyhalothrin (178 ml/ha) was applied targeting the overwintered population of C. trifurcata. Soybean yields were not protected by any of the insecticide treatments. Our results indicate that the use of either early season foliar or seed-applied insecticides for C. trifurcata management is of limited value for A. glycines management.
Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by flea beetles in North Dakota during 2002–2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.
Trees in an urban forest are highly valued because they have esthetic appeal, provide shade, and improve air quality. During the past 5 yr (2002–2006) in St. John’s, Newfoundland and Labrador, Canada, the elm spanworm, Ennomos subsignaria (Hübner) (Lepidoptera: Geometridae), has reached outbreak densities. Each year, hundreds of trees have been completely defoliated, and many more trees have been partially defoliated. Adding to this problem, the larvae, their silk strands, and their frass are a considerable nuisance to property owners in areas of high larval densities. In this study, we evaluated the efficacy of three doses of bole-implanted acephate (AceCap 97) for reducing densities and associated defoliation of E. subsignaria on sycamore maple, Acer pseudoplatanus L. (Aceraceae). During the treatment year (2005), all three doses significantly reduced E. subsignaria larval and pupal density; full or two-thirds doses significantly reduced defoliation compared with control trees. During the posttreatment year (2006), bole-implanted acephate did not affect E. subsignaria egg mass density, survival (=adult emergence), or defoliation. Bole-implanted acephate is an effective and practical way of suppressing E. subsignaria densities and herbivory in an urban forest where the protection of high-value trees and the reduction of environmental contamination are of utmost importance.
The invasive Mediterranean pine engraver, Orthotomicus erosus (Wollaston) (Coleoptera: Scolytidae), was detected in North America in 2004, and it is currently distributed in the southern Central Valley of California. It originates from the Mediterranean region, the Middle East, and Asia, and it reproduces on pines (Pinus spp.). To identify potentially vulnerable native and adventive hosts in North America, no-choice host range tests were conducted in the laboratory on 22 conifer species. The beetle reproduced on four pines from its native Eurasian range—Aleppo, Canary Island, Italian stone, and Scots pines; 11 native North American pines—eastern white, grey, jack, Jeffrey, loblolly, Monterey, ponderosa, red, Sierra lodgepole, singleleaf pinyon, and sugar pines; and four native nonpines—Douglas-fir, black and white spruce, and tamarack. Among nonpines, fewer progeny developed and they were of smaller size on Douglas-fir and tamarack, but sex ratios of progeny were nearly 1:1 on all hosts. Last, beetles did not develop on white fir, incense cedar, and coast redwood. With loblolly pine, the first new adults emerged 42 d after parental females were introduced into host logs at temperatures of 20–33°C and 523.5 or 334.7 accumulated degree-days based on lower development thresholds of 13.6 or 18°C, respectively.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), an invasive pest quarantined in the United States, is difficult to detect because the larvae feed unseen inside trees. Acoustic technology has potential for reducing costs and hazards of tree inspection, but development of practical methods for acoustic detection requires the solution of technical problems involving transmission of resonant frequencies in wood and high background noise levels in the urban environments where most infestations have occurred. A study was conducted to characterize sounds from larvae of different ages in cambium, sapwood, and heartwood of bolts from three host tree species. Larval sounds in all of the tested trees and tissues consisted primarily of trains of brief, 3–10-ms impulses. There were no major differences in the spectral or temporal pattern characteristics of signals produced by larvae of different ages in each tissue, but larval sounds in sapwood often had fewer spectral peaks than sounds in cambium and heartwood. A large fraction, but not all background sounds could be discriminated from larval sounds by automated spectral analyses. In 3-min recordings from infested bolts, trains containing impulses in patterns called bursts occurred frequently, featuring 7–49 impulses separated by small intervals. Bursts were rarely detected in uninfested bolts. The occurrence of bursts was found to predict infestations more accurately than previously used automated spectral analyses alone. Bursts and other features of sounds that are identifiable by automated techniques may ultimately lead to improved pest detection applications and new insight into pest behavior.
Strawberry sap beetle, Stelidota geminata (Say) (Coleoptera: Nitidulidae), adults and larvae feed on and contaminate marketable strawberry (Fragaria L.) fruit. The beetle is a serious pest in the northeastern United States, with growers in multiple states reporting closing fields for picking prematurely due to fruit damage. Three options were evaluated for potential to reduce strawberry sap beetle populations. First, the influence of plant structure on accessibility of fruit in different strawberry cultivars to strawberry sap beetle was assessed by modifying plant structure and exposing caged plants to strawberry sap beetle adults. Severity of damage to berries staked up off the ground was similar to damage to those fruit contacting the soil, showing that adults will damage fruit held off the ground. Second, baited traps were placed at three distances into strawberry fields to determine whether overwintered beetles enter strawberry fields gradually. Adult beetles were first caught in the strawberries ≈19 d after occurring in traps placed along edges of adjacent wooded areas. The beetles arrived during the same sampling interval in traps at all distances into the fields, indicating that a border spray is unlikely to adequately control strawberry sap beetle. Third, the number of strawberry sap beetle emerging from strawberry for 5 wk after tilling and narrowing of plant rows was compared in plots renovated immediately at the end of harvest and in plots where renovation was delayed by 1 wk. In the 2-yr study, year and not treatment was the primary factor affecting the total number of emerging strawberry sap beetle. Overall, limited potential exists to reduce strawberry sap beetle populations by choosing cultivars with a particular plant structure, applying insecticide as a border spray, or modifying time of field renovation.
Field and laboratory-choice experiments were conducted to understand aspects of host plant orientation by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory bioassays, L. decemlineata oriented to volatiles emitted by potato, Solanum tuberosum L., foliage over both tomato, Lycopersicon esculentum L., and eggplant, Solanum melongena L., foliage, and eggplant over tomato foliage, all of which had been mechanically damaged. Field choice tests revealed more L. decemlineata adults, larvae, and egg masses on eggplant than on tomato. In other experiments, counts of live L. decemlineata on untreated paired plants and counts of dead beetles on imidacloprid-treated plants did not differ between potato and eggplant. L. decemlineata was significantly attracted to eggplant over both tomato and pepper. To determine whether feeding adults affected orientation to host plants, an imidacloprid-treated eggplant or potato plant was paired with an untreated eggplant or potato plant covered in a mesh bag containing two adult male beetles. Significantly more adults were attracted to eggplant with feeding male beetles paired with another eggplant than any other treatment combination. These results indicate that the presence of male L. decemlineata on plants affects host plant orientation and suggests that the male-produced aggregation pheromone may be involved.
We studied, under laboratory conditions, the performance of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), immature stages in intact whole fruit of three sweet orange varieties, lemon, and bitter oranges. Both citrus variety and fruit part (flavedo, albedo, and pulp) had strong effects on larval performance, smaller effects on pupae, and no effects on eggs. Fruit peel was the most critical parameter for larval development and survival, drastically affecting larval survival (inducing very high mortality rates). Among fruit regions, survival of larvae placed in flavedo was zero for all varieties tested except for bitter orange (22.5% survival), whereas survival in albedo was very low (9.8–17.4%) for all varieties except for bitter orange (76%). Survival of pupae obtained from larvae placed in the above-mentioned fruit regions was high for all varieties tested (81.1–90.7%). Fruit pulp of all citrus fruit tested was favorable for larval development. The highest survival was observed on bitter oranges, but the shortest developmental times and heaviest pupae were obtained from orange cultivars. Pulp chemical properties, such as soluble solid contents, acidity, and pH had rather small effects on larval and pupal survival and developmental time (except for juice pH on larvae developmental duration), but they had significant effects on pupal weight.
Western subterranean termite, Reticulitermes hesperus Banks (Isoptera: Rhinotermitidae), workers fed more on paper disks treated with the carbohydrates xylose, ribose, and fructose than on untreated disks. This feeding behavior of termites for certain carbohydrates was used to demonstrate an increase in the uptake and transfer of the insect growth regulator hexaflumuron among termites. The addition of 3% xylose to paper disks significantly increased the uptake of [14C]hexaflumuron and its subsequent transfer to other termites. Similarly, there was a significant increase in mortality of termites fed on paper disks treated with [14C]hexaflumuron (0.1 and 0.5%) in combination with 3% xylose for similar time periods compared with termites feeding on [14C]hexaflumuron (0.1 and 0.5%) alone. Overall percentage of mortality of termites feeding on [14C]hexaflumuron in combination with 3% xylose during the duration of the study (25–30 d) was ≈70%.
The feeding preference of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) for 200-kGy gamma-irradiated Cryptomeria japonica D. Don (Japanese cedar) sapwood impregnated with benzoylphenylurea compounds such as hexaflumuron and noviflumuron was examined by three laboratory tests. Although termites were not deterred from feeding on gamma-irradiated wood samples that had been impregnated with hexaflumuron or noviflumuron, termite mortality was significantly higher compared with solvent controls in the no-choice test. All live termites were transferred to paper disks immediately after the no-choice test to investigate changes in mortality with time, and this test also confirmed the effects of hexaflumuron and noviflumuron on worker termites, which showed a significant feeding preference for gamma-irradiated wood. Only the 1480 ppm noviflumuron-impregnated gamma-irradiated wood specimens showed significant differences in mortality in the two-choice test. These results suggest that gamma-irradiated C. japonica wood, which is locally abundant in Japan, may have potential as a bait substrate for benzoylphenylurea compounds.
The entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin was tested in the laboratory against field-collected groups of eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae), in foraging arenas to determine the potential effect of a “trap and treat” protocol (trapping a part of the population, treating it with a biological control agent and releasing it back into the original population). Individual termites were treated with a suspension of M. anisopliae conidia and released back into the arenas containing untreated termites. After 5 d, 90% of the treated termites died in the arena, but untreated termites did not exhibit a significant increase in mortality within 90 d after release, indicating no transfer of viable M. anisopliae and no epizootic. Although M. anisopliae was isolated from the arenas after 90 d, the average number of fungal colony-forming units recovered was <0.1% of the conidia introduced.
Horizontal transfer of indoxacarb in the German cockroach, Blattella germanica (L.), was examined under laboratory conditions. Results show that a single bait-fed adult cockroach (i.e., the donor) transferred indoxacarb to numerous primary recipients (secondary mortality), which then became secondary donors. These recipients subsequently became donors to other cockroaches and caused significant mortality in other members of the aggregation, resulting in tertiary kill. Indoxacarb was effectively transferred among adult cockroaches and resulted in significant secondary mortality. When adult males served as donors and vectored the insecticide to adult males, the donor:recipient ratio affected the mortality of the recipients and the rate of secondary mortality increased with increasing the ratio of donors to recipients. Furthermore, secondary mortality in the untreated cockroaches was significantly affected by the freshness of excretions from the donors, the presence of alternative food, and the duration of contact between the donors and the recipients. Ingested indoxacarb was most effectively translocated when the recipients interacted with freshly symptomatic donors in the absence of alternative food. The transfer of indoxacarb continued beyond secondary mortality and resulted in significant tertiary mortality. Excretions from a single bait-fed adult killed 38/50 (76%) nymphs within 72 h. The dead nymphs then vectored indoxacarb to 20 adult males and killed 16/20 (81%) recipients within 72 h. Behavioral mechanisms involved in the horizontal transfer of indoxacarb may include: contact with excretions, necrophagy, emetophagy, and ingestion of other excretions that originate from the donors.
The effect of temperature on [14C]fipronil uptake and transfer from donor (D) to recipient (R) Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) workers was evaluated. Test chambers used in the fipronil uptake study were constructed from petri dishes containing autoclaved soil treated with 1 ppm [14C]fipronil (1.14 μCi of total radioactivity per petri dish), distilled water, and R. flavipes workers. Test chambers were held in environmental growth chambers preset at 12, 17, 22, 27, and 32°C. For the fipronil transfer study, donor termites stained with Nile blue-A were exposed to soil treated with 1 ppm [14C]fipronil for 2 h. Donors were then combined with unexposed recipient termite workers at either 1D:5R, 1D:10R, or 1D:20R ratios. Test chambers consisted of a nest and feeding chamber connected by a piece of polyethylene tube and held in growth chambers at 12, 17, 22, 27, and 32°C. Worker termites were sampled over time and the amount of [14C]fipronil present was measured by scintillation counting. Some degree of uptake and transfer occurred at all temperatures and ratios in this study. The highest level of uptake occurred by termites held at 22–32°C, followed decreasingly by 17 and 12°C. Maximum transfer of [14C]fipronil occurred at the higher ratios (1:5 > 1:10 > 1:20) of donors to recipients. Data presented in this study suggest that temperature is one of the key factors affecting the rate of uptake and subsequent horizontal transfer of [14C]fipronil in subterranean termites.
Alleles conferring resistance to Cry2Ab toxin occur at a frequency of 0.0033 in Australian populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), and it is evident that detectable levels of resistance predated the introduction of transgenic cotton expressing this toxin. From 2002 until 2006, 10 such resistant alleles were scored. Here, we examine colonies established from five of the 10 isolates by using complementation tests to determine their genetic relationships. The results demonstrate that the resistance in each colony is due to alleles at the same locus and that for each allele the resistance is recessive. This latter finding is in conflict with the frequency of apparently resistant individuals occurring in the initial F2 tests that were used to identify alleles that confer resistance. These frequencies were variable (range 6.7–35.6%, mean 16.2%), but they generally indicated a measure of dominance (i.e., were >6.25% expected for recessive resistance). We hypothesize that this conflict is the result of differences in the genetic background of the laboratory adapted resistant colonies and the initial field isolations.
This paper develops a dynamic model of the evolution of pest a population and pest resistance to characterize the socially optimal refuge strategy for managing a pest’s resistance to genetically modified crops. Previous theoretical economic analyses of this problem focus on steady states; we also address refuge policies along the optimal path to the final equilibrium. To elaborate on our theoretical analysis of the resistance problem, we develop a simulation model calibrated to cotton (Gossypium spp.) production in China. Our results show the importance of fitness cost as a determinant of the qualitative nature of optimal refuge policies.
David W. Crowder, Christa Ellers-Kirk, Christine M. Yafuso, Timothy J. Dennehy, Benjamin A. Degain, Virginia S. Harpold, Bruce E. Tabashnik, Yves Carrière
We evaluated effects of the insect growth regulator pyriproxyfen on Bemisia tabaci (Gennadius) (B biotype) (Hemiptera: Aleyrodidae) males and females in laboratory bioassays. Insects were treated with pyriproxyfen as either eggs or nymphs. In all tests, the LC50 for a laboratory-selected resistant strain was at least 620 times greater than for an unselected susceptible strain. When insects were treated as eggs, survival did not differ between males and females of either strain. When insects were treated as nymphs, survival did not differ between susceptible males and susceptible females, but resistant males had higher mortality than resistant females. The dominance of resistance decreased as pyriproxyfen concentration increased. Resistance was partially or completely dominant at the lowest concentration tested and completely recessive at the highest concentration tested. Hybrid female progeny from reciprocal crosses between the susceptible and resistant strains responded alike in bioassays; thus, maternal effects were not evident. Rapid evolution of resistance to pyriproxyfen could occur if individuals in field populations had resistance with traits similar to those of the laboratory-selected strain examined here.
Resistance evolution in target insects to Bacillus thurningiensis (Bt) cotton, Gossypium hirsutum L., is a main threat to Bt cotton technology. An increasing trend of population density of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) has been observed since 2001 in Qiuxian County (Hebei, China), where Bt cotton has been planted dominantly since 1998. This region was selected in 2006 and 2007 for estimating frequency of gene alleles conferring resistance to Bt cotton by screening the F1 progeny from single-pair cross between field-collected male and laboratory female of the Bt-resistant strain of H. armigera (F1 screen). F1 offspring from each single-pair line were screened for resistance alleles based on larval growth, development, and survival on Bt cotton leaves for 5 d. Two-year results indicated that ≈20% of field-collected males carried resistance alleles. The conservative estimate of the resistance allele frequency was 0.094 (95% CI, 0.044–0.145) for 2006 and 0.107 (95% CI, 0.055–0.159) for 2007. This is the first report of resistance allele frequency increase to such a high level in the field in China. Long-term adoption of Bt sprays, dominant planting of single-toxin–producing Bt cotton, and lack of conventional cotton refuge system might accelerate the resistance evolution in the region.
A wide range of susceptibility exists across elm (Ulmus) species and hybrids to the elm leaf beetle, Pyrrhalta luteola (Müller) (Coleoptera: Chrysomelidae). We evaluated various elm species, hybrids, or cultivars (taxa) growing in an experimental plantation in the city of Holbrook, AZ, for leaf anatomical (toughness and trichome density) and nutritional (minerals and sugars) traits that may be associated with host resistance. Leaf toughness and percentage of defoliation (susceptibility) were not correlated. However, we found weak negative correlations between percentage of defoliation and density of trichomes on the leaf abaxial surface. Of the 11 leaf nutrients examined, concentrations of iron and phosphorus correlated inversely with percentage of defoliation. The remaining nine traits did not show any correlation with percentage of defoliation. We concluded that individual anatomical and nutritional traits of elm species/ hybrids do not seem to create a strong barrier to elm leaf beetle defoliation. However, the results from a stepwise multiple regression analysis indicated that collectively, these traits may play an important role in determining susceptibility.
The reproductive rates of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), Biotype 1 (RWA 1) and Biotype 2 (RWA 2) were compared in the laboratory at three temperature regimes on a Russian wheat aphid resistant cultivar (‘Prairie Red’) and a susceptible cultivar (‘TAM 107′). The objective of this study was to expose RWA 1 and RWA 2 to three temperature regimes and two levels of resistance to find whether there were reproductive differences that may occur within each biotype as well as differences in reproduction between biotypes. In addition, temperature effects of the Dn4 gene on biotype reproduction were noted. Differences in reproductive rates between the two biotypes seem to be driven by temperature. For both biotypes, longevity and reproductive rate parameters, except for intrinsic rate of increase, were lower at the 24–29°C temperature regime than the 13–18°C and 18–24°C temperature regimes. The intrinsic rate of increase was higher for both biotypes at the 18–24°C and 24–29°C temperature regimes than at the 13–18°C temperature regime. Reproductive rates between biotypes were similar at the two higher temperature regimes, but the fecundity for RWA 1 was less than RWA 2 at the 13–18°C temperature. The change in fecundity rates between RWA 1 and RWA 2 at lower temperatures could have ecological and geographical implications for RWA 2.
The potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), is an emerging pest of potato and insecticide applications to control this insect have increased in recent years. Based on field observations of leafhopper–crop dynamics, however, currently recommended action thresholds seem to be overly conservative. As a result, we initiated two experiments designed to quantify the impact of leafhoppers on potato yield, and determine how the magnitude of this effect changes among cultivars. In experiment 1, leafhoppers were manipulated (control versus insecticide-treated plots) on 17 potato varieties. In experiment 2, three cultivars (Superior, Atlantic, and Snowden) were planted representing early-, mid-, and late-season maturing lines, and six insecticide spray regimes were imposed (early-, late-, and full-season applications at high and low rates). In both experiments, leafhopper abundance, plant damage, and potato yield were measured. Overall, leafhoppers reduced yield in control plots by 15.7% relative to insecticide-treated plots. Leafhopper impact, however, varied among cultivars; a significant effect of leafhoppers on yield was detected in 6, 12, and 59% of cultivars tested in each of three trials. Of the 44 cases in which leafhoppers exceeded action thresholds, yield loss was only documented in 13 cases. Data from these experiments provide evidence that such variable effects of leafhoppers on yield are explained by cultivar-specific resistance and tolerance traits. Our results suggest that potato growers can accept higher leafhopper densities than current thresholds recommend, particularly when cultivating resistant and/or tolerant varieties.
The banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is an important economic pest of sunflower in the Upper Great Plains of North America. Economic losses due to reductions in seed number, weight, and quality can be significant. Previously, the potential for economic losses were estimated by sampling for adult moths. However, sampling for moths can be difficult and inaccurate. An alternative is to sample for banded sunflower moth eggs, which can be accurately counted in the field by using a binocular 3.5 headband magnifier. The egg counts are used to calculate the economic injury level (EIL) (EIL = C/VWPK), where C is the cost of treatment per unit area, V is the crop market value per unit of weight, W is the slope of the regression between banded sunflower moth egg densities and weight loss per plant, P is a term for plant population per unit area, and K is the control treatment efficacy. Estimates of populations of banded sunflower moth eggs are taken from the center of 400-m spans along all field sides. From these samples and the calculated EIL, a map of the extent of the economically damaging banded sunflower moth population throughout the field is made using economic distance; ED = e(((EIL/E) − 1.458)/−0.262). Economic distance estimates the distance an economic population extends into the field interior along a transect from the sampling site. By using egg samples to calculate the EIL and mapping the distribution of economic populations throughout a field, producers can then make more effective pest management decisions.
Christos G. Athanassiou, Nickolas G. Kavallieratos, George J. Chintzoglou, Gerassimos G. Peteinatos, Maria C. Boukouvala, Stamatina S. Petrou, Emmanouel C. Panoussakis
The insecticidal effect of spinosad dust, a formulation that contains 0.125% spinosad, was evaluated against adults of Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at three temperature levels (20, 25, and 30°C) and four commodities (wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; rice, Oryza sativa L.; and maize, Zea mays L.). For this purpose, quantities of the above-mentioned grains were treated with spinosad at two dose rates (20 and 50 ppm of the formulation, corresponding to 0.025 and 0.06 ppm AI, respectively), and mortality of the exposed adults in the treated grains was measured after 7 and 14 d, whereas progeny production was assessed 65 d later. Generally, for both species, mortality increased with dose, exposure interval, and temperature. For S. oryzae, adult survival and progeny production were lower on wheat than the other grains. After 14 d of exposure, mortality of S. oryzae adults on wheat treated with 50 ppm ranged between 61 and 98%, whereas in the other three commodities it did not exceed 42%. Mortality of R. dominica after 14 d on grains treated 50 ppm ranged between 91 and 100%. For this species, progeny production from exposed parental adults was low in all commodities regardless of temperature. Results indicate that spinosad dust can be used as an alternative to traditional grain protectants, but its effectiveness is highly determined by the target species, commodity, dose, and temperature.
The reproductive performance of the parasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae) against the moths Anagasta kuehniella Zeller and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was studied in the laboratory. The analysis was based on the comparison of parasitoid’s life table parameters related to those of its hosts at various conditions of host density (daily supply of 1, 5, 15, and 30 full-grown host larvae). The estimated parameters were the intrinsic rate of natural increase (rm), the net reproductive rate (Ro), the mean generation time (G), the finite capacity of increase (λ), the gross reproductive rate (GRR), the doubling time (DT), the reproductive value (Vx), and the life expectancy (ex). The rm of H. hebetor proved to be significantly higher than those of its hosts at all host densities. When only one host per day was supplied, the wasp had the lowest reproductive potential, whereas it was maximized when 15 hosts per day were exposed. Maximum values of Ro and GRR were obtained at densities ≥15 host larvae per day. Any increase in host supply above this threshold did not cause significant changes in life table parameters. Variation of rm as a function of host density can be described by the linear regression. Sex ratio of wasp progeny (females/total) ranged from 0.36 to 0.42, irrespective of host density or species. Newly emerged adults recorded maximum ex and Vx. The results of this study can be used to improve mass rearing programs and inoculative release applications of H. hebetor against moth pests of stored products.
Structural heat treatment, a viable alternative to methyl bromide fumigation, involves raising the ambient temperature of food-processing facilities between 50 and 60°C by using gas, electric, or steam heaters, and holding these elevated temperatures for 24 h or longer to kill stored-product insects. A dynamic model was developed to predict survival of mature larvae, which is the most heat-tolerant stage of the confused flour beetle, Tribolium confusum (Jacquelin du Val), at elevated temperatures between 46 and 60°C. The model is based on two nonlinear relationships: 1) logarithmic survival of T. confusum mature larvae as a function of time, and 2) logarithmic reduction in larval survival as a function of temperature. The dynamic model was validated with nine independent data sets collected during actual facility heat treatments conducted on two separate occasions at the Kansas State University pilot flour and feed mills. The rate of increase of temperature over time varied among the nine locations where mature larvae of T. confusum were exposed, and the approximate heating rates during the entire heat treatment ranged from 1.1 to 13.2°C/h. The absolute deviation in the predicted number of larvae surviving the heat treatment was within 3–7% of the actual observed data. Comparison of the absolute deviation in the time taken for equivalent larval survival showed that the model predictions were within 2–6% of the observed data. The dynamic model can be used to predict survival of mature larvae of T. confusum during heat treatments of food-processing facilities based on time-dependent temperature profiles obtained at any given location.
Commercial food- and pheromone-baited pitfall traps and pheromone-baited sticky traps were used during 2003 to survey stored-product insect adults in eight participating feed mills in the midwestern United States. Across the eight feed mills, 27 species of beetles (Coleoptera) and three species of moths (Lepidoptera) were captured in commercial traps. The red flour beetle, Tribolium castaneum (Herbst), was the most abundant insect species captured inside the eight mills. The warehouse beetle, Trogoderma variabile (Ballion), was the most abundant insect species outside the mill and in the mill load-out area. The Indianmeal moth, Plodia interpunctella (Hübner), was the most abundant moth species inside the mill and in the mill receiving area. The Simpson’s index of species diversity among mills ranged from 0.39 (low diversity) to 0.81 (high diversity). The types of species found among mills were different, as indicated by a Morisita’s index of <0.7, for the majority of mills. The differences in the types and numbers of insect species captured inside, outside, in receiving, and in load-out areas could be related to differences in the types of animal feeds produced and the degree of sanitation and pest management practiced.
Infestation of pouch-packaged spaghetti by Sitophilus oryzae (L.) (Coleoptera: Curculionidae) was observed in Japan in May 2006. It was suggested that 30% of all shipped pasta products sustain damage to the packages heat-sealed before reaching retail stores. Hence, we investigated the mechanisms by which S. oryzae and Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) adults invade pasta packaged in polypropylene pouches. In the damaged packages, both species entered through the breaks in the seal and laid their eggs on the pasta. However, in the intact packages, the adults of both species bit around air vent holes in the film, but they did not make the holes big enough for entry into the pouch. We also compared each species’ developmental periods from oviposition to emergence in pasta and brown rice (Oryza spp.). The average developmental period of both species at 25°C was shorter in rice than in pasta. The number of individuals emerging from brown rice was significantly higher than that from pasta. Finally, we suggested a measure to prevent infestation by insect pests in pouch-packaged pasta products.
Barley, Hordeum vulgare L., one of the important crops in Canada, is used in malting, feed, and food industries. Disinfestation of barley using microwaves can be an alternative to chemical methods used to kill insects. A pilot-scale industrial microwave system operating at 2.45 MHz was used in this study to determine the mortality of life stages (egg, larva, pupa, and adult) of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Barley samples of 50 g each at 14, 16, and 18% moisture content (MC; wet basis) were infested with various life stages of T. castaneum and exposed to microwave energy at different power levels and exposure times, and the mortality of the insects was determined. The average temperature of the 14% MC sample exposed to 28 s at 0, 200, 300, 400, and 500 W were 27.4, 42.6, 53.7, 66.9, and 73.0°C, respectively, and those exposed to 56 s at 0, 200, 300, and 400 W were 27.4, 57.3, 75.5, and 91.2°C, respectively. A similar range of temperature was observed for 16 and 18% MC barley. Complete mortality of all life stages of T. castaneum can be achieved at a power level of 400 W and an exposure time of 56 s or at 500 W for 28 s. Among the life stages of T. castaneum, eggs were the most susceptible to microwave energy and adults were the least susceptible. There was no significant difference in the mortality of larvae and adults at 14, 16, and 18% MC, but the mortality was significantly different for eggs and pupae at different MCs. There was a significant increase in the mortality with an increase in power level or exposure time or both. Germination capacity of the seeds was decreased with an increase in power level or exposure time or both. Quality characteristics such as α-amylase, diastatic power, soluble protein, viscosity, and density of the barley malt treated at 500 W for 28 s were same as the control sample, whereas the samples treated at 400 W for 56 s were significantly lower.
A series of tests was conducted to characterize differences in the mortality of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), and rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), exposed to three commodities treated with a liquid and dry spinosad formulation. In laboratory bioassays, adults of the two insect species were exposed to untreated wheat, Triticum aestivum L., corn, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench., and to commodities treated with 1 mg (AI)/kg of liquid and dry spinosad formulations. Mortality was assessed from independent samples examined at specific time intervals to determine immediate mortality and after 24 h of recovery on untreated grain at 28°C and 65% RH to determine delayed mortality. Comparison of the time required for 50% (LT50) and 95% (LT95) mortality indicated that R. dominica adults were consistently and significantly more susceptible (died quickly) than S. oryzae adults when exposed to spinosad-treated commodities. In general, the toxicity of liquid and dry spinosad formulations was similar against R. dominica or S. oryzae. The toxicity of spinosad to each species varied slightly among the three commodities, and there were no consistent trends to suggest that spinosad was more effective on one commodity versus another. LT50 values based on immediate mortality for R. dominica on all commodities ranged from 0.45 to 0.74 d; corresponding values based on delayed mortality ranged from 0.04 to 0.23 d, suggesting delayed toxic action of spinosad in R. dominica. LT50 values based on immediate and delayed mortality for S. oryzae on all three commodities treated with the two spinosad formulations were essentially similar and ranged from 2.75 to 4.56 d. LT95 values for R. dominica based on immediate mortality on spinosad-treated commodities ranged from 1.75 to 3.36 d, and those based on delayed mortality ranged from 0.49 to 1.88 d. There were no significant differences in LT95 values based on immediate and delayed mortality for S. oryzae on spinosad-treated commodities, and the LT95 values ranged from 7.62 to 18.87 d. The toxicity of spinosad was enhanced during a 24-h holding period after removal from spinosad-treated commodities only against R. dominica adults, and possible reasons for increased postexposure mortality of R. dominica adults after brief exposures to spinosad warrant further study.
The peritrophic membrane in Acarus siro L. (Acari: Acaridae) is produced by distinct cells located in the ventriculus. In this study, the chitin inside the peritrophic membrane was detected using wheat germ-lectin conjugated with colloidal gold (10 nm). The chitin fibrils of the peritrophic membrane were a target for chitin effectors, including 1) chitinase, which hydrolyzes chitin fibers inside the peritrophic membrane; 2) calcofluor, which binds to chitin and destroys the peritrophic membrane mesh structure; and 3) diflubenzuron, which inhibits chitin synthesis. In addition, soybean trypsin protease inhibitor (STI) and cocktails of chitinase/calcofluor, diflubenzuron/calcofluor and chitinase/STI were tested. These compounds were supplemented in diets and an increase of population initiated from 50 individuals was observed after 21 d of cultivation. Final A. siro densities on experimental and control diets were compared. The chitin in the peritrophic membrane was determined to be a suitable target for novel acaricidal compounds for suppressing the population growth of A. siro. The most effective compounds were calcofluor and diflubenzuron, whereas the suppressive effects of chitinase and STI were low. The failure of chitinase could be due to its degradation by endogenous proteases. The combination of chitinase and STI suppressed A. siro population growth more effectively than when they were tested in oral admission separately. The combinations of calcofluor/chitinase or calcofluor/difluorbenzuron showed no additive effects on final A. siro density. The presence of chitin in peritrophic membrane provides a target for novel acaricidal compounds, which disrupt peritrophic membrane structure. The suitability of chitin effectors and their practical application in the management of stored product mites is discussed.
Stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), once only a pest of pastured cattle, has become a serious pest of range cattle in the United States. Because of the difficulties associated with stable fly management under range conditions, a pesticide-impregnated cloth target is being developed as a management tool. We conducted studies to determine the influence of weather, time, fabric type, insecticide type, and insecticide concentration on the mortality of stable flies from a susceptible laboratory colony exposed for 30 s to treated cloth targets. We found that 100% of the flies exposed to trigger (Trigger-Royal Box, 65% polyester and 35% cotton) fabric targets that were treated with 0.1% λ-cyhalothrin or 0.1% ζ-cypermethrin and weathered outdoors in Gainesville, FL., for up to 3 mo, were dead within 20 min after a 30-s exposure. The results of this study support the concept that treated targets can be developed for integration into stable fly control programs.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere